

CAN UNCLASSIFIED

DEFENCE RESEARCH AND DEVELOPMENT CANADA (DRDC)

RECHERCHE ET DÉVELOPPEMENT POUR LA DÉFENSE CANADA (RDDC)

PyCoMod (Python Compartment Modelling)
Programming Reference

Stephen Okazawa
Josée van den Hoogen
Steve Guillouzic
DRDC – Centre for Operational Research and Analysis

Terms of Release: This document is approved for public release.

Defence Research and Development Canada
Reference Document

DRDC-RDDC-2023-D111

October 2023

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Template in use: EO Publishing App for SR-RD Eng 2022-12-08 (DCD).dotm

© His Majesty the King in Right of Canada as represented by the Minister of National Defence, 2023

© Sa Majesté le Roi du chef du Canada représentée par le ministre de la Défense nationale, 2023

CAN UNCLASSIFIED

IMPORTANT INFORMATIVE STATEMENTS

This document was reviewed for Controlled Goods by Defence Research and Development Canada (DRDC) using the Schedule to the
Defence Production Act.

Disclaimer: This publication was prepared by Defence Research and Development Canada an agency of the Department of National
Defence. The information contained in this publication has been derived and determined through best practice and adherence to the highest
standards of responsible conduct of scientific research. This information is intended for the use of the Department of National Defence, the
Canadian Armed Forces (“Canada”) and Public Safety partners and, as permitted, may be shared with academia, industry, Canada’s allies,
and the public (“Third Parties”). Any use by, or any reliance on or decisions made based on this publication by Third Parties, are done at their
own risk and responsibility. Canada does not assume any liability for any damages or losses which may arise from any use of, or reliance on,
the publication.

Endorsement statement: This publication has been published by the Editorial Office of Defence Research and Development Canada, an
agency of the Department of National Defence of Canada. Inquiries can be sent to: Publications.DRDC-RDDC@drdc-rddc.gc.ca.

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 i

CAN UNCLASSIFIED

Abstract

This Reference Document describes the PyCoMod (Python Compartment Modelling) code package.

PyCoMod is used to build and run compartment models, such as susceptible-infectious-recovered (SIR)

models of infectious disease. The package was initially developed to support analyses of the spread of

Coronavirus Disease 2019 (COVID-19) in specific scenarios relevant to the Canadian Armed Forces (CAF)

during the pandemic in 2020 and 2021. Over the course of multiple studies conducted during this period in

collaboration with the Canadian Forces Health Services Group, the package evolved to include many

features making it useful as a general modelling and simulation tool. The use of PyCoMod and its features

will be described in detail in this Document.

Significance to defence and security

PyCoMod was developed to reduce the time and effort spent on creating, solving, and analyzing

epidemiological compartment models. It was developed and used in multiple analyses that informed

CAF decision making during the first two years of the COVID-19 pandemic. In addition to modelling

COVID-19, PyCoMod can be used to develop models of other diseases relevant to military operations, such

as vector-borne diseases (e.g., malaria), water-borne disease/illness (e.g., schistosomiasis, hepatitis),

influenza, and others. Furthermore, PyCoMod compartment models fall into a category of general-purpose

numerical models known as system dynamics. As a result, it is a tool that can be readily used outside the

realm of epidemiological modelling, including areas such as logistics and resource management. As an

open-source Python package hosted publicly on GitHub, it also highly suitable to collaborative

development and modelling efforts.

CAN UNCLASSIFIED

ii DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

Résumé

Le présent document de référence décrit le code du paquet PyCoMod (modélisation à compartiments

Python). PyCoMod est utilisé pour créer et exécuter des modèles à compartiments, comme un modèle

Susceptible-Infecté-Rétabli relatif à une maladie infectieuse. Le paquet a été élaboré initialement à l’appui

des analyses sur la propagation de la COVID-19 dans le cadre de scénarios précis qui concernaient les

Forces armées canadiennes pendant la pandémie en 2020 et en 2021. Au cours de multiples études

effectuées pendant cette période en collaboration avec le Centre des services de santé des Forces

canadiennes, le paquet a évolué et comprend maintenant de nombreuses fonctionnalités qui le rendent utile

comme outil de modélisation et de simulation général. L’utilisation de PyCoMod et de ses fonctionnalités

sera décrite en détail dans le présent document.

Importance pour la défense et la sécurité

PyCoMod a été mis au point dans le but de réduire le temps et les efforts consacrés à la création, à la

résolution et à l’analyse de modèles épidémiologiques à compartiments. Le paquet a été élaboré et a ensuite

été utilisé dans de multiples analyses qui ont orienté la prise de décisions au sein des Forces armées

canadiennes pendant les deux premières années de la pandémie de COVID-19. En plus de modéliser la

COVID-19, PyCoMod peut servir à élaborer des modèles d’autres maladies qui ont un rapport avec les

opérations militaires, comme des maladies à transmission vectorielle (p. ex. paludisme), des maladies

d’origine hydrique (p. ex. schistosomiase, hépatite), l’influenza, etc. En outre, les modèles à compartiments

de PyCoMod font partie de la catégorie des modèles numériques généraux également connus sous le nom

de « dynamique des systèmes ». Par conséquent, il s’agit d’un outil qui peut être facilement utilisé en dehors

de la modélisation épidémiologique, y compris dans des domaines comme la logistique et la gestion des

ressources. En tant que paquet Python libre hébergé publiquement sur GitHub, PyCoMod est parfaitement

adapté aux efforts concertés d’élaboration et de modélisation.

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 iii

CAN UNCLASSIFIED

Table of contents

Abstract . i

Significance to defence and security . i

Résumé . ii

Importance pour la défense et la sécurité . ii

Table of contents . iii

List of figures . iv

List of tables . v

1 Introduction . 1

2 Python Compartment Modelling Installation . 2

3 Python Compartment Modelling examples . 3

3.1 A simple susceptible-infectious-recovered model 3

3.2 Adding model elements . 5

3.3 Stochastic model elements . 7

3.4 Nested models and model initialization . 9

3.5 Initialization files . 12

3.6 Dynamic model parameters . 13

3.7 Initial flows . 16

3.8 Vectorization . 18

4 Conclusion . 22

References . 23

Annex A Python Compartment Modelling function and object reference table 24

List of symbols/abbreviations/acronyms/initialisms 27

CAN UNCLASSIFIED

iv DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

List of figures

Figure 1: Compartments and flows in the basic SIR model. 3

Figure 2: Plot of the S, I and R model outputs over time. 5

Figure 3: Compartments and flows in the basic SEIR model. 6

Figure 4: Plot of the median and inter-quartile range for S, I and R over time from a Monte Carlo

simulation where the transmission rate and infection and recovery events are stochastic. 9

Figure 5: Plot of the median and inter-quartile range for S, I and R over time for GrpA. . . . 11

Figure 6: Plot of the median and inter-quartile range for S, I and R over time for GrpB. . . . 11

Figure 7: Tab structure of an Excel initialization file. 12

Figure 8: Content of the run tab. 12

Figure 9: Content of the model tab. 12

Figure 10: Content of the model, GrpA tab. 13

Figure 11: A dynamic transmission rate modelled with an exponential decay equation. 14

Figure 12: A dynamic transmission rate modelled as a step function. 15

Figure 13: Vector inputs in the initialization Excel file for the transmission rate step function. . 15

Figure 14: A dynamic transmission rate modelled as an impulse function. 16

Figure 15: The result of the model where the initial state is controlled by a stochastic initial flow

from S to I. 18

Figure 16: The result of a vectorized model where all populations are divided into 10 cohorts. . 19

Figure 17: The result of a vectorized model where all populations are divided into 10 cohorts and a

limited degree of mixing between cohorts occurs. 21

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 v

CAN UNCLASSIFIED

List of tables

Table A.1: PyCoMod classes. 24

Table A.2: Model methods. 25

Table A.3: RunManager methods. 25

Table A.4: Plotter methods. 26

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 1

CAN UNCLASSIFIED

1 Introduction

PyCoMod (Python Compartment Modelling) is a Python package for building and running compartment models

derived from systems of differential equations such as the susceptible-infectious-recovered (SIR) model of

infectious diseases. PyCoMod was developed to support analyses of the spread of the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), which is the virus that causes Coronavirus Disease 2019 (COVID-19),

in scenarios relevant to the Canadian Armed Forces (CAF) during the pandemic in 2020 and 2021 [1].

The package uses object-orientated design to efficiently build and run compartment models. PyCoMod is not a

model of a specific system; rather, it is Python package to create and analyze systems that can be well-represented

by a set of compartments (equivalently, pools or stocks) interconnected with flows defined by mathematical

expressions. Compartment models are an epidemiological application of a broader numerical modelling approach

known as system dynamics.

In order to accommodate more-realistic scenarios and practical aspects of modelling and simulation,

PyCoMod includes several capabilities that go beyond the basics of compartment modelling, including stochastic

flows, nested models, dynamic model parameters, vectorized models, Monte Carlo simulation, and efficient

simulation management using initialization files and multi-run automation.

The purpose of this Reference Document is to provide a coding reference for PyCoMod. It will describe the

installation procedure and provide numerous code examples covering basic to advanced features of the package.

For ease of reference, PyCoMod’s built-in objects and functions are summarized in Annex A. SIR models and

extensions thereof will be used throughout the Document for illustrative purposes, but PyCoMod’s applications

are not limited to these types of models.

CAN UNCLASSIFIED

2 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

2 Python Compartment Modelling Installation

The PyCoMod package is publicly available on the Defence Research and Development Canada (DRDC)

open science (OS) GitHub site:

https://github.com/DND-DRDC-RDDC/OS_PyCoMod

To install PyCoMod directly from GitHub to a local Python environment (requires Git version control system),

run the following from the command line:

pip install git+https://github.com/DND-DRDC-RDDC/OS_PyCoMod.git

To install PyCoMod in Google Colab,1 run the following in a code cell:

! pip install git+https://github.com/DND-DRDC-RDDC/OS_PyCoMod.git

After installing the package, import PyCoMod into your code:

import pycomod as pcm

The examples that follow were tested in Google Colab and assume that PyCoMod has been installed and imported

as above using the abbreviated name pcm. They are also assumed to be executed sequentially from start to finish

so that earlier imports and definitions are available in later examples.

1 https://colab.research.google.com (accessed date: 6 September 2023).

https://colab.research.google.com/

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 3

CAN UNCLASSIFIED

3 Python Compartment Modelling examples

This section will introduce PyCoMod’s main features by way of a series of examples and descriptions starting

with a basic SIR model and proceeding to more advanced modelling scenarios.

Note that these examples were designed to demonstrate the features of PyCoMod; they are not necessarily

appropriate models for real situations.

3.1 A simple susceptible-infectious-recovered model

The SIR model compartmentalizes a population based on the disease state of each individual. There are

three compartments (Susceptible [S], Infectious [I], and Recovered [R]) and two flows that move individuals from

Susceptible to Infectious and from Infectious to Recovered [2]–[4]. The compartments and flows are illustrated in

Figure 1, where variables 𝑆, 𝐼 and 𝑅 represent the number of individuals in the Susceptible, Infectious, and

Recovered compartments, respectively.

Figure 1: Compartments and flows in the basic SIR model.

The flow of individuals from S to I is given by the rate

𝐹𝑆𝐼 = 𝑏𝑆
𝐼

𝑁
 , (1)

where 𝑏 is the transmission rate and 𝑁 is the total population, equal to 𝑆 + 𝐼 + 𝑅.

The flow of individuals from I to R is given by the rate

𝐹𝐼𝑅 = 𝑔𝐼, (2)

where 𝑔 is the recovery rate and the reciprocal, 𝑔−1, is the average time spent in the infectious compartment.

This produces the following system of differential equations:

𝑑𝑆

𝑑𝑡
= −𝑏𝑆

𝐼

𝑁
; (3)

CAN UNCLASSIFIED

4 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

𝑑𝐼

𝑑𝑡
= 𝑏𝑆

𝐼

𝑁
− 𝑔𝐼; and (4)

𝑑𝑅

𝑑𝑡
= 𝑔𝐼. (5)

Given a population of size 100, where 5 individuals are infected (I) and the remaining 95 individuals are

susceptible (S), we can model this simple system in PyCoMod with the following code:

class SimpleSIR(pcm.Model):

 def build(self):
 # Pools
 self.S = pcm.Pool(95)
 self.I = pcm.Pool(5)
 self.R = pcm.Pool(0)

 # Equations
 self.N = pcm.Equation(lambda: self.S() + self.I() + self.R())

 # Parameters
 self.b = pcm.Parameter(0.2)
 self.g = pcm.Parameter(0.1)

 # Flows
 self.Fsi = pcm.Flow(lambda: self.b() * self.S() * self.I() / self.N(),
 src=self.S, dest=self.I)
 self.Fir = pcm.Flow(lambda: self.g() * self.I(),
 src=self.I, dest=self.R)

 # Output
 self.set_output('S', 'I', 'R')

The first two lines begin the definition of a custom class (i.e., a user-defined object type) that inherits properties

from the PyCoMod base class for models and overrides the model’s build method to define the elements of the

SIR model. In this case, we create the three population compartments (S, I and R) using the PyCoMod Pool class

(pool is the word used in PyCoMod for compartment) and specify the initial value of each pool

(e.g., self.S = pcm.Pool(95)). We define the value N (the total population) as a PyCoMod Equation. Equations are

defined by a function referencing other model elements, and we have used lambda functions [5] for their syntactical

compactness. To obtain the value of a model element, we call the object by adding open- and close-parentheses;

for example, the current number of susceptible individuals is obtained by self.S(). Using the

PyCoMod Parameter class, we create and specify values for the model’s parameters: the transmission rate,

b, and recovery rate, g. Next, we define the movement between the compartments using the PyCoMod Flow class.

Flows are defined by a function that returns the instantaneous flow rate. In this case, the flow functions correspond

to the rate equations, 𝑭𝑺𝑰 and 𝑭𝑰𝑹, defined in Equations (1) and (2). Flows must also specify a source pool and a

destination pool using the src and dest named arguments. Note that when specifying source and destination

pools, we reference the pool object itself rather than calling it (e.g., src=self.S, not src=self.S()). A final

step in specifying the model is to let PyCoMod know which values we want to capture for output. This is done by

calling the model’s set_output method and providing the names of the model elements that we want to track.

Having defined the SimpleSIR model class, we can now create an instance of it.

m = SimpleSIR()

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 5

CAN UNCLASSIFIED

We use another PyCoMod object called a RunManager to run it. The run manager keeps track of multiple models,

run settings and outputs so that batches of runs can be automated. First, we create an instance of the run manager.

mgr = pcm.RunManager()

Now we can tell the run manager to run the SimpleSIR model. We can supply run settings (such as the duration

in this example), and we must provide a label as a key to access the run results later.

mgr.run(m, duration=150, label='My run')

Finally, we can plot the results of the run using the PyCoMod Plotter. First, we create an instance of the plotter,

which internally creates a Matplotlib Figure, and then we can plot outputs from the run on the figure axes.

The result is shown is Figure 2.

plt = pcm.Plotter(title='SIR Time Series', ylabel='Population', fontsize=14)
plt.plot(mgr['My run'], 'S', color='blue', label='S')
plt.plot(mgr['My run'], 'I', color='orange', label='I')
plt.plot(mgr['My run'], 'R', color='green', label='R')
plt.plot(mgr['My run'], 'S + I + R', color='black', label='Total')

Figure 2: Plot of the S, I and R model outputs over time.

Each call to the plotter’s plot function must specify a run and an output. The run is identified by indexing the run

manager with the label that we specified when we ran the model (e.g., mgr['My run']). The output must be one

of the outputs that was specified in the model using set_output. Outputs can be summed together in a plot,

e.g., 𝑆 + 𝐼 + 𝑅 in the last line of the code above.

3.2 Adding model elements

To incorporate additional model elements, we simply add more pools, parameters, and flows to the model’s build

method. For example, we can expand the SIR model by incorporating an exposed compartment (E), thus creating

a delay between the time of infection and the time of becoming symptomatic and infectious toward others, which

models the virus’ incubation period. This addition produces the common

susceptible-exposed-infectious-recovered (SEIR) model [2]–[4] as seen in Figure 4.

CAN UNCLASSIFIED

6 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

Figure 3: Compartments and flows in the basic SEIR model.

In the SEIR model, the parameter 𝑎 controls the flow from E to I, where the reciprocal, 𝑎−1, is the average

incubation period for the disease.

This addition of the exposed compartment to the simple SIR example from Section 3.1 is shown in the following

code:

class SimpleSEIR(pcm.Model):

 def build(self):
 # Pools
 self.S = pcm.Pool(95)
 self.E = pcm.Pool(0)
 self.I = pcm.Pool(5)
 self.R = pcm.Pool(0)

 # Equations
 self.N = pcm.Equation(
 lambda: self.S() + self.E() + self.I() + self.R())

 # Parameters
 self.b = pcm.Parameter(0.2)
 self.a = pcm.Parameter(0.1)
 self.g = pcm.Parameter(0.1)

 # Flows
 self.Fse = pcm.Flow(lambda: self.b() * self.S() * self.I() / self.N(),
 src=self.S, dest=self.E)
 self.Fei = pcm.Flow(lambda: self.a() * self.E(),
 src=self.E, dest=self.I)
 self.Fir = pcm.Flow(lambda: self.g() * self.I(),
 src=self.I, dest=self.R)

 # Output
 self.set_output('S', 'E', 'I', 'R')

Instantiate model
m = SimpleSEIR()

Run model

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 7

CAN UNCLASSIFIED

mgr.run(m, duration=150, label='My run')

Plot results
plt = pcm.Plotter(title='SEIR Time Series', ylabel='Population', fontsize=14)
plt.plot(mgr['My run'], 'S', color='blue', label='S')
plt.plot(mgr['My run'], 'E', color='red', label='E')
plt.plot(mgr['My run'], 'I', color='orange', label='I')
plt.plot(mgr['My run'], 'R', color='green', label='R')
plt.plot(mgr['My run'], 'S + E + I + R', color='black', label='Total')

3.3 Stochastic model elements

In PyCoMod, we can also introduce stochastic model elements and run Monte Carlo simulations. For example,

two improvements to the simple SIR model would be to sample the transmission rate from a distribution reflecting

the uncertainty in this parameter, and to make the flows stochastic and discrete. We show these changes below in

a new model class called MonteCarloSIR.

import numpy as np
rng = np.random.default_rng()

class MonteCarloSIR(pcm.Model):

 def build(self):
 # Pools
 self.S = pcm.Pool(95)
 self.I = pcm.Pool(5)
 self.R = pcm.Pool(0)

 # Equations
 self.N = pcm.Equation(lambda: self.S() + self.I() + self.R())

 # Transmission rate parameters
 self.b_m = pcm.Parameter(0.2)
 self.b_s = pcm.Parameter(0.05)

 # Transmission rate random sample
 self.b = pcm.Sample(lambda: rng.normal(self.b_m(), self.b_s()))

 # Recovery rate parameter
 self.g = pcm.Parameter(0.1)

 # Flows
 self.Fsi = pcm.Flow(
 lambda: rng.binomial(self.S(), self.b() * self.I() / self.N()),
 src=self.S, dest=self.I)
 self.Fir = pcm.Flow(
 lambda: rng.binomial(self.I(), self.g()),
 src=self.I, dest=self.R)

 # Output
 self.set_output('S','I','R')

m2 = MonteCarloSIR()

CAN UNCLASSIFIED

8 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

The first two lines, above, import NumPy2 and instantiate its default random number generator (RNG). We now

specify the transmission rate 𝑏 in Equation (3) with two parameters, a mean value b_m and a standard deviation

b_s. Then we create a variable b for the transmission rate as a PyCoMod Sample, defined by a lambda function

that calls NumPy’s normal (or Gaussian) RNG, passing b_m and b_s as parameters. This will resample the

transmission rate from the normal distribution at the start of each model run.

The flow 𝐹𝑆𝐼 has been updated such that, rather than being a deterministic rate, each susceptible person has a

probability of remaining susceptible or being infected in one unit of time based on the number of infected people

in the population and the transmission rate. Therefore, we use the binomial RNG to generate a discrete, random

number of new infections that will move from the susceptible population to the infectious population in one time

step: rng.binomial(self.S(), self.b()*self.I()/self.N()). The flow 𝐹𝐼𝑅 has similarly been

updated such that each infected person has a probability of recovering (or not) in each time step, again using the

binomial RNG to generate a discrete, random number of people to move from the infectious compartment to the

recovered compartment.

Lastly, we create an instance of the new model and call it m2. These modifications produce the same average

behaviour as the deterministic model, but introduce variability based on the uncertainty in the transmission rate

and the randomness of transmission and recovery events.

We can now run the model in Monte Carlo mode using the run manager’s run_mc method, passing the number of

replications (reps) in the run settings, and giving the run a new label.

mgr.run_mc(m2, duration=150, reps=100, label='My run - mc')

We can plot the results of a Monte Carlo run using the plotter’s plot_mc method. The optional interval parameter

specifies the percentile range from the distribution of outputs to be displayed. An interval of 50 means the middle

50% of the distribution, or the inter-quartile range. An interval of 90 would display the region from the 5th to

95th percentile. The result is shown in Figure 4.

plt = pcm.Plotter(title='SIR Time Series - Monte Carlo', ylabel='Population',
 fontsize=14)
plt.plot_mc(mgr['My run - mc'], 'S', color='blue', interval=50, label='S')
plt.plot_mc(mgr['My run - mc'], 'I', color='orange', interval=50, label='I')
plt.plot_mc(mgr['My run - mc'], 'R', color='green', interval=50, label='R')
plt.plot_mc(mgr['My run - mc'], 'S + I + R', color='black', interval=50,
 label='Total')

2 https://numpy.org (accessed date: 6 September 2023).

https://numpy.org/

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 9

CAN UNCLASSIFIED

Figure 4: Plot of the median and inter-quartile range for S, I and R over time from a Monte Carlo

simulation where the transmission rate and infection and recovery events are stochastic.

3.4 Nested models and model initialization

PyCoMod models support nesting, so any PyCoMod model can be used as an element inside another model.

For example, if we have two sub-populations with different transmission dynamics and a certain degree of mixing

between them, we can create a new model, MixSIR, that contains two instances of the MonteCarloSIR model

defined previously in Section 3.3.

class MixSIR(pcm.Model):

 def build(self):

 # Sub models
 self.GrpA = MonteCarloSIR()
 self.GrpB = MonteCarloSIR()

 # Transmission parameter between groups
 self.b_mix = pcm.Parameter()

 # Cross-infection flows
 self.Fsi_GrpA = pcm.Flow(
 lambda: rng.binomial(self.GrpA.S(),
 self.b_mix() * self.GrpB.I()
 / self.GrpB.N()),
 src=self.GrpA.S, dest=self.GrpA.I)
 self.Fsi_GrpB = pcm.Flow(
 lambda: rng.binomial(self.GrpB.S(),
 self.b_mix() * self.GrpA.I()
 / self.GrpA.N()),
 src=self.GrpB.S, dest=self.GrpB.I)

 # Output
 self.set_output('GrpA','GrpB')

m3 = MixSIR()

CAN UNCLASSIFIED

10 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

In the code above, the two sub-populations, GrpA and GrpB, are both defined as instances of the MonteCarloSIR

model. Each group behaves internally as before according to its parameters and initial conditions, but we introduce

the possibility of cross-infection between these groups. The cross-infections occur with a different transmission

rate, b_mix, defined as a Parameter in the MixSIR model. The cross-infection flows result in new infections

within each group as a result of an interaction with an individual from the infectious population in the other group.

Note that in order to save the output from a sub-model, the sub-model must be listed in the parent model’s output

list, self.set_output(GrpA, GrpB); then all elements of the sub-model will be accessible when plotting.

While GrpA and GrpB are the same model, we will supply them with different parameter values and initial

conditions. Previously, we specified these values while defining the model, but it is often preferable to separate

model inputs from the model itself. Therefore, we can supply the inputs for the model at run-time using a

Python dictionary. For the MixSIR model, the initialization dictionary would look something like

init_mix below.

init_GrpA = {'S': 95, 'I': 5, 'R': 0, 'b_m': 0.2, 'b_s': 0.05, 'g': 0.1}
init_GrpB = {'S': 30, 'I': 0, 'R': 0, 'b_m': 0.3, 'b_s': 0.05, 'g': 0.1}
init_model = {'b_mix': 0.05, 'GrpA': init_GrpA, 'GrpB': init_GrpB}
init_run = {'reps': 100, 'end': 150}
init_mix = {'run':init_run, 'model':init_model}

The initialization dictionary consists of two entries: run contains a dictionary of run inputs, and model contains

a dictionary of model inputs. In this case, the supplied run inputs are the number of repetitions (reps) and the end

time. The model dictionary contains keys corresponding to the names of the model elements, and values to be used

to initialize each element. The only model elements that accept input are pools, parameters, and sub-models.

The entry value for a pool is the initial population of the pool. The entry value for a parameter is the parameter’s

value which is a constant. To initialize a sub-model, such as GrpA above, the entry value is another dictionary

designed to initialize the sub-model, init_GrpA = {'S': 95, 'I': 5, 'R': 0, 'b_m': 0.2, 'b_s':
0.05, 'g': 0.1}. Hence, nested models are initialized with equivalently nested dictionaries. In this example,

GrpA is given the same initialization values as in the MonteCarloSIR model while GrpB is a smaller population

(Size 30) with a higher mean transmission rate, but with no initial infections. We then run the model using the

dictionary to set both the model inputs and the run inputs.

mgr.run_mc(m3, init=init_mix, label='My run - mix')

We can then plot the Monte Carlo simulation of GrpA, as shown in Figure 5.

plt = pcm.Plotter(title='SIR Time Series - Monte Carlo - GrpA',
 ylabel='Population', fontsize=14)
plt.plot_mc(mgr['My run - mix'], 'GrpA.S', color='blue',
 interval=50, label='S')
plt.plot_mc(mgr['My run - mix'], 'GrpA.I', color='orange',
 interval=50, label='I')
plt.plot_mc(mgr['My run - mix'], 'GrpA.R', color='green',
 interval=50, label='R')
plt.plot_mc(mgr['My run - mix'], 'GrpA.S + GrpA.I + GrpA.R', color='black',
 interval=50, label='Total')

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 11

CAN UNCLASSIFIED

Figure 5: Plot of the median and inter-quartile range for S, I and R over time for GrpA.

Similarly, we can plot what happens to GrpB, as shown in Figure 6.

plt = pcm.Plotter(title='SIR Time Series - Monte Carlo - GrpB',
 ylabel='Population', fontsize=14)
plt.plot_mc(mgr['My run - mix'], 'GrpB.S', color='blue',
 interval=50, label='S')
plt.plot_mc(mgr['My run - mix'], 'GrpB.I', color='orange',
 interval=50, label='I')
plt.plot_mc(mgr['My run - mix'], 'GrpB.R', color='green',
 interval=50, label='R')
plt.plot_mc(mgr['My run - mix'], 'GrpB.S + GrpB.I + GrpB.R', color='black',
 interval=50, label='Total')

Figure 6: Plot of the median and inter-quartile range for S, I and R over time for GrpB.

Note in the above code that to specify the output we want to plot in a nested model, we use dot-notation to navigate

the sub-models. E.g., GrpB.S plots the susceptible population within GrpB.

CAN UNCLASSIFIED

12 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

3.5 Initialization files

Initialization dictionaries are useful when we want to set up the model in Python code, but it is often more practical

to specify the initialization data in a separate file. This allows different model setups to be saved and edited by

hand. For this purpose, PyCoMod models can also be initialized from an Excel file. The Excel file template to

initialize a particular model can be generated by the model itself by calling write_excel_init and providing a

file name.

m3.write_excel_init('init_mix.xlsx')

In Google Colab, the initialization file will be written to the temporary session storage and can be downloaded,

modified and re-uploaded. In a local Python environment, the file is written to local storage.

The Excel initialization file is structured in a similar way to the initialization dictionary. The first tab contains run

inputs, the second tab contains the top-level model inputs, and subsequent tabs contain sub-model inputs if

sub-models are present. In the case of the example provided in Section 3.4, there are four tabs as

shown in Figure 7.

Figure 7: Tab structure of an Excel initialization file.

The content of the run tab is shown in Figure 8 and always consist of the following run settings:

• t—the initial simulation time (usually 0),

• date—the initial simulation date,

• dt—the simulation time step,

• end—the simulation end time, and

• reps—the number of replications for Monte Carlo runs.

Figure 8: Content of the run tab.

The model tab contains the initialization inputs for the elements of the top-level model. In this case, they are

GrpA, GrpB, and b_mix, which are shown in Figure 9.

Figure 9: Content of the model tab.

We can edit the value for the cross-infection parameter b_mix, here.

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 13

CAN UNCLASSIFIED

Because GrpA and GrpB are sub-models, the value under these labels is the name of the tab that contains the

initialization data for that sub-model. So under GrpA, the value is model.GrpA which is the name of the third

Excel tab. Tab names contain the full path from the model hierarchy to avoid naming collisions in the event that

two sub-models have the same name. It should not be necessary to change the sheet-name entry under a sub-model

within the model tab. In the model.GrpA tab, shown in Figure 10, we find the inputs for the elements of the

GrpA sub-model: S, I, R, b_m, b_s, and g.

Figure 10: Content of the model, GrpA tab.

The same applies to the GrpB sub-model tab. Each model tab also contains an out entry which is used to list the

desired outputs for the model or sub-model. This has the same function as calling set_output within the model

definition. Recall that the outputs of a sub-model will only be saved if the parent model includes the sub-model in

its output list.

We can edit the values in the Excel file, for example, by changing b_mix to 0.025 (cutting the transmission rate

between the two populations in half) and then saving the changes.

In Google Colab, we then must upload the edited file to the session storage.

Now we can run the model using the Excel file to initialize it.

mgr.run_mc(m3, init='init_mix.xlsx', label='My run - mix - xls')

The output can then be viewed in the same way as shown in the previous section.

3.6 Dynamic model parameters

It is often necessary to adjust model parameters over time. This can be accomplished using PyCoMod’s equation
class. For example, we might want to modify the SimpleSIR model to make the transmission rate decay over

time, reflecting increasing adherence to public health measures. So, we could replace the transmission parameter b

with an equation implementing an exponential decay (i.e., 𝑏(𝑡) = 0.2(0.98)𝑡).

class ModSIR(pcm.Model):

 def build(self):
 # Pools
 self.S = pcm.Pool(95)
 self.I = pcm.Pool(5)
 self.R = pcm.Pool(0)

 # Equations
 self.N = pcm.Equation(lambda: self.S() + self.I() + self.R())

 # Parameters
 self.b = pcm.Equation(lambda: 0.2 * (0.98)**self.t())
 self.g = pcm.Parameter(0.1)

 # Flows

CAN UNCLASSIFIED

14 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

 self.Fsi = pcm.Flow(lambda: self.b() * self.I() * self.S() / self.N(),
 src=self.S, dest=self.I)
 self.Fir = pcm.Flow(lambda: self.g() * self.I(),
 src=self.I, dest=self.R)

 # Output
 self.set_output('S', 'I', 'R', 'b')

m4 = ModSIR()

The current simulation time can be accessed and used in the equation for b by calling the special variable self.t.

We can view the modified transmission rate over time by including b in the list of outputs, running the model, and

then plotting it; see Figure 11.

mgr.run(m4, duration=150, label='Mod SIR')

plt = pcm.Plotter(title='Dynamic transmission rate',
 ylabel='Value', fontsize=14)
plt.plot(mgr['Mod SIR'], 'b', color='blue', label='Transmission rate')

Figure 11: A dynamic transmission rate modelled with an exponential decay equation.

Sometimes we want a parameter to change to specific values at specific times, in other words, a step function.

It is possible to implement a step function as a PyCoMod Equation, but this is not trivial. As this is a common

requirement in modelling and simulation, PyCoMod provides a built-in equation sub-class called Step.

For example, we can change the ModSIR model from Section 3.6 such that the transmission rate increases and

decreases at certain times, reflecting specific public health measures coming into and out of force.

self.b = pcm.Step([0.2, 0.13, 0.2], [0, 7, 21])

When initializing the PyCoMod step object, we provide a list of values and a corresponding list of times. In this

case, the transmission rate is initially 0.2 at time 0, it then reduces to 0.13 on day 7 for a period of two weeks, after

which it returns to 0.2 on day 21, shown in Figure 12. Note that the default time unit in PyCoMod is 1 day.

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 15

CAN UNCLASSIFIED

Figure 12: A dynamic transmission rate modelled as a step function.

In the above examples, the numerical constants used to define the changing transmission rate, b, could be replaced

with PyCoMod Parameters which would register them as model inputs allowing them to be adjusted via an

initialization dictionary or initialization file. This is an important advantage of using parameters rather than literals

in a model.

In the case of the Step class, we need two vectors, and PyCoMod Parameter objects support vector inputs.

So, we can create a parameter b_v for the values of the transmission rate and a parameter b_t for the times at

which they will be applied.

self.b_v = pcm.Parameter([0.2, 0.13, 0.2])
self.b_t = pcm.Parameter([0, 7, 21])
self.b = pcm.Step(self.b_v(), self.b_t())

The initialization dictionary for this model would then specify lists for the values of b_v and b_t.

init_mod = {'run': {'end': 150},
 'model':{'S': 95, 'I': 5, 'R': 0, 'b_v': [0.2, 0.13, 0.2],
 'b_t': [0, 7, 21], 'g': 0.1}}

If we would rather create an Excel initialization file for this model, we will see two vector inputs for the parameters

b_v and b_t, shown in Figure 13.

Figure 13: Vector inputs in the initialization Excel file for the transmission rate step function.

Whichever method is used, we can now edit the timing and magnitude of changes to the transmission rate.

The size of the vector is not restricted to the initial dimension of three in this example. More values and times can

be added so long as there is always a corresponding time for each value.

CAN UNCLASSIFIED

16 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

The PyCoMod Impulse is another type of dynamic function similar to Step. The Impulse class generates

specified values at specified times, but only at those times. In other words, the impulse value is held only for the

timestep that contains the impulse time, otherwise it returns 0 or an optional default value. For example, the

transmission rate in our model could be 0.2 under normal circumstances, but on certain dates there may be events

that are expected to result in elevated transmission.

self.b = pcm.Impulse([0.5, 0.5, 0.5], [10, 25, 45], 0.2)

When initializing PyCoMod Impulse, we provide a list of impulse values, a list of impulse times, and an optional

default value. In this case, it produces an elevated transmission rate of 0.5 on days 10, 25 and 45, but it otherwise

produces the nominal rate of 0.2, shown in Figure 14.

Figure 14: A dynamic transmission rate modelled as an impulse function.

The same approach as described above can be used to set these values using an initialization dictionary or

Excel file.

3.7 Initial flows

In some cases, it may be useful to incorporate flows into establishing the initial state of the system. For example,

we may not know that there are exactly 5 initial infections in the population, as in the preceding examples. Instead,

we may only know that there is a 5% chance that any given person is infected, based on some larger population

statistics. To model this situation, we can place the entire population in the susceptible, S, compartment, and use

a stochastic initial flow to move a random number of them to the infectious, I, compartment based on the

aforementioned 5% probability.

class MonteCarloSIR2(pcm.Model):

 def build(self):
 # Pools
 self.S = pcm.Pool(100)
 self.I = pcm.Pool(0)
 self.R = pcm.Pool(0)

 # Equations
 self.N = pcm.Equation(lambda: self.S() + self.I() + self.R())

 # Transmission rate parameters
 self.b_m = pcm.Parameter(0.2)

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 17

CAN UNCLASSIFIED

 self.b_s = pcm.Parameter(0.05)

 # Transmission rate random sample
 self.b = pcm.Sample(lambda: rng.normal(self.b_m(), self.b_s()))

 # Recovery rate parameter
 self.g = pcm.Parameter(0.1)

 # Flows
 self.Fsi = pcm.Flow(
 lambda: rng.binomial(self.S(),
 self.b() * self.I() / self.N()),
 src=self.S, dest=self.I)
 self.Fir = pcm.Flow(
 lambda: rng.binomial(self.I(), self.g()),
 src=self.I, dest=self.R)

 # Initial flow
 self.Pi = pcm.Parameter(0.05)
 self.Fsi_init = pcm.Flow(lambda: rng.binomial(self.S(), self.Pi()),
 src=self.S, dest=self.I, init=True)

 # Output
 self.set_output('S','I','R')

m5 = MonteCarloSIR2()

In the above code, note that the S pool is initialized to contain the whole population, and I and R are empty.

Toward the end of the model definition, we have added a parameter, Pi, for the 5% probability of initial infection,

and the initial flow Fsi_init. This flow uses a binomial RNG to move a random number of individuals from

S to I using the probability Pi. To flag this flow as an initial flow, we set the optional init parameter to True.

This flow will now only be executed once at the start of each run.

If we run this model, we can see that the initial state of the system is now uncertain, and there is more variability

in the outcome, shown in Figure 15, compared to the first MonteCarloSIR model in Section 3.3.

mgr.run_mc(m5, duration=150, reps=100, label='My run - mc2')

plt = pcm.Plotter(title='SIR Time Series - Monte Carlo',
 ylabel='Population', fontsize=14)
plt.plot_mc(mgr['My run - mc2'], 'S', color='blue',
 interval=50, label='S')
plt.plot_mc(mgr['My run - mc2'], 'I', color='orange',
 interval=50, label='I')
plt.plot_mc(mgr['My run - mc2'], 'R', color='green',
 interval=50, label='R')
plt.plot_mc(mgr['My run - mc2'], 'S + I + R', color='black',
 interval=50, label='Total')

CAN UNCLASSIFIED

18 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

Figure 15: The result of the model where the initial state is controlled by a stochastic initial flow from S to I.

3.8 Vectorization

In PyCoMod, the values held by model elements can be vectors. As with vector parameters introduced previously

in Section 3.6, pools can also be initialized with a list of values and are stored internally as NumPy arrays.

Many mathematical operations in NumPy are seamlessly compatible with vector values. NumPy’s RNG functions

are also compatible with vector inputs. In many cases a model developed for scalar values will be compatible with

vector values with little or no changes. This feature is useful for modelling multiple isolated or semi-isolated

populations in parallel, such as a training setting in which students are divided into parallel cohorts. Note that a

familiarity with how NumPy handles vectors in mathematical expressions is necessary to build vectorized models.

For example, we can vectorize the MonteCarloSIR2 model from Section 3.7 simply by changing the pool initial

values to lists. In this case, the susceptible population is initialized to 10 cohorts containing 10 individuals each,

and the infectious and recovered populations are initialized to 10 empty cohorts. Note that the S, I and R pools

must all have the same number of cohorts. The rest of the model accommodates the vectorized populations without

any changes. So rather than a single SIR model of 100 people, we have 10 parallel SIR models of 10 people each.

class VecSIR(pcm.Model):

 def build(self):
 # Pools
 self.S = pcm.Pool([10] * 10)
 self.I = pcm.Pool([0] * 10)
 self.R = pcm.Pool([0] * 10)

 # Equations
 self.N = pcm.Equation(lambda: self.S() + self.I() + self.R())

 # Transmission rate parameters
 self.b_m = pcm.Parameter(0.2)
 self.b_s = pcm.Parameter(0.05)

 # Transmission rate random sample
 self.b = pcm.Sample(lambda: rng.normal(self.b_m(), self.b_s()))

 # Recovery rate parameter
 self.g = pcm.Parameter(0.1)

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 19

CAN UNCLASSIFIED

 # Flows
 self.Fsi = pcm.Flow(
 lambda: rng.binomial(self.S(), self.b() * self.I() / self.N()),
 src=self.S, dest=self.I)
 self.Fir = pcm.Flow(
 lambda: rng.binomial(self.I(), self.g()),
 src=self.I, dest=self.R)

 # Initial flow
 self.Pi = pcm.Parameter(0.05)
 self.Fsi_init = pcm.Flow(lambda: rng.binomial(self.S(), self.Pi()),
 src=self.S, dest=self.I, init=True)

 # Output
 self.set_output('S','I','R')

m6 = VecSIR()

If we plot the result, we can see the protective effect of dividing the population into isolated cohorts, Figure 16.

Note that when we plot a model output that is vectorized, it is the sum of the vector that is shown on the figure.

mgr.run_mc(m6, duration=150, reps=100, label='My run - vec')

plt = pcm.Plotter(title='SIR Time Series - Monte Carlo',
 ylabel='Population', fontsize=14)
plt.plot_mc(mgr['My run - vec'], 'S', color='blue',
 interval=50, label='S')
plt.plot_mc(mgr['My run - vec'], 'I', color='orange',
 interval=50, label='I')
plt.plot_mc(mgr['My run - vec'], 'R', color='green',
 interval=50, label='R')
plt.plot_mc(mgr['My run - vec'], 'S + I + R', color='black',
 interval=50, label='Total')

Figure 16: The result of a vectorized model where all populations are divided into 10 cohorts.

CAN UNCLASSIFIED

20 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

However, it is usually not realistic to assume that populations are perfectly isolated, so we can introduce a potential

for spread between cohorts. At the end of the model definition, we add the parameter b_mix which is the smaller

rate of transmission between cohorts (one tenth the nominal transmission rate within cohorts), and we add the flow

Fsi_mix which creates new infections within each cohort as a result of mixing between cohorts. When a

susceptible person is in a mixed setting (e.g., a hallway where cohorts share the same space), the probability that

they encounter an infectious person is given by the total proportion of infectious people in the population, hence

the modified term self.I().sum()/self.N().sum() appears in the flow equation. The addition of .sum()

returns the sum of the vector, in other words, the sum across the cohorts.

class VecSIR(pcm.Model):

 def build(self):
 # Pools
 self.S = pcm.Pool([10] * 10)
 self.I = pcm.Pool([0] * 10)
 self.R = pcm.Pool([0] * 10)

 # Equations
 self.N = pcm.Equation(lambda: self.S() + self.I() + self.R())

 # Transmission rate parameters
 self.b_m = pcm.Parameter(0.2)
 self.b_s = pcm.Parameter(0.05)

 # Transmission rate random sample
 self.b = pcm.Sample(lambda: rng.normal(self.b_m(), self.b_s()))

 # Recovery rate parameter
 self.g = pcm.Parameter(0.1)

 # Flows
 self.Fsi = pcm.Flow(
 lambda: rng.binomial(self.S(), self.b() * self.I() / self.N()),
 src=self.S, dest=self.I)
 self.Fir = pcm.Flow(
 lambda: rng.binomial(self.I(), self.g()),
 src=self.I, dest=self.R)

 # Initial flow
 self.Pi = pcm.Parameter(0.05)
 self.Fsi_init = pcm.Flow(lambda: rng.binomial(self.S(), self.Pi()),
 src=self.S, dest=self.I, init=True)

 # Mixing
 self.b_mix = pcm.Parameter(0.02)
 self.Fsi_mix = pcm.Flow(
 lambda: rng.binomial(self.S(),
 self.b_mix() * self.I().sum()
 / self.N().sum()),
 src=self.S, dest=self.I)

 # Output
 self.set_output('S','I','R')

m6 = VecSIR()

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 21

CAN UNCLASSIFIED

If we plot the output, we can see the effect of the limited degree of mixing between cohorts in Figure 17.

Figure 17: The result of a vectorized model where all populations are divided into 10 cohorts

and a limited degree of mixing between cohorts occurs.

CAN UNCLASSIFIED

22 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

4 Conclusion

PyCoMod was developed to reduce the time and effort required to build, solve, and analyze detailed, stochastic

compartment models. Although initially developed to model COVID-19 transmission in CAF operational settings,

PyCoMod can be used to develop a variety of models outside this realm. The most obvious example is employing

PyCoMod to model other infectious diseases, whether airborne (e.g., influenza), water-borne

(e.g., schistosomiasis, hepatitis) or vector-borne (e.g., malaria, dengue). Several such diseases would be of concern

to military operations around the world. Applying PyCoMod to vector-borne diseases would likely involve

modelling both the human population and the vector (e.g., mosquitoes) in tandem [6]. Many diseases relevant to

the military have previously been modelled using compartment models [7], however they have typically been

analyzed in a civilian context and may not consider aspects of the population or environment that are particular to

a CAF population, such as the unique facilities and conditions of a deployment or exercise. PyCoMod’s features

were developed specifically to efficiently model such unique characteristics of populations operating in an

infectious disease setting. These features can be employed by other researchers in creating compartment models

tailored to other unique populations or situations.

Outside the realm of epidemiology, compartment models fall into the more general class of modelling known as

system dynamics, which are used in a wide range of fields including, for example, personnel management and

training logistics [8]. PyCoMod’s capabilities are not exclusive to disease modelling and may be applied wherever

system dynamics models are used, and its unique features may be beneficial over existing tools in those fields.

The package has been made publicly available on DRDC’s GitHub page [9] in order to give access to as many

interested parties as possible. This was especially beneficial during the COVID-19 pandemic given the heightened

need for researchers to be able to collaborate remotely.

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 23

CAN UNCLASSIFIED

References

[1] van den Hoogen, J., and Okazawa, S., (2021, October). A Stochastic Model of COVID-19 Infections During

a Large-Scale Canadian Army Exercise. NATO Operations Research and Analysis (OR&A) conference.

Defence Research and Development Canada, External Literature, DRDC-RDDC-2022-P143.

[2] Brauer, F., (2008). Compartmental Models in Epidemiology. Mathematical Epidemiology, 1945, pp. 19–79.

https://doi.org/10.1007/978-3-540-78911-6_2.

[3] Hethcote, H.W., (2000). The mathematics of infectious diseases. SIAM review, 42(4), pp. 599–653.

[4] Wikipedia contributors, (2022, May 29). Compartmental models in epidemiology. In Wikipedia,

The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=Compartmental_models_in_epidemiology&oldid=1090396756.

(Accessed date: 1 June 2022).

[5] Python 3.11.4 Documentation: Functional Programming HOWTO, (2023, June). Small functions and the

lambda expression. https://docs.python.org/3/howto/functional.html#small-functions-and-the-lambda-

expression. (Accessed date: 12 June 2023).

[6] Leggat, P.A., (2010). Tropical diseases of military importance: A Centennial Perspective. Journal of

Military and Veterans Health, 18(4), pp. 25–31.

[7] Brauer, F., (2017). Mathematical epidemiology: Past, present, and future. Infectious Disease Modelling,

2(2), pp. 113–127.

[8] Séguin, R., (2015). PARSim, a Simulation Model of the Royal Canadian Air Force (RCAF) Pilot

Occupation—An Assessment of the Pilot Occupation Sustainability under High Student Production and

Reduced Flying Rates, in proceedings of ICORES 2015, pp. 51–62.

[9] Okazawa, S., van den Hoogen, J., and Guillouzic, S., (2021). OS_PyCoMod. GitHub,

https://github.com/DND-DRDC-RDDC/OS_PyCoMod. (Accessed date: 6 September 2023).

https://doi.org/10.1007/978-3-540-78911-6_2
https://en.wikipedia.org/w/index.php?title=Compartmental_models_in_epidemiology&oldid=1090396756
https://docs.python.org/3/howto/functional.html#small-functions-and-the-lambda-expression
https://docs.python.org/3/howto/functional.html#small-functions-and-the-lambda-expression
https://github.com/DND-DRDC-RDDC/OS_PyCoMod

CAN UNCLASSIFIED

24 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

Annex A Python Compartment Modelling function and object reference table

For ease of reference, the main elements of the PyCoMod package are summarized in Table A.1 to Table A.4.

Table A.1: PyCoMod classes.

Class name Description Signature Usage example
Refer to

Section

Model
Base class for PyCoMod

models.
Model(self, init=None) class SimpleSIR(pcm.Model): 3.1

Pool
Model compartment with

initial value.
Pool(self, value=1) self.S = pcm.Pool(95) 3.1

Equation
Quantity derived from other

elements of the model through

an equation.

Equation(self, eq_func=lambda: 1)
self.N = pcm.Equation(
 lambda: self.S() + self.I()
 + self.R())

3.1

Parameter Model parameter. Parameter(self, value=1) B = self.Parameter(0.2) 3.1

Flow
Rate equation that specifies

movement dynamics between

source and destination pools.

Flow(self, rate_func=lambda: 1,
 src=None, dest=None,
 priority=False, init=False)

self.Fir = pcm.Flow(
 lambda: self.g() * self.I(),
 src=self.I, dest=self.R)

3.1

RunManager

Keeps track of multiple

models, run settings and

output so that batches of runs

can be automated.

RunManager(self) mgr = pcm.RunManager() 3.1

Plotter
Custom interface to Matplotlib

figures to plot the output of

PyCoMod runs.

Plotter(self, figsize=(14, 6),
 fontsize=12, title=None,
 xlabel=None, ylabel=None,
 ylimit=None)

plt = pcm.plotter(
 title='SIR Time Series',
 ylabel='Population',
 fontsize=14)

3.1

Sample

Stochastic parameter value

sampled at the start of each

model run from a random

number generator of a

specified distribution.

Sample(self, sample_func=lambda: 1)
pcm.Sample(
 lambda: rng.normal(self.b_m(),
 self.b_s()))

3.3

Step
Parameter that changes to

specific values at specific

times.

Step(self, values, times,
 default=0)

self.b = pcm.Step([0.2, 0.13, 0.2],
 [0, 7, 21]) 3.6

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 25

CAN UNCLASSIFIED

Class name Description Signature Usage example
Refer to

Section

Impulse
Parameter that holds a value

only for the timestep that

contains the impulse time.

Impulse(self, values, times,
 default=0)

self.b = pcm.Impulse([0.5, 0.5, 0.5],
 [10, 25, 45], 0.2) 3.6

Table A.2: Model methods.

Method name Description Signature Usage example
Refer to

Section

build

Define model by

overriding the build

method of the Model

base class.

build(self) def build(self): 3.1

set_output
Specify outputs

captured for analysis.
set_output(self, *args) self.set_output('S', 'I', 'R') 3.1

write_excel_init
Generate Excel file

template to initialize this

model.

write_excel_init(self,
 filename=None)

m3.write_excel_init('init_mix.xlsx') 3.5

Table A.3: RunManager methods.

Function/

Object name
Description Signature Usage example

Refer to

Section

run
Run model while

supplying name and

run settings.

run(self, model, init=None,
 duration=None, label=None,
 dt=None, start_date=None,
 start_time=None)

mgr.run(m, duration=150, label='My run') 3.1

run_mc
Run a model in Monte

Carlo mode

run_mc(self, model, init=None,
 duration=None, label=None,
 dt=None, start_date=None,
 start_time=None, reps=None)

mgr.run_mc(m2, duration=150, reps=100,
 label='My run - mc')

3.3

CAN UNCLASSIFIED

26 DRDC-RDDC-2023-D111

CAN UNCLASSIFIED

Table A.4: Plotter methods.

Function/

Object name
Description Signature Usage example

Refer to

Section

plot

Create figures of the

specified model

elements for a given

model run.

plot(self, run, elements, **kwargs)
plt.plot(mgr['My run'], 'S',
 color='blue', label = 'S') 3.1

plot_mc
Create figures of a

Monte Carlo simulation.
plot_mc(self, run, elements,
 **kwargs)

plt.plot_mc(mgr['My run - mc'], 'S',
 color='blue', interval=50,
 label = 'S')

3.3

CAN UNCLASSIFIED

DRDC-RDDC-2023-D111 27

CAN UNCLASSIFIED

List of symbols/abbreviations/acronyms/initialisms

CAF Canadian Armed Forces

COVID-19 Coronavirus Disease 2019

DRDC Defence Research and Development Canada

E exposed compartment

I infectious compartment

OS open science

pcm Python local object name for imported PyCoMod package

PyCoMod Python Compartment Modelling

R recovered compartment

reps replications

RNG random number generator

S susceptible compartment

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

SEIR susceptible-exposed-infectious-recovered

SIR susceptible-infectious-recovered

CAN UNCLASSIFIED

CAN UNCLASSIFIED

DOCUMENT CONTROL DATA
*Security markings for the title, authors, abstract and keywords must be entered when the document is sensitive

 1. ORIGINATOR (Name and address of the organization preparing the document.
A DRDC Centre sponsoring a contractor's report, or tasking agency, is entered
in Section 8.)

DRDC – Centre for Operational Research and Analysis
Defence Research and Development Canada
Carling Campus, 60 Moodie Drive, Building 7S.2
Ottawa, Ontario K1A 0K2
Canada

 2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

CAN UNCLASSIFIED

 2b. CONTROLLED GOODS

NON-CONTROLLED GOODS
DMC A

 3. TITLE (The document title and sub-title as indicated on the title page.)

PyCoMod (Python Compartment Modelling) Programming Reference

 4. AUTHORS (Last name, followed by initials – ranks, titles, etc., not to be used)

Okazawa, S.; van den Hoogen, J.; Guillouzic, S.

 5.

 6a. NO. OF PAGES

(Total pages, including
Annexes, excluding DCD,
covering and verso pages.)

32

 6b. NO. OF REFS

(Total references cited.)

9

 7. DOCUMENT CATEGORY (e.g., Scientific Report, Contract Report, Scientific Letter.)

Reference Document

 8. SPONSORING CENTRE (The name and address of the department project office or laboratory sponsoring the research and development.)

DRDC – Centre for Operational Research and Analysis
Defence Research and Development Canada
Carling Campus, 60 Moodie Drive, Building 7S.2
Ottawa, Ontario K1A 0K2
Canada

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant number under which
the document was written. Please specify whether project or
grant.)

 CVPE_003

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 10a. DRDC PUBLICATION NUMBER (The official document number
by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC-RDDC-2023-D111

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11a. FUTURE DISTRIBUTION WITHIN CANADA (Approval for further dissemination of the document. Security classification must also be
considered.)

Public release

 11b. FUTURE DISTRIBUTION OUTSIDE CANADA (Approval for further dissemination of the document. Security classification must also be
considered.)

 12. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Use semi-colon as a delimiter.)

Python; Epidemic Models; Disease Transmission; Compartment Models; System Dynamics

DATE OF PUBLICATION
(Month and year of publication of document.)

October 2023

CAN UNCLASSIFIED

CAN UNCLASSIFIED

 13a. ABSTRACT (When available in the document, the French version of the abstract must be included here.)

This Reference Document describes the PyCoMod (Python Compartment Modelling) code
package. PyCoMod is used to build and run compartment models, such as
susceptible-infectious-recovered (SIR) models of infectious disease. The package was initially
developed to support analyses of the spread of Coronavirus Disease 2019 (COVID-19) in specific
scenarios relevant to the Canadian Armed Forces (CAF) during the pandemic in 2020 and 2021.
Over the course of multiple studies conducted during this period in collaboration with the
Canadian Forces Health Services Group, the package evolved to include many features making
it useful as a general modelling and simulation tool. The use of PyCoMod and its features will be
described in detail in this Document.

 13b. Résumé (when available in the document, the French version of the abstract must be included here)

Le présent document de référence décrit le code du paquet PyCoMod (modélisation à
compartiments Python). PyCoMod est utilisé pour créer et exécuter des modèles à
compartiments, comme un modèle Susceptible-Infecté-Rétabli relatif à une maladie infectieuse.
Le paquet a été élaboré initialement à l’appui des analyses sur la propagation de la COVID-19
dans le cadre de scénarios précis qui concernaient les Forces armées canadiennes pendant la
pandémie en 2020 et en 2021. Au cours de multiples études effectuées pendant cette période en
collaboration avec le Centre des services de santé des Forces canadiennes, le paquet a évolué
et comprend maintenant de nombreuses fonctionnalités qui le rendent utile comme outil de
modélisation et de simulation général. L’utilisation de PyCoMod et de ses fonctionnalités sera
décrite en détail dans le présent document.

	Abstract
	Significance to defence and security
	Résumé
	Importance pour la défense et la sécurité
	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 Python Compartment Modelling Installation
	3 Python Compartment Modelling examples
	3.1 A simple susceptible-infectious-recovered model
	3.2 Adding model elements
	3.3 Stochastic model elements
	3.4 Nested models and model initialization
	3.5 Initialization files
	3.6 Dynamic model parameters
	3.7 Initial flows
	3.8 Vectorization

	4 Conclusion
	References
	Annex A Python Compartment Modelling function and object reference table
	List of symbols/abbreviations/acronyms/initialisms

