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Abstract  

This Reference Document describes the PyCoMod (Python Compartment Modelling) code package. 

PyCoMod is used to build and run compartment models, such as susceptible-infectious-recovered (SIR) 

models of infectious disease. The package was initially developed to support analyses of the spread of 

Coronavirus Disease 2019 (COVID-19) in specific scenarios relevant to the Canadian Armed Forces (CAF) 

during the pandemic in 2020 and 2021. Over the course of multiple studies conducted during this period in 

collaboration with the Canadian Forces Health Services Group, the package evolved to include many 

features making it useful as a general modelling and simulation tool. The use of PyCoMod and its features 

will be described in detail in this Document.   

Significance to defence and security  

PyCoMod was developed to reduce the time and effort spent on creating, solving, and analyzing 

epidemiological compartment models. It was developed and used in multiple analyses that informed 

CAF decision making during the first two years of the COVID-19 pandemic. In addition to modelling 

COVID-19, PyCoMod can be used to develop models of other diseases relevant to military operations, such 

as vector-borne diseases (e.g., malaria), water-borne disease/illness (e.g., schistosomiasis, hepatitis), 

influenza, and others. Furthermore, PyCoMod compartment models fall into a category of general-purpose 

numerical models known as system dynamics. As a result, it is a tool that can be readily used outside the 

realm of epidemiological modelling, including areas such as logistics and resource management. As an 

open-source Python package hosted publicly on GitHub, it also highly suitable to collaborative 

development and modelling efforts. 
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Résumé  

Le présent document de référence décrit le code du paquet PyCoMod (modélisation à compartiments 

Python). PyCoMod est utilisé pour créer et exécuter des modèles à compartiments, comme un modèle 

Susceptible-Infecté-Rétabli relatif à une maladie infectieuse. Le paquet a été élaboré initialement à l’appui 

des analyses sur la propagation de la COVID-19 dans le cadre de scénarios précis qui concernaient les 

Forces armées canadiennes pendant la pandémie en 2020 et en 2021. Au cours de multiples études 

effectuées pendant cette période en collaboration avec le Centre des services de santé des Forces 

canadiennes, le paquet a évolué et comprend maintenant de nombreuses fonctionnalités qui le rendent utile 

comme outil de modélisation et de simulation général. L’utilisation de PyCoMod et de ses fonctionnalités 

sera décrite en détail dans le présent document.   

Importance pour la défense et la sécurité  

PyCoMod a été mis au point dans le but de réduire le temps et les efforts consacrés à la création, à la 

résolution et à l’analyse de modèles épidémiologiques à compartiments. Le paquet a été élaboré et a ensuite 

été utilisé dans de multiples analyses qui ont orienté la prise de décisions au sein des Forces armées 

canadiennes pendant les deux premières années de la pandémie de COVID-19. En plus de modéliser la 

COVID-19, PyCoMod peut servir à élaborer des modèles d’autres maladies qui ont un rapport avec les 

opérations militaires, comme des maladies à transmission vectorielle (p. ex. paludisme), des maladies 

d’origine hydrique (p. ex. schistosomiase, hépatite), l’influenza, etc. En outre, les modèles à compartiments 

de PyCoMod font partie de la catégorie des modèles numériques généraux également connus sous le nom 

de « dynamique des systèmes ». Par conséquent, il s’agit d’un outil qui peut être facilement utilisé en dehors 

de la modélisation épidémiologique, y compris dans des domaines comme la logistique et la gestion des 

ressources. En tant que paquet Python libre hébergé publiquement sur GitHub, PyCoMod est parfaitement 

adapté aux efforts concertés d’élaboration et de modélisation. 
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1 Introduction 

PyCoMod (Python Compartment Modelling) is a Python package for building and running compartment models 

derived from systems of differential equations such as the susceptible-infectious-recovered (SIR) model of 

infectious diseases. PyCoMod was developed to support analyses of the spread of the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), which is the virus that causes Coronavirus Disease 2019 (COVID-19), 

in scenarios relevant to the Canadian Armed Forces (CAF) during the pandemic in 2020 and 2021 [1]. 

The package uses object-orientated design to efficiently build and run compartment models. PyCoMod is not a 

model of a specific system; rather, it is Python package to create and analyze systems that can be well-represented 

by a set of compartments (equivalently, pools or stocks) interconnected with flows defined by mathematical 

expressions. Compartment models are an epidemiological application of a broader numerical modelling approach 

known as system dynamics.  

In order to accommodate more-realistic scenarios and practical aspects of modelling and simulation, 

PyCoMod includes several capabilities that go beyond the basics of compartment modelling, including stochastic 

flows, nested models, dynamic model parameters, vectorized models, Monte Carlo simulation, and efficient 

simulation management using initialization files and multi-run automation. 

The purpose of this Reference Document is to provide a coding reference for PyCoMod. It will describe the 

installation procedure and provide numerous code examples covering basic to advanced features of the package. 

For ease of reference, PyCoMod’s built-in objects and functions are summarized in Annex A. SIR models and 

extensions thereof will be used throughout the Document for illustrative purposes, but PyCoMod’s applications 

are not limited to these types of models. 
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2 Python Compartment Modelling Installation 

The PyCoMod package is publicly available on the Defence Research and Development Canada (DRDC) 

open science (OS) GitHub site: 

https://github.com/DND-DRDC-RDDC/OS_PyCoMod 

To install PyCoMod directly from GitHub to a local Python environment (requires Git version control system), 

run the following from the command line: 

pip install git+https://github.com/DND-DRDC-RDDC/OS_PyCoMod.git 

To install PyCoMod in Google Colab,1 run the following in a code cell: 

! pip install git+https://github.com/DND-DRDC-RDDC/OS_PyCoMod.git 

After installing the package, import PyCoMod into your code: 

import pycomod as pcm 

The examples that follow were tested in Google Colab and assume that PyCoMod has been installed and imported 

as above using the abbreviated name pcm. They are also assumed to be executed sequentially from start to finish 

so that earlier imports and definitions are available in later examples. 

 

                                                      
1 https://colab.research.google.com (accessed date: 6 September 2023). 

https://colab.research.google.com/
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3 Python Compartment Modelling examples 

This section will introduce PyCoMod’s main features by way of a series of examples and descriptions starting 

with a basic SIR model and proceeding to more advanced modelling scenarios. 

Note that these examples were designed to demonstrate the features of PyCoMod; they are not necessarily 

appropriate models for real situations. 

3.1 A simple susceptible-infectious-recovered model 

The SIR model compartmentalizes a population based on the disease state of each individual. There are 

three compartments (Susceptible [S], Infectious [I], and Recovered [R]) and two flows that move individuals from 

Susceptible to Infectious and from Infectious to Recovered [2]–[4]. The compartments and flows are illustrated in 

Figure 1, where variables 𝑆, 𝐼 and 𝑅 represent the number of individuals in the Susceptible, Infectious, and 

Recovered compartments, respectively. 

 

Figure 1: Compartments and flows in the basic SIR model. 

The flow of individuals from S to I is given by the rate 

𝐹𝑆𝐼 = 𝑏𝑆
𝐼

𝑁
 , (1) 

where 𝑏 is the transmission rate and 𝑁 is the total population, equal to 𝑆 + 𝐼 + 𝑅. 

The flow of individuals from I to R is given by the rate 

𝐹𝐼𝑅 = 𝑔𝐼, (2) 

where 𝑔 is the recovery rate and the reciprocal, 𝑔−1, is the average time spent in the infectious compartment. 

This produces the following system of differential equations: 

𝑑𝑆

𝑑𝑡
= −𝑏𝑆

𝐼

𝑁
; (3) 



CAN UNCLASSIFIED 
 
 

4 DRDC-RDDC-2023-D111 
 

CAN UNCLASSIFIED 

𝑑𝐼

𝑑𝑡
= 𝑏𝑆

𝐼

𝑁
− 𝑔𝐼;  and (4) 

𝑑𝑅

𝑑𝑡
= 𝑔𝐼. (5) 

Given a population of size 100, where 5 individuals are infected (I) and the remaining 95 individuals are 

susceptible (S), we can model this simple system in PyCoMod with the following code: 

class SimpleSIR(pcm.Model): 
 
    def build(self): 
        # Pools 
        self.S = pcm.Pool(95) 
        self.I = pcm.Pool(5) 
        self.R = pcm.Pool(0) 
 
        # Equations 
        self.N = pcm.Equation(lambda: self.S() + self.I() + self.R()) 
 
        # Parameters 
        self.b = pcm.Parameter(0.2) 
        self.g = pcm.Parameter(0.1) 
 
        # Flows 
        self.Fsi = pcm.Flow(lambda: self.b() * self.S() * self.I() / self.N(), 
                            src=self.S, dest=self.I) 
        self.Fir = pcm.Flow(lambda: self.g() * self.I(), 
                            src=self.I, dest=self.R) 
 
        # Output 
        self.set_output('S', 'I', 'R') 

The first two lines begin the definition of a custom class (i.e., a user-defined object type) that inherits properties 

from the PyCoMod base class for models and overrides the model’s build method to define the elements of the 

SIR model. In this case, we create the three population compartments (S, I and R) using the PyCoMod Pool class 

(pool is the word used in PyCoMod for compartment) and specify the initial value of each pool  

(e.g., self.S = pcm.Pool(95)). We define the value N (the total population) as a PyCoMod Equation. Equations are 

defined by a function referencing other model elements, and we have used lambda functions [5] for their syntactical 

compactness. To obtain the value of a model element, we call the object by adding open- and close-parentheses; 

for example, the current number of susceptible individuals is obtained by self.S(). Using the 

PyCoMod Parameter class, we create and specify values for the model’s parameters: the transmission rate, 

b, and recovery rate, g. Next, we define the movement between the compartments using the PyCoMod Flow class. 

Flows are defined by a function that returns the instantaneous flow rate. In this case, the flow functions correspond 

to the rate equations, 𝑭𝑺𝑰 and 𝑭𝑰𝑹, defined in Equations (1) and (2). Flows must also specify a source pool and a 

destination pool using the src and dest named arguments. Note that when specifying source and destination 

pools, we reference the pool object itself rather than calling it (e.g., src=self.S, not src=self.S()). A final 

step in specifying the model is to let PyCoMod know which values we want to capture for output. This is done by 

calling the model’s set_output method and providing the names of the model elements that we want to track.  

Having defined the SimpleSIR model class, we can now create an instance of it. 

m = SimpleSIR() 
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We use another PyCoMod object called a RunManager to run it. The run manager keeps track of multiple models, 

run settings and outputs so that batches of runs can be automated. First, we create an instance of the run manager. 

mgr = pcm.RunManager() 

Now we can tell the run manager to run the SimpleSIR model. We can supply run settings (such as the duration 

in this example), and we must provide a label as a key to access the run results later. 

mgr.run(m, duration=150, label='My run') 

Finally, we can plot the results of the run using the PyCoMod Plotter. First, we create an instance of the plotter, 

which internally creates a Matplotlib Figure, and then we can plot outputs from the run on the figure axes. 

The result is shown is Figure 2. 

plt = pcm.Plotter(title='SIR Time Series', ylabel='Population', fontsize=14) 
plt.plot(mgr['My run'], 'S', color='blue', label='S') 
plt.plot(mgr['My run'], 'I', color='orange', label='I') 
plt.plot(mgr['My run'], 'R', color='green', label='R') 
plt.plot(mgr['My run'], 'S + I + R', color='black', label='Total') 

 

 

Figure 2: Plot of the S, I and R model outputs over time. 

Each call to the plotter’s plot function must specify a run and an output. The run is identified by indexing the run 

manager with the label that we specified when we ran the model (e.g., mgr['My run']). The output must be one 

of the outputs that was specified in the model using set_output. Outputs can be summed together in a plot, 

e.g., 𝑆 +  𝐼 +  𝑅 in the last line of the code above. 

3.2 Adding model elements 

To incorporate additional model elements, we simply add more pools, parameters, and flows to the model’s build 

method. For example, we can expand the SIR model by incorporating an exposed compartment (E), thus creating 

a delay between the time of infection and the time of becoming symptomatic and infectious toward others, which 

models the virus’ incubation period. This addition produces the common  

susceptible-exposed-infectious-recovered (SEIR) model [2]–[4] as seen in Figure 4. 
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Figure 3: Compartments and flows in the basic SEIR model. 

In the SEIR model, the parameter 𝑎 controls the flow from E to I, where the reciprocal, 𝑎−1, is the average 

incubation period for the disease. 

This addition of the exposed compartment to the simple SIR example from Section 3.1 is shown in the following 

code: 

class SimpleSEIR(pcm.Model): 
 
    def build(self): 
        # Pools 
        self.S = pcm.Pool(95) 
        self.E = pcm.Pool(0) 
        self.I = pcm.Pool(5) 
        self.R = pcm.Pool(0) 
 
        # Equations 
        self.N = pcm.Equation( 
                lambda: self.S() + self.E() + self.I() + self.R()) 
 
        # Parameters 
        self.b = pcm.Parameter(0.2) 
        self.a = pcm.Parameter(0.1) 
        self.g = pcm.Parameter(0.1) 
 
        # Flows 
        self.Fse = pcm.Flow(lambda: self.b() * self.S() * self.I() / self.N(), 
                            src=self.S, dest=self.E) 
        self.Fei = pcm.Flow(lambda: self.a() * self.E(), 
                            src=self.E, dest=self.I) 
        self.Fir = pcm.Flow(lambda: self.g() * self.I(), 
                            src=self.I, dest=self.R) 
 
        # Output 
        self.set_output('S', 'E', 'I', 'R') 
 
 
# Instantiate model 
m = SimpleSEIR() 
 
# Run model 
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mgr.run(m, duration=150, label='My run') 
 
# Plot results 
plt = pcm.Plotter(title='SEIR Time Series', ylabel='Population', fontsize=14) 
plt.plot(mgr['My run'], 'S', color='blue', label='S') 
plt.plot(mgr['My run'], 'E', color='red', label='E') 
plt.plot(mgr['My run'], 'I', color='orange', label='I') 
plt.plot(mgr['My run'], 'R', color='green', label='R') 
plt.plot(mgr['My run'], 'S + E + I + R', color='black', label='Total') 

3.3 Stochastic model elements 

In PyCoMod, we can also introduce stochastic model elements and run Monte Carlo simulations. For example, 

two improvements to the simple SIR model would be to sample the transmission rate from a distribution reflecting 

the uncertainty in this parameter, and to make the flows stochastic and discrete. We show these changes below in 

a new model class called MonteCarloSIR. 

import numpy as np 
rng = np.random.default_rng() 
 
class MonteCarloSIR(pcm.Model): 
 
    def build(self): 
        # Pools 
        self.S = pcm.Pool(95) 
        self.I = pcm.Pool(5) 
        self.R = pcm.Pool(0) 
 
        # Equations 
        self.N = pcm.Equation(lambda: self.S() + self.I() + self.R()) 
 
        # Transmission rate parameters 
        self.b_m = pcm.Parameter(0.2) 
        self.b_s = pcm.Parameter(0.05) 
 
        # Transmission rate random sample 
        self.b = pcm.Sample(lambda: rng.normal(self.b_m(), self.b_s())) 
 
        # Recovery rate parameter 
        self.g = pcm.Parameter(0.1) 
 
        # Flows 
        self.Fsi = pcm.Flow( 
                lambda: rng.binomial(self.S(), self.b() * self.I() / self.N()), 
                src=self.S, dest=self.I) 
        self.Fir = pcm.Flow( 
                lambda: rng.binomial(self.I(), self.g()), 
                src=self.I, dest=self.R) 
 
        # Output 
        self.set_output('S','I','R') 
 
 
m2 = MonteCarloSIR() 
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The first two lines, above, import NumPy2 and instantiate its default random number generator (RNG). We now 

specify the transmission rate 𝑏 in Equation (3) with two parameters, a mean value b_m and a standard deviation 

b_s. Then we create a variable b for the transmission rate as a PyCoMod Sample, defined by a lambda function 

that calls NumPy’s normal (or Gaussian) RNG, passing b_m and b_s as parameters. This will resample the 

transmission rate from the normal distribution at the start of each model run. 

The flow 𝐹𝑆𝐼 has been updated such that, rather than being a deterministic rate, each susceptible person has a 

probability of remaining susceptible or being infected in one unit of time based on the number of infected people 

in the population and the transmission rate. Therefore, we use the binomial RNG to generate a discrete, random 

number of new infections that will move from the susceptible population to the infectious population in one time 

step: rng.binomial(self.S(), self.b()*self.I()/self.N()). The flow 𝐹𝐼𝑅 has similarly been 

updated such that each infected person has a probability of recovering (or not) in each time step, again using the 

binomial RNG to generate a discrete, random number of people to move from the infectious compartment to the 

recovered compartment. 

Lastly, we create an instance of the new model and call it m2. These modifications produce the same average 

behaviour as the deterministic model, but introduce variability based on the uncertainty in the transmission rate 

and the randomness of transmission and recovery events. 

We can now run the model in Monte Carlo mode using the run manager’s run_mc method, passing the number of 

replications (reps) in the run settings, and giving the run a new label. 

mgr.run_mc(m2, duration=150, reps=100, label='My run - mc') 

We can plot the results of a Monte Carlo run using the plotter’s plot_mc method. The optional interval parameter 

specifies the percentile range from the distribution of outputs to be displayed. An interval of 50 means the middle 

50% of the distribution, or the inter-quartile range. An interval of 90 would display the region from the 5th to 

95th percentile. The result is shown in Figure 4. 

plt = pcm.Plotter(title='SIR Time Series - Monte Carlo', ylabel='Population', 
                  fontsize=14) 
plt.plot_mc(mgr['My run - mc'], 'S', color='blue', interval=50, label='S') 
plt.plot_mc(mgr['My run - mc'], 'I', color='orange', interval=50, label='I') 
plt.plot_mc(mgr['My run - mc'], 'R', color='green', interval=50, label='R') 
plt.plot_mc(mgr['My run - mc'], 'S + I + R', color='black', interval=50, 
            label='Total') 

                                                      
2 https://numpy.org (accessed date: 6 September 2023). 

https://numpy.org/
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Figure 4: Plot of the median and inter-quartile range for S, I and R over time from a Monte Carlo  

simulation where the transmission rate and infection and recovery events are stochastic. 

3.4 Nested models and model initialization 

PyCoMod models support nesting, so any PyCoMod model can be used as an element inside another model. 

For example, if we have two sub-populations with different transmission dynamics and a certain degree of mixing 

between them, we can create a new model, MixSIR, that contains two instances of the MonteCarloSIR model 

defined previously in Section 3.3. 

class MixSIR(pcm.Model): 
 
    def build(self): 
 
        # Sub models 
        self.GrpA = MonteCarloSIR() 
        self.GrpB = MonteCarloSIR() 
 
        # Transmission parameter between groups 
        self.b_mix = pcm.Parameter() 
 
        # Cross-infection flows 
        self.Fsi_GrpA = pcm.Flow( 
                lambda: rng.binomial(self.GrpA.S(), 
                                     self.b_mix() * self.GrpB.I() 
                                                  / self.GrpB.N()), 
                src=self.GrpA.S, dest=self.GrpA.I) 
        self.Fsi_GrpB = pcm.Flow( 
                lambda: rng.binomial(self.GrpB.S(), 
                                     self.b_mix() * self.GrpA.I() 
                                                  / self.GrpA.N()), 
                src=self.GrpB.S, dest=self.GrpB.I) 
 
        # Output 
        self.set_output('GrpA','GrpB') 
 
 
m3 = MixSIR() 
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In the code above, the two sub-populations, GrpA and GrpB, are both defined as instances of the MonteCarloSIR 

model. Each group behaves internally as before according to its parameters and initial conditions, but we introduce 

the possibility of cross-infection between these groups. The cross-infections occur with a different transmission 

rate, b_mix, defined as a Parameter in the MixSIR model. The cross-infection flows result in new infections 

within each group as a result of an interaction with an individual from the infectious population in the other group. 

Note that in order to save the output from a sub-model, the sub-model must be listed in the parent model’s output 

list, self.set_output(GrpA, GrpB); then all elements of the sub-model will be accessible when plotting. 

While GrpA and GrpB are the same model, we will supply them with different parameter values and initial 

conditions. Previously, we specified these values while defining the model, but it is often preferable to separate 

model inputs from the model itself. Therefore, we can supply the inputs for the model at run-time using a 

Python dictionary. For the MixSIR model, the initialization dictionary would look something like 

init_mix below. 

init_GrpA = {'S': 95, 'I': 5, 'R': 0, 'b_m': 0.2, 'b_s': 0.05, 'g': 0.1} 
init_GrpB = {'S': 30, 'I': 0, 'R': 0, 'b_m': 0.3, 'b_s': 0.05, 'g': 0.1} 
init_model = {'b_mix': 0.05, 'GrpA': init_GrpA, 'GrpB': init_GrpB} 
init_run = {'reps': 100, 'end': 150} 
init_mix = {'run':init_run, 'model':init_model} 
 

The initialization dictionary consists of two entries: run contains a dictionary of run inputs, and model contains 

a dictionary of model inputs. In this case, the supplied run inputs are the number of repetitions (reps) and the end 

time. The model dictionary contains keys corresponding to the names of the model elements, and values to be used 

to initialize each element. The only model elements that accept input are pools, parameters, and sub-models. 

The entry value for a pool is the initial population of the pool. The entry value for a parameter is the parameter’s 

value which is a constant. To initialize a sub-model, such as GrpA above, the entry value is another dictionary 

designed to initialize the sub-model, init_GrpA = {'S': 95, 'I': 5, 'R': 0, 'b_m': 0.2, 'b_s': 
0.05, 'g': 0.1}. Hence, nested models are initialized with equivalently nested dictionaries. In this example, 

GrpA is given the same initialization values as in the MonteCarloSIR model while GrpB is a smaller population 

(Size 30) with a higher mean transmission rate, but with no initial infections. We then run the model using the 

dictionary to set both the model inputs and the run inputs. 

mgr.run_mc(m3, init=init_mix, label='My run - mix') 

We can then plot the Monte Carlo simulation of GrpA, as shown in Figure 5. 

plt = pcm.Plotter(title='SIR Time Series - Monte Carlo - GrpA', 
                  ylabel='Population', fontsize=14) 
plt.plot_mc(mgr['My run - mix'], 'GrpA.S', color='blue', 
            interval=50, label='S') 
plt.plot_mc(mgr['My run - mix'], 'GrpA.I', color='orange', 
            interval=50, label='I') 
plt.plot_mc(mgr['My run - mix'], 'GrpA.R', color='green', 
            interval=50, label='R') 
plt.plot_mc(mgr['My run - mix'], 'GrpA.S + GrpA.I + GrpA.R', color='black', 
            interval=50, label='Total') 
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Figure 5: Plot of the median and inter-quartile range for S, I and R over time for GrpA. 

Similarly, we can plot what happens to GrpB, as shown in Figure 6. 

plt = pcm.Plotter(title='SIR Time Series - Monte Carlo - GrpB', 
                  ylabel='Population', fontsize=14) 
plt.plot_mc(mgr['My run - mix'], 'GrpB.S', color='blue', 
            interval=50, label='S') 
plt.plot_mc(mgr['My run - mix'], 'GrpB.I', color='orange', 
            interval=50, label='I') 
plt.plot_mc(mgr['My run - mix'], 'GrpB.R', color='green', 
            interval=50, label='R') 
plt.plot_mc(mgr['My run - mix'], 'GrpB.S + GrpB.I + GrpB.R', color='black', 
            interval=50, label='Total') 

 

Figure 6: Plot of the median and inter-quartile range for S, I and R over time for GrpB. 

Note in the above code that to specify the output we want to plot in a nested model, we use dot-notation to navigate 

the sub-models. E.g., GrpB.S plots the susceptible population within GrpB. 
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3.5 Initialization files 

Initialization dictionaries are useful when we want to set up the model in Python code, but it is often more practical 

to specify the initialization data in a separate file. This allows different model setups to be saved and edited by 

hand. For this purpose, PyCoMod models can also be initialized from an Excel file. The Excel file template to 

initialize a particular model can be generated by the model itself by calling write_excel_init and providing a 

file name. 

m3.write_excel_init('init_mix.xlsx') 

In Google Colab, the initialization file will be written to the temporary session storage and can be downloaded, 

modified and re-uploaded. In a local Python environment, the file is written to local storage. 

The Excel initialization file is structured in a similar way to the initialization dictionary. The first tab contains run 

inputs, the second tab contains the top-level model inputs, and subsequent tabs contain sub-model inputs if 

sub-models are present. In the case of the example provided in Section 3.4, there are four tabs as  

shown in Figure 7. 

  

Figure 7: Tab structure of an Excel initialization file. 

The content of the run tab is shown in Figure 8 and always consist of the following run settings: 

• t—the initial simulation time (usually 0), 

• date—the initial simulation date, 

• dt—the simulation time step, 

• end—the simulation end time, and 

• reps—the number of replications for Monte Carlo runs. 

 

Figure 8: Content of the run tab. 

The model tab contains the initialization inputs for the elements of the top-level model. In this case, they are 

GrpA, GrpB, and b_mix, which are shown in Figure 9. 

 

Figure 9: Content of the model tab. 

We can edit the value for the cross-infection parameter b_mix, here. 
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Because GrpA and GrpB are sub-models, the value under these labels is the name of the tab that contains the 

initialization data for that sub-model. So under GrpA, the value is model.GrpA which is the name of the third 

Excel tab. Tab names contain the full path from the model hierarchy to avoid naming collisions in the event that 

two sub-models have the same name. It should not be necessary to change the sheet-name entry under a sub-model 

within the model tab. In the model.GrpA tab, shown in Figure 10, we find the inputs for the elements of the 

GrpA sub-model: S, I, R, b_m, b_s, and g. 

 

Figure 10: Content of the model, GrpA tab. 

The same applies to the GrpB sub-model tab. Each model tab also contains an out entry which is used to list the 

desired outputs for the model or sub-model. This has the same function as calling set_output within the model 

definition. Recall that the outputs of a sub-model will only be saved if the parent model includes the sub-model in 

its output list. 

We can edit the values in the Excel file, for example, by changing b_mix to 0.025 (cutting the transmission rate 

between the two populations in half) and then saving the changes. 

In Google Colab, we then must upload the edited file to the session storage. 

Now we can run the model using the Excel file to initialize it. 

mgr.run_mc(m3, init='init_mix.xlsx', label='My run - mix - xls') 

The output can then be viewed in the same way as shown in the previous section. 

3.6 Dynamic model parameters 

It is often necessary to adjust model parameters over time. This can be accomplished using PyCoMod’s equation 
class. For example, we might want to modify the SimpleSIR model to make the transmission rate decay over 

time, reflecting increasing adherence to public health measures. So, we could replace the transmission parameter b 

with an equation implementing an exponential decay (i.e., 𝑏(𝑡) = 0.2(0.98)𝑡). 

class ModSIR(pcm.Model): 
 
    def build(self): 
        # Pools 
        self.S = pcm.Pool(95) 
        self.I = pcm.Pool(5) 
        self.R = pcm.Pool(0) 
 
        # Equations 
        self.N = pcm.Equation(lambda: self.S() + self.I() + self.R()) 
 
        # Parameters 
        self.b = pcm.Equation(lambda: 0.2 * (0.98)**self.t()) 
        self.g = pcm.Parameter(0.1) 
 
        # Flows 
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        self.Fsi = pcm.Flow(lambda: self.b() * self.I() * self.S() / self.N(), 
                            src=self.S, dest=self.I) 
        self.Fir = pcm.Flow(lambda: self.g() * self.I(), 
                            src=self.I, dest=self.R) 
 
        # Output 
        self.set_output('S', 'I', 'R', 'b') 
 
 
m4 = ModSIR() 

The current simulation time can be accessed and used in the equation for b by calling the special variable self.t. 

We can view the modified transmission rate over time by including b in the list of outputs, running the model, and 

then plotting it; see Figure 11. 

mgr.run(m4, duration=150, label='Mod SIR') 
 
plt = pcm.Plotter(title='Dynamic transmission rate', 
                  ylabel='Value', fontsize=14) 
plt.plot(mgr['Mod SIR'], 'b', color='blue', label='Transmission rate') 

 

Figure 11: A dynamic transmission rate modelled with an exponential decay equation. 

Sometimes we want a parameter to change to specific values at specific times, in other words, a step function. 

It is possible to implement a step function as a PyCoMod Equation, but this is not trivial. As this is a common 

requirement in modelling and simulation, PyCoMod provides a built-in equation sub-class called Step. 

For example, we can change the ModSIR model from Section 3.6 such that the transmission rate increases and 

decreases at certain times, reflecting specific public health measures coming into and out of force. 

self.b = pcm.Step([0.2, 0.13, 0.2], [0, 7, 21]) 

When initializing the PyCoMod step object, we provide a list of values and a corresponding list of times. In this 

case, the transmission rate is initially 0.2 at time 0, it then reduces to 0.13 on day 7 for a period of two weeks, after 

which it returns to 0.2 on day 21, shown in Figure 12. Note that the default time unit in PyCoMod is 1 day. 
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Figure 12: A dynamic transmission rate modelled as a step function. 

In the above examples, the numerical constants used to define the changing transmission rate, b, could be replaced 

with PyCoMod Parameters which would register them as model inputs allowing them to be adjusted via an 

initialization dictionary or initialization file. This is an important advantage of using parameters rather than literals 

in a model. 

In the case of the Step class, we need two vectors, and PyCoMod Parameter objects support vector inputs. 

So, we can create a parameter b_v for the values of the transmission rate and a parameter b_t for the times at 

which they will be applied. 

self.b_v = pcm.Parameter([0.2, 0.13, 0.2]) 
self.b_t = pcm.Parameter([0, 7, 21]) 
self.b = pcm.Step(self.b_v(), self.b_t()) 

The initialization dictionary for this model would then specify lists for the values of b_v and b_t. 

init_mod = {'run': {'end': 150},  
            'model':{'S': 95, 'I': 5, 'R': 0, 'b_v': [0.2, 0.13, 0.2], 
                     'b_t': [0, 7, 21], 'g': 0.1}} 

If we would rather create an Excel initialization file for this model, we will see two vector inputs for the parameters 

b_v and b_t, shown in Figure 13. 

 

Figure 13: Vector inputs in the initialization Excel file for the transmission rate step function. 

Whichever method is used, we can now edit the timing and magnitude of changes to the transmission rate. 

The size of the vector is not restricted to the initial dimension of three in this example. More values and times can 

be added so long as there is always a corresponding time for each value. 
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The PyCoMod Impulse is another type of dynamic function similar to Step. The Impulse class generates 

specified values at specified times, but only at those times. In other words, the impulse value is held only for the 

timestep that contains the impulse time, otherwise it returns 0 or an optional default value. For example, the 

transmission rate in our model could be 0.2 under normal circumstances, but on certain dates there may be events 

that are expected to result in elevated transmission. 

self.b = pcm.Impulse([0.5, 0.5, 0.5], [10, 25, 45], 0.2) 

When initializing PyCoMod Impulse, we provide a list of impulse values, a list of impulse times, and an optional 

default value. In this case, it produces an elevated transmission rate of 0.5 on days 10, 25 and 45, but it otherwise 

produces the nominal rate of 0.2, shown in Figure 14. 

 

Figure 14: A dynamic transmission rate modelled as an impulse function. 

The same approach as described above can be used to set these values using an initialization dictionary or 

Excel file. 

3.7 Initial flows 

In some cases, it may be useful to incorporate flows into establishing the initial state of the system. For example, 

we may not know that there are exactly 5 initial infections in the population, as in the preceding examples. Instead, 

we may only know that there is a 5% chance that any given person is infected, based on some larger population 

statistics. To model this situation, we can place the entire population in the susceptible, S, compartment, and use 

a stochastic initial flow to move a random number of them to the infectious, I, compartment based on the 

aforementioned 5% probability. 

class MonteCarloSIR2(pcm.Model): 
 
    def build(self): 
        # Pools 
        self.S = pcm.Pool(100) 
        self.I = pcm.Pool(0) 
        self.R = pcm.Pool(0) 
 
        # Equations 
        self.N = pcm.Equation(lambda: self.S() + self.I() + self.R()) 
 
        # Transmission rate parameters 
        self.b_m = pcm.Parameter(0.2) 
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        self.b_s = pcm.Parameter(0.05) 
 
        # Transmission rate random sample 
        self.b = pcm.Sample(lambda: rng.normal(self.b_m(), self.b_s())) 
 
        # Recovery rate parameter 
        self.g = pcm.Parameter(0.1) 
 
        # Flows 
        self.Fsi = pcm.Flow( 
                lambda: rng.binomial(self.S(),  
                                     self.b() * self.I() / self.N()), 
                src=self.S, dest=self.I) 
        self.Fir = pcm.Flow( 
                lambda: rng.binomial(self.I(), self.g()), 
                src=self.I, dest=self.R) 
 
        # Initial flow 
        self.Pi = pcm.Parameter(0.05) 
        self.Fsi_init = pcm.Flow(lambda: rng.binomial(self.S(), self.Pi()), 
                                 src=self.S, dest=self.I, init=True) 
 
        # Output 
        self.set_output('S','I','R') 
 
 
m5 = MonteCarloSIR2() 

In the above code, note that the S pool is initialized to contain the whole population, and I and R are empty. 

Toward the end of the model definition, we have added a parameter, Pi, for the 5% probability of initial infection, 

and the initial flow Fsi_init. This flow uses a binomial RNG to move a random number of individuals from 

S to I using the probability Pi. To flag this flow as an initial flow, we set the optional init parameter to True. 

This flow will now only be executed once at the start of each run. 

If we run this model, we can see that the initial state of the system is now uncertain, and there is more variability 

in the outcome, shown in Figure 15, compared to the first MonteCarloSIR model in Section 3.3. 

mgr.run_mc(m5, duration=150, reps=100, label='My run - mc2') 
 
plt = pcm.Plotter(title='SIR Time Series - Monte Carlo', 
                  ylabel='Population', fontsize=14) 
plt.plot_mc(mgr['My run - mc2'], 'S', color='blue', 
                interval=50, label='S') 
plt.plot_mc(mgr['My run - mc2'], 'I', color='orange', 
                interval=50, label='I') 
plt.plot_mc(mgr['My run - mc2'], 'R', color='green', 
                interval=50, label='R') 
plt.plot_mc(mgr['My run - mc2'], 'S + I + R', color='black', 
                interval=50, label='Total') 
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Figure 15: The result of the model where the initial state is controlled by a stochastic initial flow from S to I. 

3.8 Vectorization 

In PyCoMod, the values held by model elements can be vectors. As with vector parameters introduced previously 

in Section 3.6, pools can also be initialized with a list of values and are stored internally as NumPy arrays. 

Many mathematical operations in NumPy are seamlessly compatible with vector values. NumPy’s RNG functions 

are also compatible with vector inputs. In many cases a model developed for scalar values will be compatible with 

vector values with little or no changes. This feature is useful for modelling multiple isolated or semi-isolated 

populations in parallel, such as a training setting in which students are divided into parallel cohorts. Note that a 

familiarity with how NumPy handles vectors in mathematical expressions is necessary to build vectorized models. 

For example, we can vectorize the MonteCarloSIR2 model from Section 3.7 simply by changing the pool initial 

values to lists. In this case, the susceptible population is initialized to 10 cohorts containing 10 individuals each, 

and the infectious and recovered populations are initialized to 10 empty cohorts. Note that the S, I and R pools 

must all have the same number of cohorts. The rest of the model accommodates the vectorized populations without 

any changes. So rather than a single SIR model of 100 people, we have 10 parallel SIR models of 10 people each. 

class VecSIR(pcm.Model): 
 
    def build(self): 
        # Pools 
        self.S = pcm.Pool([10] * 10) 
        self.I = pcm.Pool([0] * 10) 
        self.R = pcm.Pool([0] * 10) 
 
        # Equations 
        self.N = pcm.Equation(lambda: self.S() + self.I() + self.R()) 
 
        # Transmission rate parameters 
        self.b_m = pcm.Parameter(0.2) 
        self.b_s = pcm.Parameter(0.05) 
 
        # Transmission rate random sample 
        self.b = pcm.Sample(lambda: rng.normal(self.b_m(), self.b_s())) 
 
        # Recovery rate parameter 
        self.g = pcm.Parameter(0.1) 
 



CAN UNCLASSIFIED 
 
 

DRDC-RDDC-2023-D111 19 
 

CAN UNCLASSIFIED 

        # Flows 
        self.Fsi = pcm.Flow( 
                lambda: rng.binomial(self.S(), self.b() * self.I() / self.N()), 
                src=self.S, dest=self.I) 
        self.Fir = pcm.Flow( 
                lambda: rng.binomial(self.I(), self.g()), 
                src=self.I, dest=self.R) 
 
        # Initial flow 
        self.Pi = pcm.Parameter(0.05) 
        self.Fsi_init = pcm.Flow(lambda: rng.binomial(self.S(), self.Pi()), 
                                 src=self.S, dest=self.I, init=True) 
 
        # Output 
        self.set_output('S','I','R') 
 
 
m6 = VecSIR() 

If we plot the result, we can see the protective effect of dividing the population into isolated cohorts, Figure 16. 

Note that when we plot a model output that is vectorized, it is the sum of the vector that is shown on the figure. 

mgr.run_mc(m6, duration=150, reps=100, label='My run - vec') 
 
plt = pcm.Plotter(title='SIR Time Series - Monte Carlo', 
                  ylabel='Population', fontsize=14) 
plt.plot_mc(mgr['My run - vec'], 'S', color='blue', 
            interval=50, label='S') 
plt.plot_mc(mgr['My run - vec'], 'I', color='orange', 
            interval=50, label='I') 
plt.plot_mc(mgr['My run - vec'], 'R', color='green', 
            interval=50, label='R') 
plt.plot_mc(mgr['My run - vec'], 'S + I + R', color='black', 
            interval=50, label='Total') 

 

Figure 16: The result of a vectorized model where all populations are divided into 10 cohorts. 
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However, it is usually not realistic to assume that populations are perfectly isolated, so we can introduce a potential 

for spread between cohorts. At the end of the model definition, we add the parameter b_mix which is the smaller 

rate of transmission between cohorts (one tenth the nominal transmission rate within cohorts), and we add the flow 

Fsi_mix which creates new infections within each cohort as a result of mixing between cohorts. When a 

susceptible person is in a mixed setting (e.g., a hallway where cohorts share the same space), the probability that 

they encounter an infectious person is given by the total proportion of infectious people in the population, hence 

the modified term self.I().sum()/self.N().sum() appears in the flow equation. The addition of .sum() 

returns the sum of the vector, in other words, the sum across the cohorts. 

class VecSIR(pcm.Model): 
 
    def build(self): 
        # Pools 
        self.S = pcm.Pool([10] * 10) 
        self.I = pcm.Pool([0] * 10) 
        self.R = pcm.Pool([0] * 10) 
 
        # Equations 
        self.N = pcm.Equation(lambda: self.S() + self.I() + self.R()) 
 
        # Transmission rate parameters 
        self.b_m = pcm.Parameter(0.2) 
        self.b_s = pcm.Parameter(0.05) 
 
        # Transmission rate random sample 
        self.b = pcm.Sample(lambda: rng.normal(self.b_m(), self.b_s())) 
 
        # Recovery rate parameter 
        self.g = pcm.Parameter(0.1) 
 
        # Flows 
        self.Fsi = pcm.Flow( 
                lambda: rng.binomial(self.S(), self.b() * self.I() / self.N()), 
                src=self.S, dest=self.I) 
        self.Fir = pcm.Flow( 
                lambda: rng.binomial(self.I(), self.g()), 
                src=self.I, dest=self.R) 
 
        # Initial flow 
        self.Pi = pcm.Parameter(0.05) 
        self.Fsi_init = pcm.Flow(lambda: rng.binomial(self.S(), self.Pi()), 
                                 src=self.S, dest=self.I, init=True) 
 
        # Mixing 
        self.b_mix = pcm.Parameter(0.02) 
        self.Fsi_mix = pcm.Flow( 
                lambda: rng.binomial(self.S(), 
                                     self.b_mix() * self.I().sum() 
                                                  / self.N().sum()), 
                src=self.S, dest=self.I) 
 
        # Output 
        self.set_output('S','I','R') 
 
 
m6 = VecSIR() 
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If we plot the output, we can see the effect of the limited degree of mixing between cohorts in Figure 17. 

 

Figure 17: The result of a vectorized model where all populations are divided into 10 cohorts  

and a limited degree of mixing between cohorts occurs. 
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4 Conclusion 

PyCoMod was developed to reduce the time and effort required to build, solve, and analyze detailed, stochastic 

compartment models. Although initially developed to model COVID-19 transmission in CAF operational settings, 

PyCoMod can be used to develop a variety of models outside this realm. The most obvious example is employing 

PyCoMod to model other infectious diseases, whether airborne (e.g., influenza), water-borne 

(e.g., schistosomiasis, hepatitis) or vector-borne (e.g., malaria, dengue). Several such diseases would be of concern 

to military operations around the world. Applying PyCoMod to vector-borne diseases would likely involve 

modelling both the human population and the vector (e.g., mosquitoes) in tandem [6]. Many diseases relevant to 

the military have previously been modelled using compartment models [7], however they have typically been 

analyzed in a civilian context and may not consider aspects of the population or environment that are particular to 

a CAF population, such as the unique facilities and conditions of a deployment or exercise. PyCoMod’s features 

were developed specifically to efficiently model such unique characteristics of populations operating in an 

infectious disease setting. These features can be employed by other researchers in creating compartment models 

tailored to other unique populations or situations. 

Outside the realm of epidemiology, compartment models fall into the more general class of modelling known as 

system dynamics, which are used in a wide range of fields including, for example, personnel management and 

training logistics [8]. PyCoMod’s capabilities are not exclusive to disease modelling and may be applied wherever 

system dynamics models are used, and its unique features may be beneficial over existing tools in those fields. 

The package has been made publicly available on DRDC’s GitHub page [9] in order to give access to as many 

interested parties as possible. This was especially beneficial during the COVID-19 pandemic given the heightened 

need for researchers to be able to collaborate remotely. 
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Annex A Python Compartment Modelling function and object reference table 

For ease of reference, the main elements of the PyCoMod package are summarized in Table A.1 to Table A.4.  

Table A.1: PyCoMod classes. 

Class name Description Signature Usage example 
Refer to 

Section 

Model 
Base class for PyCoMod 

models. 
Model(self, init=None) class SimpleSIR(pcm.Model): 3.1 

Pool 
Model compartment with 

initial value. 
Pool(self, value=1) self.S = pcm.Pool(95) 3.1 

Equation 
Quantity derived from other 

elements of the model through 

an equation. 

Equation(self, eq_func=lambda: 1) 
self.N = pcm.Equation( 
    lambda: self.S() + self.I()  
         + self.R()) 

3.1 

Parameter Model parameter. Parameter(self, value=1) B = self.Parameter(0.2) 3.1 

Flow 
Rate equation that specifies 

movement dynamics between 

source and destination pools. 

Flow(self, rate_func=lambda: 1,  
     src=None, dest=None,  
     priority=False, init=False) 

self.Fir = pcm.Flow( 
        lambda: self.g() * self.I(),  
        src=self.I, dest=self.R) 

3.1 

RunManager 

Keeps track of multiple 

models, run settings and 

output so that batches of runs 

can be automated. 

RunManager(self) mgr = pcm.RunManager() 3.1 

Plotter 
Custom interface to Matplotlib 

figures to plot the output of 

PyCoMod runs.  

Plotter(self, figsize=(14, 6),  
        fontsize=12, title=None,  
        xlabel=None, ylabel=None,  
        ylimit=None) 

plt = pcm.plotter( 
        title='SIR Time Series',      
        ylabel='Population',  
        fontsize=14) 

3.1 

Sample 

Stochastic parameter value 

sampled at the start of each 

model run from a random 

number generator of a 

specified distribution. 

Sample(self, sample_func=lambda: 1) 
pcm.Sample( 
        lambda: rng.normal(self.b_m(), 
                           self.b_s())) 

3.3 

Step 
Parameter that changes to 

specific values at specific 

times. 

Step(self, values, times, 
     default=0) 

self.b = pcm.Step([0.2, 0.13, 0.2], 
                  [0, 7, 21]) 3.6 
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Class name Description Signature Usage example 
Refer to 

Section 

Impulse 
Parameter that holds a value 

only for the timestep that 

contains the impulse time. 

Impulse(self, values, times,  
        default=0) 

self.b = pcm.Impulse([0.5, 0.5, 0.5],  
                     [10, 25, 45], 0.2) 3.6 

 

Table A.2: Model methods. 

Method name Description Signature Usage example 
Refer to 

Section 

build 

Define model by 

overriding the build 

method of the Model 

base class. 

build(self) def build(self): 3.1 

set_output 
Specify outputs 

captured for analysis. 
set_output(self, *args) self.set_output('S', 'I', 'R') 3.1 

write_excel_init 
Generate Excel file 

template to initialize this 

model. 

write_excel_init(self, 
                 filename=None) 

m3.write_excel_init('init_mix.xlsx') 3.5 

 

Table A.3: RunManager methods. 

Function/ 

Object name 
Description Signature Usage example 

Refer to 

Section 

run 
Run model while 

supplying name and 

run settings. 

run(self, model, init=None,  
    duration=None, label=None,  
    dt=None, start_date=None,  
    start_time=None) 

mgr.run(m, duration=150, label='My run') 3.1 

run_mc 
Run a model in Monte 

Carlo mode 

run_mc(self, model, init=None,  
      duration=None, label=None,     
      dt=None, start_date=None,  
      start_time=None, reps=None) 

mgr.run_mc(m2, duration=150, reps=100, 
           label='My run - mc') 
 

3.3 
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Table A.4: Plotter methods. 

Function/ 

Object name 
Description Signature Usage example 

Refer to 

Section 

plot 

Create figures of the 

specified model 

elements for a given 

model run. 

plot(self, run, elements, **kwargs) 
plt.plot(mgr['My run'], 'S', 
         color='blue', label = 'S') 3.1 

plot_mc 
Create figures of a 

Monte Carlo simulation. 
plot_mc(self, run, elements, 
       **kwargs) 

plt.plot_mc(mgr['My run - mc'], 'S',  
            color='blue', interval=50, 
            label = 'S') 

3.3 
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List of symbols/abbreviations/acronyms/initialisms 

CAF Canadian Armed Forces 

COVID-19 Coronavirus Disease 2019  

DRDC Defence Research and Development Canada 

E exposed compartment 

I infectious compartment 

OS open science 

pcm Python local object name for imported PyCoMod package 

PyCoMod Python Compartment Modelling 

R recovered compartment 

reps replications  

RNG random number generator 

S susceptible compartment 

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2 

SEIR susceptible-exposed-infectious-recovered 

SIR susceptible-infectious-recovered 
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