
Defence Research and
Development Canada

Recherche et développement
pour la défense Canada

CAN UNCLASSIFIED

GeoHexViz—Geospatial visualization using
hexagonal binning software

Design reference and instruction manual

Tony Abou Zeidan
Canadian Joint Operations Command

Mark Rempel
DRDC – Centre for Operational Research and Analysis

Terms of release: This document is approved for public release.

Defence Research and Development Canada
Reference Document
DRDC-RDDC-2021-D183
December 2021

CAN UNCLASSIFIED

CAN UNCLASSIFIED

IMPORTANT INFORMATIVE STATEMENTS

This document was reviewed for Controlled Goods by Defence Research and Development Canada (DRDC) using the Schedule
to the Defence Production Act.

Disclaimer: This publication was prepared by Defence Research and Development Canada, an agency of the Department of
National Defence. The information contained in this publication has been derived and determined through best practice and
adherence to the highest standards of responsible conduct of scientific research. This information is intended for the use of the
Department of National Defence, the Canadian Armed Forces (“Canada”) and Public Safety partners and, as permitted, may be
shared with academia, industry, Canada’s allies, and the public (“Third Parties”). Any use by, or any reliance on or decisions
made based on this publication by Third Parties, are done at their own risk and responsibility. Canada does not assume any
liability for any damages or losses which may arise from any use of, or reliance on, the publication.

Endorsement statement: This publication has been published by the Editorial Office of Defence Research and Development
Canada, an agency of the Department of National Defence of Canada. Inquiries can be sent to:
Publications.DRDC-RDDC@drdc-rddc.gc.ca.

c⃝ Her Majesty the Queen in Right of Canada, Department of National Defence, 2021

c⃝ Sa Majesté la Reine du chef du Canada, ministère de la Défense nationale, 2021

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Abstract

Geospatial visualization is an important communication method that is often used in mil-
itary operations research to convey analyses to both analysts and decision makers. When
these types of visualizations include a large amount of point-like data, binning—in particu-
lar, hexagonal binning—may be used to summarize the data and subsequently produce an
effective visualization. However, creating such visualizations may be frustrating for many
since it requires in-depth knowledge of both Geographic Information Systems and analytical
techniques, not to mention access to software that may require a paid license, training, and
perhaps knowledge of a programming language. In this document we describe GeoHexViz
which aims to reduce the time, in-depth knowledge, and programming required to produce
publication-quality geospatial visualizations that use hexagonal binning. We describe the
high-level design of GeoHexViz, its functional specification, and present four examples that
demonstrate the capabilities of GeoHexViz in action. For each, we describe the two methods
that GeoHexViz provides to do so: first, a command-line script whose input is a JavaScript
Object Notation file that contains the visualization’s properties; and second, a Python script
that imports and invokes functions found in the software’s Python modules.

Significance for defence and security

The significance of GeoHexViz for defence and security is that is it reduces obstacles that
may hinder an analyst from producing a publication-quality geospatial visualization for
inclusion in their scientific documents or presentations. In turn, it has the potential to
improve the collective capability of analysts to effectively communicate with decision makers
and each other.

DRDC-RDDC-2021-D183 i

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Résumé

La visualisation géospatiale est une méthode de communication importante, souvent utilisée
pour transmettre des analyses aux analystes et aux décideurs participants à la recherche sur
les opérations militaires. Lorsque ces types de visualisation englobent une grande quantité
de données ponctuelles, le groupement de données par classe — et plus particulièrement
le groupement de données par classe hexagonale — peut être utilisé pour synthétiser les
données et ainsi générer une visualisation efficace. Cependant, la création de telles visualisa-
tions peut être contrariante puisqu’elle suppose une connaissance approfondie des systèmes
d’information géographique et des techniques d’analyse, sans oublier l’accès à un logiciel
(sous licence ou pas), une formation et la maîtrise d’un langage de programmation. Dans le
présent document, nous vous présentons GeoHexViz, une ressource qui permet de réduire le
temps, les connaissances et la programmation nécessaires à la production de visualisations
géospatiales diffusables basées sur des groupements de données par classe hexagonale. Nous
décrivons la conception de haut niveau et la spécification fonctionnelle de GeoHexViz, et
présentons quatre exemples qui illustrent les capacités de GeoHexViz. Pour chacun de ces
exemples, nous expliquons les deux méthodes proposées par GeoHexViz : 1) un script de
commandes dont le fichier d’entrée est un fichier de notation objet JavaScript (JSON) qui
contient les propriétés de la visualisation ; 2) un script Python qui importe des fonctions
trouvées dans les modules Python du logiciel et les exécute.

Importance pour la défense et la sécurité

GeoHexViz revêt une importance pour la défense et la sécurité, car il réduit les obstacles
qui peuvent empêcher un analyste de produire une visualisation géospatiale d’assez bonne
qualité pour être publiée, puis incluse à ses documents ou présentations scientifiques. De ce
fait, GeoHexViz a le potentiel d’améliorer la capacité collective des analystes à communiquer
efficacement entre eux et avec les décideurs.

ii DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Table of contents

Abstract . i

Significance for defence and security . i

Résumé . ii

Importance pour la défense et la sécurité . ii

Table of contents . iii

List of figures . v

List of tables . vi

Acknowledgements . vii

1 Introduction . 1

2 Design specification . 3

3 Functional specification . 5

3.1 Software design . 5

3.2 Input data specification . 8

3.2.1 Hexbin layer and its properties . 8

3.2.2 Optional layers . 9

3.2.3 Extended hexagonal tiling (grid layers) 9

3.3 Optional adjustments . 11

3.3.1 Plot adjustments . 11

3.3.2 Data adjustments . 12

3.4 Input mechanisms . 12

3.5 Processing . 13

3.6 Output . 14

DRDC-RDDC-2021-D183 iii

CAN UNCLASSIFIED

CAN UNCLASSIFIED

4 Examples . 15

4.1 Search and Rescue . 15

4.2 Mass shootings in the United States of America 19

4.3 World War 2 bombings . 23

4.4 Forest fires . 28

5 Discussion . 33

5.1 180th meridian issues . 33

5.2 Colour bar issues . 35

5.3 Grid generation issues . 36

6 Conclusion . 37

References . 38

Annex A Search and Rescue—Python module input 43

Annex B Mass shootings—Python module input . 44

Annex C World War 2 bombings—Python module input 46

Annex D Forest fires—Python module input . 48

Acronyms and abbreviations . 50

iv DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

List of figures

Figure 1: High-level process used by GeoHexViz 4

Figure 2: Software flow. 6

Figure 3: Example GeoHexViz extended hexagonal tiling. 11

Figure 4: Processing of the hexbin layer. 13

Figure 5: Density of search and rescue (SAR) incidents in Canada 16

Figure 6: Killed and injured during mass shootings in the United States of America 19

Figure 7: World War 2 bombings in Europe. 24

Figure 8: Fire incidents in the United States of America. 29

Figure 9: 180th meridian issue on North Pole. 34

Figure 10: Colour bar positioning issue. 35

DRDC-RDDC-2021-D183 v

CAN UNCLASSIFIED

CAN UNCLASSIFIED

List of tables

Table 1: GeoHexViz main dependencies. 7

Table 2: Properties of the hexbin layer. 8

Table 3: Properties of optional layer types. 10

vi DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Acknowledgements

Thank you to Nicholi Shiell for his input in testing and providing advice for the development
of this package and its supporting documents.

DRDC-RDDC-2021-D183 vii

CAN UNCLASSIFIED

CAN UNCLASSIFIED

1 Introduction

Visualizing geospatial data—data with a location-based attribute [1]—helps analysts to bet-
ter understand data and communicate their analyses to both colleagues and decision mak-
ers [2]. In particular, geospatial visualization helps to “communicate how different variables
correlate to geographical locations by layering these variables over maps” [3]. In military
operations research, geospatial visualizations have been used in a wide range of analyses.
Examples include:

• Feibush et al. [4] discussed software that uses geospatial visualizations to help com-
manders coordinate thousands of units over a large geographic region;

• Laskey et al. [5] used geospatial visualizations to depict how different terrain impacts
the performance of vehicles;

• Kovařík [6] used geospatial visualization to communicate the results of an analysis
concerning optimal placement of tactical or non-permanent helicopter sites in varying
geographic regions;

• Connable [7] used geospatial visualizations to represent positioning of allied and enemy
units on a battlefield;

• Goodrich et al. [8] discussed software that uses geospatial visualizations to automate
the process of watershed analysis “to aid installation managers in sustaining their
mission requirements in support of testing and training” (p. 1); and

• Hunter et al. [9] used geospatial visualization to convey the results of an analysis
concerning the number of survivors of a major maritime disaster as a function of
incident location in the Arctic.

Regardless of the application, “[g]eospatial analysis tools ... [help analysts] to visualize data
in a way that [aids] a commander’s thought process” [7].

Creating geospatial visualizations is often time-consuming and laborious [10]. This is due
to that in-depth knowledge of Geographic Information System (GIS) concepts is required
to use GIS software, and hence to create geospatial visualizations [11]. For example, an
individual must decide which map projection to use, the colour scheme, the basemap, and
in some cases how to organize the data in layers. There are many software applications that
may be used to create geospatial visualizations, such as ArcGIS, QGIS, and D3 [12, 13,
14]. ArcGIS provides a wide range of capabilities, but requires a paid license and a solid
foundation in geospatial information processing [15]. In contrast, QGIS is free and open-
source, but also requires an in-depth knowledge of geospatial information processing to be
used effectively [16]. An alternative approach, developed in the last decade, is D3. In addition
to an understanding of geospatial concepts, it also requires a knowledge of JavaScript [17].
More recently, a new library that has been introduced is the Plotly graphing library. Plotly
provides easy-to-use geospatial graphing functions [18]; however, it too requires knowledge

DRDC-RDDC-2021-D183 1

CAN UNCLASSIFIED

CAN UNCLASSIFIED

of a programming language. Common across these applications is the requirement to have
knowledge of geospatial concepts, and acquiring this knowledge has been identified as a
significant challenge [19].

In addition to being time consuming to create, geospatial visualizations often require ana-
lysts to have specialized knowledge of analytic techniques. One of these techniques is binning
in which a grid is placed over a data set and the individual data points are grouped by grid
cell [20]. This method is used when it is difficult to visualize geospatial point-like data sets;
in particular, when the number of points is large, they become cluttered and cannot be
easily distinguished from one another [20, 21]. In order to provide an accurate representa-
tion of the data, an analyst must choose a versatile grid type. There are many grid types
available, such as circular, rectangular, and hexagonal. A circular grid is optimal for anal-
ysis purposes because circles are accurate for sampling, but does not provide a continuous
grid [22]. Rectangular grids are simple to implement; however, may not be suitable when
investigating connectivity or movement [23]. A hexagonal grid is often selected because its
more visually appealing than other grid types [24], and shares many of its properties with
a circular grid [22]. In addition, hexagonal grids offer many advantages including: hexagons
have the same number of neighbours as they does edges; the center of each hexagon is
equidistant from the centers of its neighbours (which helps when analyzing connectivity or
movement); and hexagons tile densely on curved surfaces, resulting in lower edge effects
(reducing analytic bias) [22]. The previously mentioned GIS systems provide functionality
to perform hexagonal binning, albeit access to this functionality is often limited due to the
issues described above.

This Reference Document describes the GeoHexViz software package, whose aim it is to
reduce the time and in-depth knowledge required to produce publication-quality geospatial
visualizations that use hexagonal binning. GeoHexViz, which is built on top of Plotly, allows
an analyst to produce a publication-quality visualization in two ways. First, the package
allows a user to generate a visualization via running a pre-existing command-line script
whose input is a single JavaScript Object Notation (JSON) file that defines the properties
of the visualization. Second, a user can generate a visualization by writing a Python script
that imports and invokes functions on objects found in the software’s Python modules. Both
methods require that the user provide only two arguments. The first argument is a reference
to the data—which is a file path, or may be a DataFrame [25] or GeoDataFrame [26] when
using the second option. The second argument is a reference to the columns within the data
that define the latitudes, longitudes, and the value associated with each. If no value column
is present, the default of each data entry is set to one.

The remainder of this Document is organized as follows. Section 2 presents the high-level
design specification of the GeoHexViz software package. Next, Section 3 discusses how the
software works—from data preparation to generating the visualization. Then, Section 4 pro-
vides a set of examples that demonstrate how to use the software. Next, Section 5 describes
three limitations of GeoHexViz—an issue surrounding anti-meridian crossing geometries,
an issue surrounding colour bar positioning, and an issue surrounding the generation of
hexagons. Finally, Section 6 brings forth concluding remarks.

2 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

2 Design specification

The aim of GeoHexViz is to simplify the production of publication-quality geospatial visu-
alizations that utilize hexagonal binning. To do this, user specifies a set of layers—where
each layer is defined as a “[group] of point, line, or area (polygon) features representing a
particular class or type of real-world entities” [27]—to be visualized. At a minimum, the
user must specify one layer, the hexbin layer, through two arguments—a reference to the
point-like data to be hexagonally binned, and references to the columns containing lati-
tudes, longitudes, and value at each coordinate. Given the hexbin layer, GeoHexViz will
produce a hexagonally binned geospatial visualization which is output in PDF format for
publications. Additional layers may be specified, such as regions, grids, and outlines, and
the output may be generated in PNG, JPEG, WEBP, SVG, or EPS formats.

If the output visualization is not satisfactory, GeoHexViz allows a user to adjust features
of the plot. These features include:

• scale: the data displayed in the visualization may be on a linear (default) or logarith-
mic scale;

• colour scale: the colour scale of the visualization may be continuous (default) or
discrete;

• focus: the visualization may have no focal point (default), showing a view of the
whole Earth, or may be focused on the data; and

• filtering: all of the data may be present in the visualization (default) or may be
clipped to a geographic region.

In addition, the user can change other properties that are passed directly to Plotly: border
colour, land colour, sea colour, and figure size. The high-level process used by GeoHexViz,
including inputs, user assessment, and adjustment of a visualization via a feedback loop, is
depicted in Figure 1.

GeoHexViz may be used to create a visualization in two ways. First, the user can use
GeoHexViz’s command-line script—GeoHexSimple—to input a JSON file that contains
properties for the visualization. The purpose of the command-line is to give non-technical
users a simple interface to build a hexagonally binned plot. Second, the user can generate a
visualization via importing and invoking functions found in the software’s Python modules.
When using the second method, the reference to the data may be a DataFrame [25] or
GeoDataFrame [26] object. If the input reference is a GeoDataFrame, the package does not
need latitude or longitude columns. Instead, the input to the software will be the entries
within the geometry column (it is up to the user to ensure that these are valid geometry
types).

DRDC-RDDC-2021-D183 3

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Processing Plot Building

If not
satisfactory:
adjust inputs

Figure Output

GeoHexViz

User
Assessment

Input Processing Figure Building Figure Output User Assessment/Adjustments

Region Layer

Grid Layer

Outline Layer

Point Layer

Optional Layer Types

Data
Adjustments

Plot
Adjustments

Functions

Optional Inputs

Data

Column
Names

Required Inputs
(Hexbin Layer)

Figure 1: High-level process used by of GeoHexViz, including inputs,
user assessment, and adjustment.

4 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

3 Functional specification

This section describes the input, behaviour, and output of the GeoHexViz. First, the overall
design of the software is described in Subsection 3.1. Next, Subsection 3.2 discusses the
required and optional input properties for GeoHexViz. Subsequently, Subsection 3.3 presents
functions and adjustments that the user may invoke before the plot building step (not
applicable when using the GeoHexSimple command-line script) or after the user assessment
step seen in Figure 1. Then, Subsection 3.4 discusses the two methods of using GeoHexViz.
Afterwards, Subsection 3.5 describes the steps involved in the processing of the input data,
and Subsection 3.6 discusses the steps involved in the output of visualizations.

3.1 Software design

The GeoHexViz package consists of four components which are:

1. the functions behind loading the user’s input;

2. the functions behind processing the user’s input data;

3. the functions behind preparing the visualization; and

4. the functions behind outputting the user’s visualization.

Figure 2 depicts these four components. The left section (blue) shows the required inputs
for each type of layer. For example, the required inputs for the hexbin layer (labelled A in
the figure) are a data reference and column headers. The green section (second from the
left) presents the processing steps for each type of layer. For example, the hexbin layer has
seven processing steps from the conversion of input to the adding of hexagonal geometries
(steps A:1 to A:7). The red section (third from the left) displays the processing steps that
take place when the figure is being built and prepared for output. For example, the hexbin
layer must be put into GeoJSON form and then made into a Graph Trace (steps A:8
and A:A/B). Finally, the yellow section (right) presents the two methods of figure output
(step C).

In order to perform these processes, GeoHexViz relies upon existing libraries listed in Ta-
ble 1. The Uber H3 library [28] is responsible for the generation of the hexagonal grids. The
library was selected as it can quickly retrieve the hexagons that fall within a given polygon,
or that correspond to a geographical coordinate. GeoPandas is a library that extends Pan-
das for geospatial information processing [29, 30]. It uses Shapely to define geometries, and
their boundaries [31]. GeoHexViz uses these libraries to internally manage and process the
user’s geospatial data and hexagonal grid. Plotly is an open-source graphing library that
supports the visualization of geospatial data [18]. The visualization portion of GeoHexViz
is built on top of Plotly which is used to incrementally build a plot and visualize the output.
Using Plotly Kaleido, GeoHexViz is able to output the geospatial visualization in a variety
of formats such as PDF, EPS, JPEG, etc.

DRDC-RDDC-2021-D183 5

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Visualizing (Output)
Figure Building Steps Required (Output)

M
ake Scattergeo
Trace from
Geom

etry
Coordinates

Gap Period:
User M

ay Choose how to
Output the Internal Figure

or M
ake Changes

and Rebuild

Processing Steps Required
Input Layer Types with

Req. Properties

M
ain Data

Reference

Colum

n
Headers

Colum
n

Headers

Point Data
Reference

Gap Period:
User M

ay M
ake

Changes Before Com
m

itting
 to the Building of the Plot

Find Hex Ids
Associated with

Geom
etries; add to

GeoDataFram
e

Generate GeoJSON
Representation of
GeoDataFram

e

Outline Data
Reference

Region Data
Reference

Colum
n

Headers

Generate GeoJSON
Representation of
GeoDataFram

e

Convert Input to
GeoDataFram

e
Object

Convert Input to
GeoDataFram

e
Object; Check for
Lat/Long Form

at

Transform
 into

Point-like
Geom

etries Only

M
ake Graph Trace

and Add Default and
User Configs; add
Trace to Internal

Figure

Convert Input to
GeoDataFram

e
Object; Check for
Lat/Long Form

at

Grid Data
Reference

Colum

n
Headers

M
erge Layers into a
GeoDataFram

e

Generate GeoJSON
Representation of
GeoDataFram

e

Convert Input to
GeoDataFram

e
Object; Check for
Lat/Long Form

at

Group Rows in
GeoDataFram

e by
Com

m
on Hex Ids

(grouping)

Apply Binning
Function to Grouped

Data and Store
(Usually count)

Add Hexagonal
Geom

etries to
GeoDataFram

e

Transform
 into

Point-like
Geom

etries Only

Find Hex Ids
Associated with

Geom
etries; add to

GeoDataFram
e

Group Rows in
GeoDataFram

e by
Com

m
on Hex Ids

(grouping)

Add Hexagonal
Geom

etries to
GeoDataFram

e

Drop Duplicate
Ids/Geom

etries
(rem

ove overlap)

Convert Input to
GeoDataFram

e
Object; Check for
Lat/Long Form

at

Hexbin Layer (1: Req)

Outline Layer (N: Opt)

Point Layer (N: Opt)

Grid Layer (N: Opt)

Region Layer (N: Opt)

Visualize Figure
in Renderer
(Browser)

Output Figure to
File

1/2
3/4

5
6

7

11/2

1/2
3

1/2
3/4

5
6

7/8

82349
10

ABCDB

A/B

CC

Note:
Processing Steps are not a M

easure of Processing Tim
e

F
igure

2:
Softw

are
flow

(O
pt:O

ptional,R
eq:R

equired).

6 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Table 1: Libraries incorporated into the GeoHexViz package with use description
(Ver:Version, Bld:Build, Ch:Channel).

Library Use Description

Name Information

Pandas
Ver: pandas(1.2.2) Pandas makes the processing of data more efficient by

using database style structures and functions [30]. In
this application pandas is used to manipulate data;
mostly used when performing operations on data sets.

Bld: py39h2e25243_0
Ch: conda-forge

GeoPandas
Ver: geopandas(0.8.2) GeoPandas leverages the objects defined in Pandas and

integrates them with functions to make the processing
of geospatial data more efficient [29]. In this application
GeoPandas is used to define and store any geospatial
data.

Bld: pyhd8ed1ab_0
Ch: conda-forge

Uber H3
Ver: h3-py(3.7.0) H3 is a hexagonal hierarchical geospatial indexing sys-

tem that converts conventional lat/lon coordinates into
a special 64-bit H3 index [28]. In this application H3 was
used in order to construct hexagonal grids over areas of
interest and data sets.

Bld: pyhd8ed1ab_0
Ch: conda-forge

Shapely
Ver: shapely(1.7.1) Shapely is a library for the manipulation and analysis

of geometric objects [31]. In this application Shapely is
used to facilitate the definitions of regions of interest
through Polygon, and Point objects.

Bld: py39hadd88af_1
Ch: conda-forge

Plotly

Ver: plotly(4.14.3)

Plotly is an open-source graphing library [18]. In this
application Plotly is used so that results can be visu-
alized and easily integrated into reports and presenta-
tions.

Bld: pyh44b312d_0
Ch: conda-forge

Ver: kaleido-core(0.2.1)
Bld: h8ffe710_0
Ch: conda-forge

Ver: python-kaleido(0.2.1)
Bld: pyhd8ed1ab_0
Ch: conda-forge

DRDC-RDDC-2021-D183 7

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Table 2: Properties of the hexbin layer (Req: Required, Qual: Qualitative Data,
Quant: Quantitative Data).

Property Req. Description Default

data Yes readable data to be hex-binned -
latitude_field Yes column containing latitudes -
longitude_field Yes column containing longitudes -
binning_field No column to bin by ones column

binning_fn No function to perform on binned data quant:sum/count
qual:best

hex_resolution No hex resolution (0-15) 3

manager No properties to be passed into un-
derlying libraries (see [32]) -

3.2 Input data specification

In order to generate a publication-quality geospatial visualization, GeoHexViz requires a
user to specify a set of layers via properties, including both those that are required and
optional. At a minimum, the hexbin layer must be specified via its required properties as
discussed in Subsubsection 3.2.1. Additionally, optional layers types may be specified as
discussed in Subsubsection 3.2.2.

3.2.1 Hexbin layer and its properties

GeoHexViz requires the user provide the hexbin layer, which is specified by two properties,
to create a visualization. The first is a reference to the data which may be accepted in a
comma-separated values (.csv) format, or one of many GIS formats that are accepted by
GeoPandas, i.e., Shapefile (.shp), GeoPackage (.gpkg), and GeoJSON (.json). The second
is the names of the columns that represent latitude, longitude, and value associated with
each. If no value is associated with each location, the program defaults to one for each entry.
Further optional properties that define the hexbin layer may be specified. These, along with
the required properties, are listed in Table 2.

8 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

3.2.2 Optional layers

There are a variety of optional layer types that can be passed into GeoHexViz. In some
instances the user may want to highlight a region (or regions) of interest. In these cases the
user can input a variable amount of region-type layers, which are plotted as filled polygons on
the map. These region-type layers are plotted as Plotly Choropleth traces (see [32]). There
exists outline-type layers which behave similarly to region-type layers; they are plotted as
empty polygons via Plotly Scattergeo traces instead (see [33]). Finally, a user may want to
display scatter data on top of the hexagonally binned data. In these cases, the user can add
point-type layers which are plotted as Plotly Scattergeo traces. The required and optional
properties for each optional layer type can be seen within Table 3.

Note that GeoHexViz does not require any latitude_field or longitude_field properties
when the data argument contains columns labelled latitude and longitude or some alias
of each respectively. Also, the properties latitude_field and longitude_field are not
required when there is Shapely geometry present within the loaded data. This is the case
most of the time when being read from a GIS format.

3.2.3 Extended hexagonal tiling (grid layers)

In some instances, the user’s data may not cover the entire area of interest and hence it does
not form a continuous grid. In such cases, the user can add any amount of grid-type layers
which act as a way to extend the hexagonal tiling and form a continuous grid which help to
show connectivity or movement. All other layer types have a manager property that stores
the arguments that are passed to Plotly, specific to each individual layer. Extended grid
layers do not have individual manager properties, as they are merged into a single layer upon
the plot being built. Instead, the Plotly arguments are stored in a separate collection called
the grid_manager which is discussed in Section 4. The required and optional properties for
grid-type layers are listed within Table 3.

Figure 3 demonstrates how extended hexagonal tiling can be useful. Both sub figures depict
electric vehicle charging stations over the various territories of Hong Kong. In Figure 3a, the
data is plotted without a grid-type layer, and given the data does not show a continuous
grid. In Figure 3b, the data is plotted again along with a grid-type layer, resulting in
continuous grid being formed.

DRDC-RDDC-2021-D183 9

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Table 3: Properties of optional layer types (Req: Required); note the required
properties vary for each layer type, the required and optional properties for

the hexbin layer are listed in Table 2.
Type Property Req. Description Default

Region

name Yes A name for the layer to be referred to
as (continent/country names accepted)

-

data Yes Reference to the data that defines this
region

-

manager No Properties to be passes into underlying
libraries (see [32])

-

Outline

name Yes A name for the layer to be referred to
as (continent/country names accepted)

-

data Yes Reference to the data that defines this
outline

-

latitude_field Yes Column in the data containing latitudes -
longitude_field Yes Column in the data containing longi-

tudes
-

to_boundary No Converts the geometry in present in the
data to one boundary (experimental)

False

manager No Properties to be passed into the under-
lying libraries (see [33])

-

Point

name Yes A name for the layer to be referred to
as

-

data Yes Reference to the data that defines this
set of points

-

latitude_field Yes Column in the data containing latitudes -
longitude_field Yes Column in the data containing longi-

tudes
-

text_field No Column in the data containing text for
each entry

-

manager No Properties to be passed into the under-
lying libraries (see [33])

-

Grid

name Yes A name for the layer to be referred to
as

-

data Yes Reference to the data defining the ge-
ometries for this grid

-

latitude_field Yes Column in the data containing latitudes -
longitude_field Yes Column in the data containing longi-

tudes
-

hex_resolution No Resolution of hexagons (0-15) 3

10 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

1

2

3

4

5

6

7

(a) Without extended hexagonal tiling.
1

2

3

4

5

6

7

(b) With extended hexagonal tiling.

Figure 3: Example GeoHexViz extended hexagonal tiling; density of electric vehicle
charging stations in Hong Kong (hexagonal resolution = 8,

average hexagon area = 0.74km2).

3.3 Optional adjustments

There exists a range of functions the user can perform once they have supplied the layer(s).
These functions fall into two categories being data adjustments and plot adjustments dis-
cussed in the following subsections. When using GeoHexViz in a Python module, any of
these functions may be used at the first Gap Period highlighted in Figure 2. In contrast,
using the JSON input mechanism, both Gap Periods are not accessible to the user. As a
consequence, the user may use these functions by referring to them in the JSON file. Exam-
ples of using the JSON input mechanism are discussed in Section 4 and Python approach
are given in Annex A through Annex D.

3.3.1 Plot adjustments

Functions that are considered plot adjustments are ones that only modify the properties
that are passed to Plotly. The first of these functions is the adjust_focus function which
takes a query of layers currently present within GeoHexViz and shifts the focus of the plot
to the geometries that were found within the result of the query. If the argument passed
into the function is hexbin+outlines the function will adjust the focus of the plot to
the geometries within the hexbin layer and any outline-type layers. The second of these
functions is the adjust_opacity function which adjusts the colour scale of the hexbin layer
to match the opacity of the colours within the plot (as Plotly does not do this by default).
The third plot adjustment function is the discretize_scale function which makes the
continuous colour scale of the plot into a segmented colour scale.

DRDC-RDDC-2021-D183 11

CAN UNCLASSIFIED

CAN UNCLASSIFIED

3.3.2 Data adjustments

Functions that are considered data adjustments are ones that modify the data directly,
which in turn may or may not change the resulting plot. The first of these functions is the
remove_empties function. This function removes empty rows in the hexagonally binned
data and adds these empty rows to a grid-type layer. These empty rows are defined by
the empty_symbol property which is zero by default; when passed, the rows that have a
value matching the empty_symbol argument are removed. These empty rows are then au-
tomatically added to a grid-type layer—a layer containing empty hexagons with no colour
mentioned in Subsubsection 3.2.3. The second of these functions is the logify_scale func-
tion which applies the log function to all of the values in the hexagonally binned layer.
This function could also be considered a plot adjustment because it does change some of
the Plotly colour bar properties. The third data adjustment function is the clip_datasets.
This function clips or filters the data to a certain region defined by another optional layer. If
the function is passed the arguments hexbin and regions+outlines, then the hexbin layer
is clipped to any region- and outline-type layers. The final data adjustment function is the
simple_clip function which is a wrapper for the clip_datasets function. This function
by default clips the hexbin and grid-type layers to region- and outline-type layers.

3.4 Input mechanisms

As mentioned in Section 2, GeoHexViz provides two methods to build a visualization. The
first method involves the user running the GeoHexSimple command-line script whose input
is a JSON file. The JSON file describes the contents of the visualization in three portions:
the input data, functions/adjustments, and output. In the input portion of the JSON file,
the user specifies the layers as collections of the properties for the layer types mentioned
above. When inputting the optional layer types within the JSON, they are stored in separate
collections where the key of each layer is the name to which it is referred to as in the JSON
file. The second method involves the user invoking functions provided by GeoHexViz in
a Python module of their own. Examples using the JSON input mechanism are found in
Section 4, and the corresponding Python code for each example is found in Annex A through
Annex D.

Note that when using the command-line script, the order of the objects within the JSON
file does not matter. The user can use the functions mentioned within Subsection 3.3 by
inputting them into the functions object. The user may output or visualize the final figure
by adding the output, and display objects to the end of their JSON file. The user may
also alter the internal figure and manage the properties that are to be passed into Plotly by
adding the figure_manager object to the JSON file. If the function that the user intends
to invoke takes one or no required members, they can specify it in short form. For example,
if the user does not wish to crop the output visualization, the output path can be specified
as:✞ ⊵

1 " output ": "<output path >" % output has one required member✝ ✆
12 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

If the user wishes to adjust the focus of the plot (focusing on the hexbin layer alone), they
can specify it like:✞ ⊵

1 " functions ": {
2 " adjust_focus ": true % adjust focus has no required members
3 }✝ ✆

Finally, if the user wishes to display the visualization interactively in the web browser, they
can specify it in short form:✞ ⊵

1 " display ": true % display has no required members✝ ✆
More complex plots may require looking into the documentation for this project and the
documentation of its underlying libraries.

3.5 Processing

This section focuses on the processing steps corresponding to the hexbin layer. The pro-
cessing steps for other layers are depicted in Figure 2. Once the input data and properties
are given, the data is loaded, processed, and hexagonally binned by the software. The pro-
cessing steps for the hexbin layer found in Figure 2 have been expanded into higher detail
within Figure 4.

Convert Lat/Lon to
Shapely Geometry

filepath / DataFrame / GeoDataFrame Convert Input to
GeoDataFrame

Object (cflal)

Find Hex Ids
Corresponding to

Geometries

Add Hex Ids to
GeoDataFrame;

set as Index Column

Group Rows in
GeoDataFrame by
Hex Ids (grouping)

1 2 3 4

5

If no geometry is present

Apply Binning
Function on

Grouped Data

6

GeoDataFrame
Add Hexagonal

Geometry to
GeoDataFrame;
set as Geometry

Column

7

The output of each micro process is a
GeoDataFrame containing more

information than the previous process
Key Process

Process

Figure 4: Processing of the hexbin layer.

The first step involves loading the data into a usable form. The input data can be in the
form of a file path, DataFrame, or GeoDataFrame. In order to maintain consistency, the
software converts all of these formats (if applicable) into GeoDataFrame objects. In step
two, the provided latitude and longitude columns are used in order to create the entries
within the geometry column of the GeoDataFrame (if the column isn’t full already). This
is a key process because at the end of its execution, the data is stored internally in a form
that GeoHexViz considers valid; it ensures that geospatial operations can be performed on
the data. Next, in step three the Uber H3 library is used to retrieve a set of ids from the
geometry in the data that correspond to hexagons on the globe. Then, in step four these

DRDC-RDDC-2021-D183 13

CAN UNCLASSIFIED

CAN UNCLASSIFIED

hexagonal ids are added to the index column of the GeoDataFrame. At the end of step four’s
execution, the hexagonal ids are stored within the data; each data entry is indexed by an
id. At this point, the data has had a hexagonal grid placed over it. In step five, the data
is grouped by common hexagonal id. Next, in step six this grouped data has the binning
function applied to it, and the result is stored in a new column. At this point, the data has
been hexagonally binned. The processing is completed in step seven where the geometry for
each hexagon is retrieved from the Uber H3 library and is stored within the GeoDataFrame.
In the last step, the geometric definitions of each hexagonal id within the DataFrame are
retrieved. These geometries are stored in a new column within the DataFrame.

3.6 Output

After the layers have been processed, GeoHexViz generates the visualization. GeoHexViz
first builds the plot based on the current state of the internal data. The figure building
steps that are taken for each layer type are depicted in Figure 2. For all layer types, the
figure building process includes three key steps. First, the data is turned into a form that
is usable by Plotly graph objects. This form is either a GeoJSON (for Choropleth traces)
or a list of latitudes and longitudes (for Scattergeo) traces. Second, these inputs are passed
into Plotly objects; default and user configurations are added to the objects. Finally, these
Plotly objects are added to the internal figure. These plot building processes are internal;
when invoking functions from a Python module, the user needs to call finalize() when
they decide to commit to the current state of the data within GeoHexViz.

At this point the figure building process is complete. The user now has one of two options.
With the input of a path, the user can output the figure in file form. This process uses
Plotly Kaleido which supports various formats such as PNG, JPEG, EPS, and PDF. The
second option is that the user can visualize the figure in a renderer of their choosing (by
default this is set to the browser). Using this method the user can interact with the plot
(zoom, drag, see data within each hexagon).

14 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

4 Examples

This section provides four examples of GeoHexViz being used to generate visualizations
of hexagonally binned data, where the data is either qualitative or quantitative. Each vi-
sualization in this section was created using the GeoHexSimple command-line script, as
described in Subsection 3.4. This section assumes the reader has sufficient knowledge of
the JSON file format; if not, see [34]. In this section, references to JSON elements (objects
and members) are given in this font; clicking on these elements will direct the reader to
the line within the code that it is defined. Each example is structured as follows. First,
the data set used for the visualization is described. Next, the JSON file used to generate
the visualization is described in segments. Finally, these segments are then pieced together
into a complete JSON file. The corresponding Python code to generate each visualization
is found in Annex A through Annex D.

4.1 Search and Rescue

The first example concerns a data set containing the locations of search and rescue (SAR)
incidents over the Canadian landmass. The data was taken from the Search and Rescue
Mission Management System [35], and contains 131 867 incidents between 2008 and 2019.
The visualization generated by GeoHexViz is given in Figure 5.

To make this visualization the required properties for the data to be hexagonally binned
must be specified. This is done by adding the hexbin_layer object to the JSON file.✞ ⊵

1 {
2 " hexbin_layer ": {
3 "data": "<data file location >",
4 " hex_resolution ":4,
5 " manager ": {
6 " colorscale ": " Viridis ",
7 " colorbar ": {
8 "x": 0.8325
9 }

10 }
11 },✝ ✆

In this example, the hexbin_layer object has three members: data, hex_resolution, and
manager. The data member is a full path to the location of the data. The hex_resolution
member specifies the size of the hexagons to be used within the plot. This number can
range from 0 to 15 and is defined in [28], where 0 represents the largest hexagon size,
and 15 represents the smallest hexagon size. Finally, the manager member, which itself is
an object, specifies properties that are passed to Plotly. In this case there are two being
colorscale, and colorbar. The colorscale member specifies the colour scale to be used
within the plot. By default, Plotly only allows the named colour scales to be continuous.
GeoHexViz overrides this behavior and allows all named colour scales available from Plotly;
for the full list of input options see [36, 37, 38]. The colorbar member is a collection of items
that control different properties of the colour bar, such as background colour, border colour,

DRDC-RDDC-2021-D183 15

CAN UNCLASSIFIED

CAN UNCLASSIFIED

1

10

100

1000

10000

Figure 5: Density of SAR incidents (Canada: 2008 to 2019—hexagonal resolution = 4,
average hexagon area equals 11770 km2).

and thickness. In this example, the x value of the colour bar is being set which specifies the
positioning of the colour bar; as the value goes from 0 to 1, the colour bar moves from left
to right. For the full list of colour bar properties that can be passed, see [39].

Next, since the region of Canada is to be highlighted, the regions object is added to the
JSON file.✞ ⊵

1 " regions ": {
2 " sample_Region_CANADA ": {
3 "data": " CANADA "
4 }
5 },✝ ✆

In this object there can be many defined regions, but for the sake of this visualization only
one is needed. This region is defined under the object sample_Region_CANADA, where the
reference to the data defining the region is CANADA. GeoHexViz recognizes the name of a
country or continent as given by [40] and automatically retrieves the geometries defining
it. Note that sample_Region_CANADA is the name that the layer will be referred to as, and
could be something else.

16 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Next, an extended grid layer is added to form a continuous grid. This is done by adding
the grids object to the JSON file.✞ ⊵

1 " grids ": {
2 " sample_Grid_CANADA ": {
3 "data": " CANADA ",
4 " convex_simplify ": true
5 }
6 },✝ ✆

Similar to the regions object, a grid referred to as sample_Grid_CANADA is specified, where
its data member is also CANADA. Due to that the H3 package supplies hexagons whose
centroids are within the polygons, the polygon passed may not be completely filled with
hexagons. When set to true, the convex_simplify property attempts to fix this by expand-
ing the polygon that was passed and then generating the grid.

Next, a set of functions are specified within the JSON file under the functions object. See
Subsection 3.3 for the full list of functions that can be performed.✞ ⊵

1 " functions ": {
2 " clip_layers ": {
3 "clip": " hexbin + grids ",
4 "to": " regions "
5 },
6 " adjust_focus ": {
7 "on": " regions ",
8 " buffer_lat ": [0, 3]
9 },

10 " logify_scale ": {
11 " exp_type ": "r"
12 }
13 },✝ ✆

The first object clip_layers specifies the data is to be clipped only to the region of
Canada. Specifically it does this through the members in the object; the clip member
specifies what layers to clip and the to member specifies the layers to act as the boundary
of the clip. In this case, the clip member is hexbin+grids which refers to the hexbin layer
and any grid layers present. The to member is regions which refers to any region layers
present. The second object adjust_focus specifies that the plot be focused on the region of
Canada (slightly shifted). The on member specifies which layers to focus on; in this case it
is specified to regions which refers to any region layers present. The buffer_lat member
specifies two numbers that will be added to the lower and upper values of the automatically
calculated boundary, i.e., if the automatically calculated latitude range was from 0 to 50,
with a buffer_lat member of [10, 20], the resulting latitude range would be from 10 to
70. The final object logify_scale specifies that the plot use a logarithmic scale (using raw
text). The exp_type member specifies what type of exponent is to be used in the colour
bar; the value r means that the raw numbers will be displayed on the colour bar, i.e., 1,
10, 100, 1000, etc. The possible properties for each function are described in the official
documentation.

DRDC-RDDC-2021-D183 17

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Finally, the output location of the visualization is specified in the JSON file through the
output object.✞ ⊵

1 " output ": {
2 " filepath ": "< output path >",
3 " crop_output ": true
4 }
5 }✝ ✆

The first member, filepath, specifies the destination of output visualization; the exten-
sion of the file path determines the file type. The second member crop_output specifies
that the output visualization be cropped via PdfCropMargins [41]. When set to true, the
crop_output member requires that the user have PdfCropMargins, alongside its dependen-
cies installed in their environment.

The complete JSON file is given below. The Python module translation of this JSON is
listed in Annex A.✞ ⊵

1 {
2 " hexbin_layer ": {
3 "data": "<data file location >",
4 " hex_resolution ":4,
5 " manager ": {
6 " colorscale ": " Viridis ",
7 " colorbar ": {
8 "x": 0.8325
9 }

10 }
11 },
12 " regions ": {
13 " sample_Region_CANADA ": {
14 "data": " CANADA "
15 }
16 },
17 " grids ": {
18 " sample_Grid_CANADA ": {
19 "data": " CANADA ",
20 " convex_simplify ": true
21 }
22 },
23 " functions ": {
24 " clip_layers ": {
25 "clip": " hexbin + grids ",
26 "to": " regions "
27 },
28 " adjust_focus ": {
29 "on": " regions ",
30 " buffer_lat ": [0, 3]
31 },
32 " logify_scale ": {
33 " exp_type "!: "r"
34 }
35 },
36 " output ": {
37 " filepath ": "< output path >",
38 " crop_output ": true
39 }
40 }✝ ✆

18 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

4.2 Mass shootings in the United States of America

In the following example, a data set containing the locations of mass shootings in the United
States of America is passed into GeoHexViz.1 Each row in the data set contains the number
of people killed and injured in the incident. The data was taken from the Gun Violence
Archive [42] and contains 2001 incidents from July 30th 2017 to September 14th 2021. The
visualization of the total number of people killed and injured is given in Figure 6.

Chicago

Las Vegas

Philadelphia

Houston

Baltimore

Washington

New Orleans

Saint Louis

Brooklyn

Memphis

1

10

100

1000

Figure 6: People killed and injured during mass shootings (United States of America:
30 July 2017 to 14 Sept 2021—hexagonal resolution = 3,

average hexagon area = 12392 km2).

The steps to building the JSON file for this visualization are very similar to the steps for
the previous visualization. The first step is the same; the data that is to be hexagonally
binned, alongside its configurations are passed into the hexbin_layer object in the JSON
file.✞ ⊵

1 {
2 " hexbin_layer ": {
3 "data": "<data file location >",
4 " hex_resolution ":3,

1 A mass shooting is defined as a shooting in which four or more individuals were shot or killed, not including
the shooter [42].

DRDC-RDDC-2021-D183 19

CAN UNCLASSIFIED

CAN UNCLASSIFIED

5 " hexbin_info ": {
6 " binning_field ": " killed_injured ",
7 " binning_fn ": "sum"
8 },
9 " manager ": {

10 " colorbar ": {
11 "x": 0.8365
12 }
13 }
14 },✝ ✆

For this example, the hexbin_layer object has four members: data, hex_resolution,
hexbin_info, and manager. The data member is a full path to the data set containing the
mass shooting locations. The hex_resolution member controls the size of the hexagons
and is now set to 3. Unlike Subsection 4.1, in this example the data is binned by the incident
location and the value displayed is the sum of killed and injured in each hexagon. To do
this, the hexbin_info member is added. It does this through its members binning_field,
and binning_fn. The binning_field member determines the grouped column to obtain
the display value from, and the binning_fn member specifies how this display value is
calculated. In this example the binning_field is set to killed_injured which is a column
in the data set containing the sum of killed and injured at each incident location.

For this example, the United States of America is to be highlighted as the region of interest.
To do this the regions object is added to the JSON file.✞ ⊵

1 " regions ": {
2 " sample_Region_USA ": {
3 "data": " UNITED STATES OF AMERICA "
4 }
5 },✝ ✆

A single region is specified within the object and is referred to as sample_Region_USA. The
data member of sample_Region_USA is set to UNITED STATES OF AMERICA.

For this example, the epicenters of these incidents are to be displayed over the hexagonally
binned data. To do this the points object is added to the JSON file.✞ ⊵

1 " points ": {
2 " sample_Point_EPICENTERS ": {
3 "data": "< epicenters file location >",
4 " text_field ": "city",
5 " manager ": {
6 " textposition ": [
7 "top center ",
8 "top center ",
9 " middle right ",

10 "top center ",
11 "top left",
12 " bottom right ",
13 "top center ",
14 "top center ",
15 "top center ",
16 "top center "
17],

20 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

18 " marker ": {
19 " symbol ": "square -dot",
20 "size": 4,
21 "line": {
22 " width ": 0.5
23 }
24 }
25 }
26 }
27 },✝ ✆

A single point layer is specified within the object and is referred to as sample_Point_EPICENTERS.
The data member of the sample_Point_EPICENTERS is set to a file containing the coordi-
nates and names of the epicenters. The text_field member of the sample_Point_EPICENTERS
object is set to the name of the column containing the name of the epicenters. This member
controls the text to be displayed on top of each data entry on the map. The manager mem-
ber of sample_Point_EPICENTERS is an object that contains arguments that are passed to
Plotly for this layer. In this example the manager contains two members: textposition,
and marker; for the full list of options see [33]. The textposition property controls the
positioning of the text to be displayed alongside the scatter data. In this case, since multiple
epicenters are near each other, the positioning is set for each epicenter manually; for the
full list of options see [43]. The marker member, which itself is an object, controls drawing
properties for its associated layer; for the full list of options see [44]. In this example, the
marker object is used to change the symbol used, the size of, and the outline width of each
data point. To change the symbol for each data point, the symbol member is added to the
marker object, and set to square-dot; for the full list of options see [45, 46]. To change the
size of each data point, the size member is added to the marker object, and set to 4; for
the full list of options see [47]. Finally, to change the outline width for each data point, the
line member, which is itself an object, is added marker object. The line object controls
various properties for the outline of each data point; for the full list of options see [48].
In this example, the width of the outline is set to 0.5 via the width member of the line
object.

Next, a set of functions are specified within the JSON file under the functions object.✞ ⊵
1 " functions ": {
2 " remove_empties ": true,
3 " adjust_focus ": {
4 "on": " hexbin ",
5 " buffer_lat ": [0,15],
6 " rot_buffer_lon ": -8
7 },
8 " logify_scale ": {
9 " exp_type ": "r"

10 }
11 },✝ ✆

The first member, remove_empties specifies that empty hexagons be removed from the
data. It is set to true as the function has no required arguments. The second member,
adjust_focus is an object specifying that the plot be focused on the data. In this case,

DRDC-RDDC-2021-D183 21

CAN UNCLASSIFIED

CAN UNCLASSIFIED

the on member of adjust_focus specifies that the plot be focused on the hexbin layer.
The buffer_lat member of adjust_focus specifies that the upper bound of the automat-
ically calculated latitude range be shifted by 15 degrees. The rot_buffer_lon member of
adjust_focus specifies a number to add to the automatically calculated longitude rotation
value. For example, if the calculated rotation had a longitude of 8, and the rot_buffer_lon
value was 2, then the final rotation longitude would be 10. The final member, logify_scale
is an object specifying that the plot use a logarithmic scale. Once again, the exp_type mem-
ber of logify_scale specifies that there be no exponent in the colour bar.

Finally, the output location of the visualization is specified in the JSON file through the
output object.✞ ⊵

1 " output ": {
2 " filepath ": "< output path >",
3 " crop_output ": true
4 }
5 }✝ ✆

The full JSON structure is as follows. The Python module translation of this JSON is listed
in Annex B.✞ ⊵

1 {
2 " hexbin_layer ": {
3 "data": "<data file location >",
4 " hex_resolution ":3,
5 " hexbin_info ": {
6 " binning_field ": " killed_injured ",
7 " binning_fn ": "sum"
8 },
9 " manager ": {

10 " colorbar ": {
11 "x": 0.8365
12 }
13 }
14 },
15 " regions ": {
16 " sample_Region_USA ": {
17 "data": " UNITED STATES OF AMERICA "
18 }
19 },
20 " points ": {
21 " sample_Point_EPICENTERS ": {
22 "data": "< epicenters file location >",
23 " text_field ": "city",
24 " manager ": {
25 " textposition ": [
26 "top center ",
27 "top center ",
28 " middle right ",
29 "top center ",
30 "top left",
31 " bottom right ",
32 "top center ",
33 "top center ",
34 "top center ",
35 "top center "
36],

22 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

37 " marker ": {
38 " symbol ": "square -dot",
39 "size": 4,
40 "line": {
41 " width ": 0.5
42 }
43 }
44 }
45 }
46 },
47 " functions ": {
48 " remove_empties ": true,
49 " adjust_focus ": {
50 "on": " hexbin ",
51 " buffer_lat ": [0,15],
52 " rot_buffer_lon ": -8
53 },
54 " logify_scale ": {
55 " exp_type ": "r"
56 }
57 },
58 " output ": {
59 " filepath ": "< output path >",
60 " crop_output ": true
61 }
62 }✝ ✆

4.3 World War 2 bombings

The next example concerns a data set containing the locations of World War 2 bombings.
The data was taken from [49] and split into the years 1943, 1944, and 1945—collectively
these years contain 155 175 bombing events in the data. The visualization of the total mass
of bombs dropped in each of these years is given in Figure 7.

To make this visualization the required layer and its properties are passed via the hexbin_layer
object.✞ ⊵

1 {
2 " hexbin_layer ": {
3 "data": "<data file location >",
4 " hexbin_info ": {
5 " binning_field ": " high_explosives_weight_tons ",
6 " binning_fn ": "sum"
7 },
8 " hex_resolution ":4,
9 " manager ": {

10 " marker ": {
11 "line": {
12 " width ": 0.45
13 }
14 },
15 " colorscale ": " Viridis ",
16 " colorbar ": {
17 "x": 0.82
18 }
19 }
20 },✝ ✆

DRDC-RDDC-2021-D183 23

CAN UNCLASSIFIED

CAN UNCLASSIFIED

1

10

100

1000

10000

100000

(a) 1943.

1

10

100

1000

10000

100000

(b) 1944.

1

10

100

1000

10000

100000

(c) 1945.

Figure 7: World War 2 bombings—European Theatre (1943–1945): Total mass of bombs
dropped in tons (1943–1945)—mass in tons, hexagonal resolution = 4,

average hexagon area = 11770 km2.
24 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Similar to the previous visualization, the hexbin_layer object has four members. The
data member is now a full path to the data set containing the bombing locations. Next,
the hexbin_info member is an object specifying how the data is to be binned through its
members. The binning_field member of hexbin_info specifies that the data be grouped
by high_explosives_weight_tons—a column containing the weight of bombs dropped at
each incident location. Once again, the binning_fn member of hexbin_info specifies that
the grouped data be summed to retrieve the display value. Next, the manager specifies
three members that are passed into Plotly being marker, colorscale, and colorbar. The
marker member controls drawing properties for its associated layer (hexbin layer in this
case) such as opacity, and other line properties; for the full list of input options, see [50].
In this example the marker member is an object specifying that the line width be set. It
does this through the line member which is also an object controlling the properties of
line colour and width. In this example, the property width is being set which controls line
width.

Since the region of focus in this example is Europe, a region layer containing the European
landmass is added to the plot via the regions object.✞ ⊵

1 " regions ": {
2 " sample_Region_EUROPE ": {
3 "data": " EUROPE "
4 }
5 },✝ ✆

The sample_Region_EUROPE is the object defining this region layer. The data member of
the region layer is set to EUROPE.

Now extended grid layers are added to fill the gaps within the data and form a continuous
grid. Once again, this is done by adding the grids object to the JSON file.✞ ⊵

1 " grids ": {
2 " sample_Grid_EUROPE ": {
3 "data": " EUROPE ",
4 " convex_simplify ": true
5 },
6 " sample_Grid_RUSSIA ": {
7 "data": " RUSSIA ",
8 " convex_simplify ": true
9 }

10 },✝ ✆
Since the data spans the European region, we declare a grid layer that also spans this region.
This grid layer is defined through the object sample_Grid_EUROPE, whose data member is
set to EUROPE. It becomes evident that if the grid layer sample_Grid_RUSSIA is not present,
then there are few hexagons present near Russia.

Next, since the line thickness for the hexbin layer has been altered, the line thickness for
all grid layers must be the same. This change is made by adding the grid_manager.

DRDC-RDDC-2021-D183 25

CAN UNCLASSIFIED

CAN UNCLASSIFIED

✞ ⊵
1 " grid_manager ": {
2 " marker ": {
3 "line": {
4 " width ": 0.45
5 }
6 }
7 },✝ ✆

The properties set for this manager’s line thickness are identical to those set in the manager
of the hexbin layer.

Next, since using the adjust_focus function does not provide the necessary focus for this
plot easily, it is set manually. To do this, the geo layout properties (Plotly) needs to be set;
this is done via adding the figure_geos. For the full list of properties that can be set for
the figure’s geo layout, see [51].✞ ⊵

1 " figure_geos ": {
2 " lataxis ": {
3 " range ": [35, 58]
4 },
5 " lonaxis ": {
6 " range ": [0, 43]
7 },
8 " projection ": {
9 " rotation ": {

10 "lat": 46.63321662159487,
11 "lon": 11.21560455920799
12 }
13 }
14 },✝ ✆

The default projection type of GeoHexViz is the orthographic projection supplied by Plotly.
In order to obtain the correct focus for this type of projection there are three properties
that need to be set. These properties are the latitude axis range, longitude axis range, and
projection rotation. The latitude axis range and longitude axis range specify the range of
latitudes and longitudes that appear in the figure once generated. The projection rotation
makes the globe rotate to the specified coordinates. First, to set the latitude axis range,
the lataxis member is added to the figure_geos object. The lataxis controls many
properties for the latitude axis displayed on the figure, such as grid width and grid colour;
for the full list of input options, see [36]. For this example, the range property of the lataxis
is set to the range to be displayed in the figure, which is [35, 58] or from 35 degrees to
58 degrees. Similarly, to set the longitude axis range, the lonaxis member is added to
the figure_geos object. The lonaxis member controls many properties for the longitude
axis displayed on the figure; for the full list of input options, see [52]. For this example,
the range member property of the lataxis is set to the range to be displayed in the plot,
which is [0, 43] or from 0 degrees to 43 degrees. Finally, the projection rotation is set
via adding the projection member to the figure_geos object. The projection member
controls many properties for the projection that the data be displayed on, such as the type
of projection used, the tilt of the projection, and the scale of the projection. For the full

26 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

list of input options, see [53]. For this example the rotation property of the projection
has its lat, and lon properties set to the center coordinate of the focus. The lat, and lon
properties get set to 46.63 and 11.22 degrees respectively.

Next, a set of functions are specified by adding the functions object to the JSON file.
These functions include clip_layers, logify_scale, and adjust_focus.✞ ⊵

1 " functions ": {
2 " clip_layers ": {
3 "clip": " hexbin + grids ",
4 "to": " regions "
5 },
6 " logify_scale ": {
7 " exp_type ": "r"
8 },
9 " adjust_focus ": false

10 },✝ ✆
The clip_layers function is represented by an object containing the arguments to the
function. As the previous examples have done, the clip and to arguments specify that
the hexbin layer and grid layers be clipped to region layers. Once again, the logify_scale
function is represented by an object whose only member is the exp_type argument. This
specifies that the plot use a logarithmic scale with no exponents in the colour bar. Next,
since the focus has already been specified manually, and the function adjust_focus is
performed by default, the function needs to be disabled. To do this, the adjust_focus
member of the functions object is set to false.

Finally, the output location of the visualization is specified in the JSON file through the
output object. The output object has two members filepath, and crop_output (set to
true) which specify where the visualization is to be output, and that the output be cropped.✞ ⊵

1 " output ": {
2 " filepath ": "< output path >",
3 " crop_output ": true
4 }
5 }✝ ✆

The full JSON structure is given below. The Python module translation of this JSON is
given in Annex C.✞ ⊵

1 {
2 " hexbin_layer ": {
3 "data": "<data file location >",
4 " hexbin_info ": {
5 " binning_field ": " high_explosives_weight_tons ",
6 " binning_fn ": "sum"
7 },
8 " hex_resolution ":4,
9 " manager ": {

10 " marker ": {
11 "line": {" width ": 0.45}
12 },
13 " colorscale ": " Viridis ",

DRDC-RDDC-2021-D183 27

CAN UNCLASSIFIED

CAN UNCLASSIFIED

14 " colorbar ": {
15 "x": 0.82
16 }
17 }
18 },
19 " regions ": {
20 " sample_Region_EUROPE ": {
21 "data": " EUROPE "
22 }
23 },
24 " grids ": {
25 " sample_Grid_EUROPE ": {
26 "data": " EUROPE ",
27 " convex_simplify ": true
28 },
29 " sample_Grid_RUSSIA ": {
30 "data": " RUSSIA "
31 }
32 },
33 " grid_manager ": {
34 " marker ": {
35 "line": {" width ": 0.45}
36 }
37 },
38 " figure_geos ": {
39 " lataxis ": {
40 " range ": [35, 58]
41 },
42 " lonaxis ": {
43 " range ": [0, 43]
44 },
45 " projection ": {
46 " rotation ": {
47 "lat": 46.63321662159487,
48 "lon": 11.21560455920799
49 }
50 }
51 },
52 " functions ": {
53 " clip_layers ": {
54 "clip": " hexbin + grids ",
55 "to": " regions "
56 },
57 " logify_scale ": {
58 " exp_type ": "r"
59 },
60 " adjust_focus ": false
61 },
62 " output ": {
63 " filepath ": "< output path >",
64 " crop_output ": true
65 }
66 }✝ ✆

4.4 Forest fires

The following example concerns the locations of forest fires in the United States of America.
The data was taken from [54], and contains 1291 incidents during the year of 2017. The
visualization generated by GeoHexViz is given in Figure 8.

28 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Wildfire

Prescribed Fire

Unknown

Figure 8: Most frequent fire category by location (United States of America:
2017—hexagonal resolution = 4, average hexagon area = 11770 km2).

To make this visualization the required layer and its properties are passed via the hexbin_layer
object.✞ ⊵

1 {
2 " hexbin_layer ": {
3 "data": "<data file location >",
4 " hexbin_info ": {
5 " hex_resolution ":4,
6 " binning_field ": " FIRE_TYPE ",
7 " binning_fn ": "best"
8 },
9 " manager ": {

10 " marker ": {
11 "line": {
12 " width ": 0.1
13 }
14 },
15 " colorscale ": " Dark24 "
16 }
17 },✝ ✆

The hexbin_layer object has 3 members being data, hexbin_info, and manager. Identical
to the previous examples, the data member is now a full path to the data set containing

DRDC-RDDC-2021-D183 29

CAN UNCLASSIFIED

CAN UNCLASSIFIED

the fire locations. Next, the hexbin_info member, which is also an object, specifies how
the data is to be hexagonally binned. This is done through its 3 members: binning_field,
binning_fn, and hex_resolution. Similar to Subsection 4.2, and Subsection 4.3, in this
example the data is to be binned by incident location and the value displayed is the most
frequent category of fire in each hexagon. The binning_field member of hexbin_info
specifies that the display value be calculated from the FIRE_TYPE column, which is the
column containing the category of fire. The binning_fn member of hexbin_info then
specifies that the best option be selected as the display value (the most frequent value).
The hex_resolution member of hexbin_info specifies the size of hexagon to be used. This
shows that the hexagon size can also be specified as a member of the hexbin_info object
unlike the previous examples. Finally, the manager specifies 2 properties that are passed
into Plotly. The first member, marker is used to specify the width of the lines used for the
hexagons in the hexbin layer. This is done through setting the width of the marker’s line
property; the same properties were set in Subsection 4.3. When set, the second member,
colorscale specifies the colour scale to be used within the plot; in this case the colour
scale is set to Dark24. This property was also set in Subsection 4.1.

Since the region of focus in this example is USA, a region layer containing the USA landmass
is added to the plot via the regions object.✞ ⊵

1 " regions ": {
2 " sample_Region_USA ": {
3 "data": " UNITED STATES OF AMERICA "
4 }
5 },✝ ✆

The sample_Region_USA is the object defining this region layer. The data member of the
region layer is set to UNITED STATES OF AMERICA.

Now extended grid layers are added to fill the gaps within the data and form a continuous
grid. Once again, this is done by adding the grids object to the JSON file.✞ ⊵

1 " grids ": {
2 " sample_Grid_USA ": {
3 "data": " UNITED STATES OF AMERICA ",
4 " convex_simplify ": true
5 }
6 },✝ ✆

Since the data spans the United States of America, we declare a grid layer that also spans
this region. This grid layer is defined through the object sample_Grid_USA, whose data
member is set to UNITED STATES OF AMERICA.

Next, some properties of the legend are set for aesthetic purposes. The properties of the
legend are stored within the internal figure’s layout properties. In order to interact with the
internal figure’s layout, the figure_layout object is added to the JSON file. For the full
list of properties that can be set for the figure’s layout, see [55].

30 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

✞ ⊵
1 " figure_layout ": {
2 " legend ": {
3 "x": 0.8043,
4 " bordercolor ": " black ",
5 " borderwidth ": 1,
6 "font": {
7 "size": 8
8 }
9 }

10 },✝ ✆
The properties of the legend are set by adding the legend member/object to the figure_layout
object. The legend property controls the different features of the legend, such as width,
legend item sizing, and legend title; for the full list of input options, see [56]. The legend
object has four members which control positioning x, the colour of the border bordercolor,
the width of the border borderwidth, and the size of the font (controlled through the size
member of the font property).

To do this, the internal figure’s geo layout (Plotly) needs to set; this is done via adding
the figure_geos. For the full list of properties that can be set for the figure’s geo layout,
see [51].

Next, a set of functions are specified in the functions object of the JSON file.✞ ⊵
1 " functions ": {
2 " clip_layers ": {
3 "clip": " hexbin + grids ",
4 "to": " regions "
5 },
6 " adjust_focus ": {
7 "on": " hexbin ",
8 " buffer_lat ": [0,15],
9 " rot_buffer_lon ": -8

10 }
11 },✝ ✆

The first function is the clip_layers, which specifies that hexbin and grid layers be clipped
to region layers; this same function is used in Subsection 4.1, and Subsection 4.3. The second
function is the adjust_focus, which specifies that the plot be focused on the hexbin layer
(but slightly shifted); this same function is used in Subsection 4.1, and Subsection 4.2.

Finally, the output location of the visualization is specified through the output. This step
is identical to the examples shown in Subsection 4.1, Subsection 4.2, and Subsection 4.3.✞ ⊵

1 " output ": {
2 " filepath ": "< output path >",
3 " crop_output ": true
4 }
5 }✝ ✆

The full JSON file is given below. The Python module translation of this JSON is given in
Annex D.

DRDC-RDDC-2021-D183 31

CAN UNCLASSIFIED

CAN UNCLASSIFIED

✞ ⊵
1 {
2 " hexbin_layer ": {
3 "data": "<data file location >",
4 " hexbin_info ": {
5 " hex_resolution ":4,
6 " binning_field ": " FIRE_TYPE ",
7 " binning_fn ": "best"
8 },
9 " manager ": {

10 " marker ": {
11 "line": {
12 " width ": 0.1
13 }
14 },
15 " colorscale ": " Dark24 "
16 }
17 },
18 " regions ": {
19 " sample_Region_USA ": {
20 "data": " UNITED STATES OF AMERICA "
21 }
22 },
23 " grids ": {
24 " sample_Grid_USA ": {
25 "data": " UNITED STATES OF AMERICA ",
26 " convex_simplify ": true
27 }
28 },
29 " figure_layout ": {
30 " legend ": {
31 "x": 0.8043,
32 " bordercolor ": " black ",
33 " borderwidth ": 1,
34 "font": {
35 "size": 8
36 }
37 }
38 },
39 " functions ": {
40 " clip_layers ": {
41 "clip": " hexbin + grids ",
42 "to": " regions "
43 },
44 " adjust_focus ": {
45 "on": " hexbin ",
46 " buffer_lat ": [0,15],
47 " rot_buffer_lon ": -8
48 }
49 },
50 " output ": {
51 " filepath ": "< output path >",
52 " crop_output ": true
53 }
54 }✝ ✆

32 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

5 Discussion

This section discusses three existing limitations of GeoHexViz as of this writing. Specifically,
these issues are concerning: geometries near the poles and the 180th meridian; issues related
to colour bars; and missing hexagons.

5.1 180th meridian issues

GeoHexViz uses the GeoJSON format to plot data sets. With GeoJSON comes difficulties
when geometries cross the 180th meridian [57]. Different libraries interpret geometries differ-
ently, and hence geometries that cross the 180th meridian may be interpreted as wrapping
around the globe and avoiding the meridian entirely. In GeoHexViz, hexagonal geometries
are supplied via Uber H3, and hence this issue has been discussed with the its developers
[58]. In this package a simple solution to the problem is implemented, in the future it would
be best to provide a more robust solution. The solution implemented involves tracking
geometries that cross the meridian, and shifting their coordinates, making all of the coor-
dinates either positive or negative. The theory behind this solution is discussed in [57]. The
solution that is used works generally, however, when hexagons containing either the north
or south pole are present, the solution to the 180th meridian issue persists. In Figure 9, the
SAR data set used in Subsection 4.1, is used. This time however, the geometries are not
clipped to the region of Canada, and instead span the globe including incident locations
that are near the North Pole. Using a hexagonal resolution of 2, the issue presents itself in
the final visualization.

The issue appears to cause a colour that bleeds through the entire plot and leaves a hexagon
(or hexagons) empty. In the final plot, this issue may or may not appear as it only occurs
at certain angles of rotation. Increasing the hexagonal resolution solves this issue for this
example—an increase from hexagonal resolution 2 to hexagonal resolution 3 solves the issue
for this example—and most others, but it should be investigated further. This colour bleed-
through issue has also been discussed on the Plotly community forum and can be seen
in [59].

DRDC-RDDC-2021-D183 33

CAN UNCLASSIFIED

CAN UNCLASSIFIED

North Pole

0

5k

10k

15k

20k

25k

Figure 9: 180th meridian issue on North Pole (hexagonal resolution = 286,746 km2).

34 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

5.2 Colour bar issues

An issue related to the generation of discrete colour scales occurs under rare circumstances.
These circumstances include generating discrete colour scales with not enough hues to fill
the scale, and generating diverging discrete colour scales with the center hue in an incorrect
position (not where the user specified). These issues have been noted and will be fixed in
the near future.

In addition, there exists an issue with the positioning and height of the colour bar with
respect to the plot area of the figure. When the dimensions of the plot area are not within
a specific range of aspect ratios, the colour bar position and height may not be optimal. An
example of this can be seen in Figure 10.

1

1.2

1.4

1.6

1.8

2

Figure 10: Colour bar positioning issue (hexagonal resolution = 3,
average hexagon area = 12392 km2).

Although the user is capable of altering the dimensions and positioning of the colour bar,
this should be done automatically as it is a common feature of software that produces
publication-quality choropleth maps. This issue has been discussed with some of the Plotly
development team [60]. As this is an issue with the Plotly library itself, the library’s de-
velopers have indicated that a calculation of plot area dimensions may be available in the
future which would address in this issue.

DRDC-RDDC-2021-D183 35

CAN UNCLASSIFIED

CAN UNCLASSIFIED

5.3 Grid generation issues

GeoHexViz relies on the Python binding of the Uber H3 package in order to generate
hexagons over polygons. This is done by passing the GeoJSON format of the polygon(s)
to Uber H3. In some cases over large areas, grids may not generate properly. This error
may manifest in GeoHexViz in the form of no hexagons, or multiple invalid hexagons being
retrieved from Uber H3. This issue does not seem to be widely discussed, but in this doc-
ument, an example is shown in Subsection 4.3. This is problematic for data sets that span
large areas, and may result in required hexagons missing from the visualization.

36 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

6 Conclusion

For many analysts there exists a knowledge gap with respect GIS itself and its associated
analytical techniques. The result is that it is both difficult and time-consuming for a such
individuals to create geospatial visualizations. With the aim to help overcome this barrier,
this document described GeoHexViz which provides a simple yet flexible approach to gener-
ating publication-quality geospatial visualizations of hexagonally binned data. GeoHexViz
provides two mechanisms to do so: first, through a command-line script that reads a JSON
file which specifies the visualization’s properties; and second through invoking a series of
Python functions provided by GeoHexViz within a user’s own Python module. In addition,
there exists many ways that an analyst may adjust the generated visualization if necessary
via functions packaged with GeoHexViz or by passing arguments through GeoHexViz to
the underlying libraries.

As of this publication, there exists three outstanding issues with GeoHexViz which are
related to its underlying libraries: issues with Plotly regarding geometries that cross the
180th meridian; issues with Plotly regarding the positioning and height of the colour bar;
and issues with Uber H3 regarding the generation of hexagons over large areas. In each case,
once the underlying issue is addressed within the respective Python library, it is expected
to be resolved within GeoHexViz.

DRDC-RDDC-2021-D183 37

CAN UNCLASSIFIED

CAN UNCLASSIFIED

References

[1] Simmons, S. (2018), 1.09 - Metadata and Spatial Data Infrastructure, In Huang, B.,
(Ed.), Comprehensive Geographic Information Systems, pp. 110–124, Oxford:
Elsevier.

[2] Mostak, T. (2021), Geospatial - A Complete Introduction (online),
https://www.omnisci.com/learn/geospatial (Access Date: July 2021).

[3] Ayalasomayajula, V. (2017), 7 techniques to VISUALIZE geospatial data (online),
KDnuggets, https:
//www.kdnuggets.com/2017/10/7-techniques-visualize-geospatial-data.html
(Access Date: August 2021).

[4] Feibush, E., Gagvani, N., and Williams, D. (2000), Visualization for situational
awareness, IEEE Computer Graphics and Applications, 20(5), 38–45.

[5] Laskey, K. B., Wright, E. J., and da Costa, P. C. (2010), Envisioning uncertainty in
geospatial information, International Journal of Approximate Reasoning, 51(2),
209–223. Bayesian Model Views.

[6] Kovařík, V. (2011), Possibilities of geospatial data analysis using spatial modeling in
ERDAS IMAGINE, In Proceedings of the International Conference on Military
Technologies 2011-ICMT’11, pp. 1307–1313.

[7] Connable, B., Perry, W. L., Doll, A., Lander, N., and Madden, D. (2014), Modeling,
Simulation, and Operations Analysis in Afghanistan and Iraq: Operational Vignettes,
Lessons Learned, and a Survey of Selected Efforts, RAND Corporation.

[8] Goodrich, D. C., Heilman, P., Guertin, D., Levick, L. R., Burns, I., Armendariz, G.,
and Wei, H. (2019), Automated geospatial watershed assessment (AGWA) to aid in
sustaining military mission and training, (Technical Report) USDA-ARS Southwest
Watershed Research Center (SWRC) Tucson United States.

[9] Hunter, G., Chan, J., and Rempel, M. (2021), Assessing the Impact of Infrastructure
on Arctic Operations, Defence Research and Development Canada, Scientific Report
DRDC-RDDC-2021-R024.

[10] Vartak, M., Madden, S., Parameswaran, A., and Polyzotis, N. (2014), SeeDB:
Automatically Generating Query Visualizations, Proc. VLDB Endow., 7(13),
1581–1584.

[11] Bertazzon, S. (2013), Rethinking GIS teaching to bridge the gap between technical
skills and geographic knowledge, Journal of Research and Didactics in Geography, 1,
67–72.

[12] Jack Dangermond, L. D. (2021), ArcGIS Online (online), https://www.arcgis.com/
(Access Date: May 2021).

38 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

https://www.omnisci.com/learn/geospatial
https://www.kdnuggets.com/2017/10/7-techniques-visualize-geospatial-data.html
https://www.kdnuggets.com/2017/10/7-techniques-visualize-geospatial-data.html
https://www.arcgis.com/

CAN UNCLASSIFIED

[13] Sherman, G. (2021), QGIS - A Free and Open Source Geographic Information
System (online), https://qgis.org/en/site/ (Access Date: May 2021).

[14] Bostock, M. (2021), D3.js - Data-Driven Documents (online), https://d3js.org/
(Access Date: May 2021).

[15] GISGeography (2021), ArcGIS Review: Is ArcMap the Best GIS Software? (online),
https://gisgeography.com/esri-arcgis-software-review-guide/ (Access Date:
August 2021).

[16] GrindGIS (2021), Pros and Cons of QGIS (online),
https://grindgis.com/software/pros-and-cons-of-qgis (Access Date:
May 2021).

[17] Cook, P. (2021), D3 in Depth: Geographic (online),
https://www.d3indepth.com/geographic/ (Access Date: May 2021).

[18] Plotly (2021), Plotly Python Open Source Graphing Library (online), Plotly,
https://plotly.com/python/ (Access Date: March 2021).

[19] Sipe, N. G. and Dale, P. (2003), Challenges in using geographic information systems
(GIS) to understand and control malaria in Indonesia, Malaria Journal.

[20] Briney, A. (2014), Binning in GIS (online), GIS Lounge,
https://www.gislounge.com/binning-gis/ (Access Date: March 2021).

[21] Field, K. (2012), Using a binning technique for point-based multiscale web maps
(online), ArcGIS Online,
https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/
using-a-binning-technique-for-point-based-multiscale-web-maps/ (Access
Date: April 2021).

[22] Sinha, A. (2019), Spatial Modelling Tidbits: Honeycomb or Fishnets? (online),
Towards Data Science, https://towardsdatascience.com/
spatial-modelling-tidbits-honeycomb-or-fishnets-7f0b19273aab (Access
Date: March 2021).

[23] Birch, C., Oom, S., and Beecham, J. (2007), Rectangular and hexagonal grids used
for observation, experiment and simulation in ecology, Ecological Modelling, 206,
347–359.

[24] Battersby, S. E., Strebe, D., and Finn, M. P. (2017), Shapes on a plane: evaluating
the impact of projection distortion on spatial binning, Cartography and Geographic
Information Science, 44(5), 410–421.

[25] McKinney, W. (2021), pandas.DataFrame (online),
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
(Access Date: March 2021).

DRDC-RDDC-2021-D183 39

CAN UNCLASSIFIED

https://qgis.org/en/site/
https://d3js.org/
https://gisgeography.com/esri-arcgis-software-review-guide/
https://grindgis.com/software/pros-and-cons-of-qgis
https://www.d3indepth.com/geographic/
https://plotly.com/python/
https://www.gislounge.com/binning-gis/
https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/using-a-binning-technique-for-point-based-multiscale-web-maps/
https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/using-a-binning-technique-for-point-based-multiscale-web-maps/
https://towardsdatascience.com/spatial-modelling-tidbits-honeycomb-or-fishnets-7f0b19273aab
https://towardsdatascience.com/spatial-modelling-tidbits-honeycomb-or-fishnets-7f0b19273aab
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

CAN UNCLASSIFIED

[26] Jordahl, K. (2021), geopandas.GeoDataFrame (online),
https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html
(Access Date: March 2021).

[27] Caliper (2021), What is a layer? (online), Caliper Mapping and Transportation
Glossary, https://www.caliper.com/glossary/what-is-a-map-layer.htm (Access
Date: October 2021).

[28] Brodsky, I. (2021), H3 Documentation (online), Towards Data Science,
https://h3geo.org/docs (Access Date: March 2021).

[29] Jordahl, K. (2021), GeoPandas (0.9.0) (online),
https://geopandas.org/index.html (Access Date: March 2021).

[30] McKinney, W. (2021), Pandas Documentation (1.2.3) (online),
https://pandas.pydata.org/docs/ (Access Date: March 2021).

[31] Gilles, S. (2013), The Shapely User Manual (1.7.1) (online), Waterloo Maple Inc,
https://shapely.readthedocs.io/en/stable/manual.html (Access Date:
April 2021).

[32] Plotly (2021), Choropleth Traces (online),
https://plotly.com/python/reference/choropleth (Access Date: May 2021).

[33] Plotly (2021), Scattergeo Traces (online),
https://plotly.com/python/reference/scattergeo (Access Date: May 2021).

[34] JSON (2021), Introducing JSON (online), https://www.json.org/json-en.html
(Access Date: October 2021).

[35] Search and Rescue Mission Management System (2020), Search and Rescue Incidents.
Joint Rescue Coordination Centre (JRCC). downloaded by Capt. David Burneau for
CJOC SAR on January 20th, 2020.

[36] Plotly (2021), Built-in Continuous Color Scales in Python (online),
Plotly — Graphing Libraries, https://plotly.com/python/builtin-colorscales/
(Access Date: 18 October 2021).

[37] Plotly (2021), Discrete Colors in Python (online), Plotly — Graphing Libraries,
https://plotly.com/python/discrete-color/ (Access Date: 18 October 2021).

[38] Plotly (2021), Choropleth Traces (Colorscale) (online), Plotly — Graphing Libraries,
https://plotly.com/python/reference/choropleth/#choropleth-colorscale
(Access Date: 18 October 2021).

[39] Plotly (2021), Choropleth Traces (Colorbar) (online), Plotly — Graphing Libraries,
https://plotly.com/python/reference/choropleth/#choropleth-colorbar
(Access Date: 18 October 2021).

40 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html
https://www.caliper.com/glossary/what-is-a-map-layer.htm
https://h3geo.org/docs
https://geopandas.org/index.html
https://pandas.pydata.org/docs/
https://shapely.readthedocs.io/en/stable/manual.html
https://plotly.com/python/reference/choropleth
https://plotly.com/python/reference/scattergeo
https://www.json.org/json-en.html
https://plotly.com/python/builtin-colorscales/
https://plotly.com/python/discrete-color/
https://plotly.com/python/reference/choropleth/#choropleth-colorscale
https://plotly.com/python/reference/choropleth/#choropleth-colorbar

CAN UNCLASSIFIED

[40] NaturalEarth (2021), Natural Earth—Free vector and raster map data at 1:10m,
1:50m, and 1:110m scales (online), https://www.naturalearthdata.com/ (Access
Date: September 2021).

[41] pdfCropMargins (2021), pdfCropMargins 1.0.5 (online), PyPi,
https://pypi.org/project/pdfCropMargins/ (Access Date: October 2021).

[42] GVA (2021), Gun Violence Archive (online), gunviolencearchive,
https://www.gunviolencearchive.org/reports/mass-shooting (Access Date:
October 2021).

[43] Plotly (2021), Python Figure Reference: scattergeo Traces — textposition (online),
Plotly Graphing Libraries,
https://plotly.com/python/reference/scattergeo/#scattergeo-textposition
(Access Date: 20 October 2021).

[44] Plotly (2021), Python Figure Reference: scattergeo Traces — marker (online), Plotly
Graphing Libraries,
https://plotly.com/python/reference/scattergeo/#scattergeo-marker
(Access Date: 20 October 2021).

[45] Plotly (2021), Styling Markers in Python (online), Plotly Graphing Libraries,
https://plotly.com/python/marker-style/ (Access Date: 20 October 2021).

[46] Plotly (2021), Python Figure Reference: scattergeo Traces — marker symbol (online),
Plotly Graphing Libraries, https:
//plotly.com/python/reference/scattergeo/#scattergeo-marker-symbol
(Access Date: 20 October 2021).

[47] Plotly (2021), Python Figure Reference: scattergeo Traces — marker symbol (online),
Plotly Graphing Libraries,
https://plotly.com/python/reference/scattergeo/#scattergeo-marker-size
(Access Date: October 2021).

[48] Plotly (2021), Python Figure Reference: scattergeo Traces — marker line (online),
Plotly Graphing Libraries,
https://plotly.com/python/reference/scattergeo/#scattergeo-marker-line
(Access Date: October 2021).

[49] Larion, A. (2016), Aerial Bombing Operations in World War II (online), Kaggle,
https://www.kaggle.com/usaf/world-war-ii?select=operations.csv (Access
Date: September 2021).

[50] Plotly (2021), Choropleth Traces (Marker) (online), Plotly — Graphing Libraries,
https://plotly.com/python/reference/choropleth/#choropleth-marker
(Access Date: 18 October 2021).

DRDC-RDDC-2021-D183 41

CAN UNCLASSIFIED

https://www.naturalearthdata.com/
https://pypi.org/project/pdfCropMargins/
https://www.gunviolencearchive.org/reports/mass-shooting
https://plotly.com/python/reference/scattergeo/#scattergeo-textposition
https://plotly.com/python/reference/scattergeo/#scattergeo-marker
https://plotly.com/python/marker-style/
https://plotly.com/python/reference/scattergeo/#scattergeo-marker-symbol
https://plotly.com/python/reference/scattergeo/#scattergeo-marker-symbol
https://plotly.com/python/reference/scattergeo/#scattergeo-marker-size
https://plotly.com/python/reference/scattergeo/#scattergeo-marker-line
https://www.kaggle.com/usaf/world-war-ii?select=operations.csv
https://plotly.com/python/reference/choropleth/#choropleth-marker

CAN UNCLASSIFIED

[51] Plotly (2021), Plotly graph_objects package: layout geo (online), Plotly Graphing
Libraries, https://plotly.com/python-api-reference/generated/plotly.
graph_objects.layout.geo.html#module-plotly.graph_objects.layout.geo
(Access Date: 18 October 2021).

[52] Plotly (2021), Plotly graph_objects package: layout geo lonaxis (online), Plotly
Graphing Libraries,
https://plotly.com/python-api-reference/generated/plotly.graph_objects.
layout.geo.html#plotly.graph_objects.layout.geo.Lonaxis (Access Date: 18
October 2021).

[53] Plotly (2021), Plotly graph_objects package: layout geo projection (online), Plotly
Graphing Libraries,
https://plotly.com/python-api-reference/generated/plotly.graph_objects.
layout.geo.html#plotly.graph_objects.layout.geo.Projection (Access Date:
18 October 2021).

[54] MBTS (2021), Monitoring Trends in Burn Severity Burned Area Boundaries (Feature
Layer) (online), ArcGIS, https://hub.arcgis.com/datasets/usfs::
monitoring-trends-in-burn-severity-burned-area-boundaries-feature-layer/
about (Access Date: September 2021).

[55] Plotly (2021), Plotly graph_objects package: layout (online), Plotly Graphing
Libraries, https://plotly.com/python-api-reference/generated/plotly.
graph_objects.Layout.html#plotly.graph_objects.Layout (Access Date:
October 2021).

[56] Plotly (2021), Plotly graph_objects package: layout legend (online), Plotly Graphing
Libraries, https://plotly.com/python-api-reference/generated/plotly.
graph_objects.layout.html#plotly.graph_objects.layout.Legend (Access
Date: October 2021).

[57] MacWright, T. (2016), The 180th Meridian (online),
https://macwright.com/2016/09/26/the-180th-meridian.html (Access Date:
April 2021).

[58] Abou Zeidan, T. (2021), Q: Invalidity of Polygons in GeoJSON, GeoPandas (online),
https://github.com/uber/h3-py/issues/187 (Access Date: July 2021).

[59] Abou Zeidan, T. (2021), Color Bleedthrough Invalid Polygon or GeoJSON (online),
https://community.plotly.com/t/
color-bleedthrough-invalid-polygon-or-geojson/52549 (Access Date:
July 2021).

[60] Abou Zeidan, T. (2021), [Feature Request | Bug Report] Plot Area / Colorbar Size
Variance (Geos) (online), https://github.com/plotly/plotly.py/issues/3288
(Access Date: July 2021).

42 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

https://plotly.com/python-api-reference/generated/plotly.graph_objects.layout.geo.html#module-plotly.graph_objects.layout.geo
https://plotly.com/python-api-reference/generated/plotly.graph_objects.layout.geo.html#module-plotly.graph_objects.layout.geo
https://plotly.com/python-api-reference/generated/plotly.graph_objects.layout.geo.html#plotly.graph_objects.layout.geo.Lonaxis
https://plotly.com/python-api-reference/generated/plotly.graph_objects.layout.geo.html#plotly.graph_objects.layout.geo.Lonaxis
https://plotly.com/python-api-reference/generated/plotly.graph_objects.layout.geo.html#plotly.graph_objects.layout.geo.Projection
https://plotly.com/python-api-reference/generated/plotly.graph_objects.layout.geo.html#plotly.graph_objects.layout.geo.Projection
https://hub.arcgis.com/datasets/usfs::monitoring-trends-in-burn-severity-burned-area-boundaries-feature-layer/about
https://hub.arcgis.com/datasets/usfs::monitoring-trends-in-burn-severity-burned-area-boundaries-feature-layer/about
https://hub.arcgis.com/datasets/usfs::monitoring-trends-in-burn-severity-burned-area-boundaries-feature-layer/about
https://plotly.com/python-api-reference/generated/plotly.graph_objects.Layout.html#plotly.graph_objects.Layout
https://plotly.com/python-api-reference/generated/plotly.graph_objects.Layout.html#plotly.graph_objects.Layout
https://plotly.com/python-api-reference/generated/plotly.graph_objects.layout.html#plotly.graph_objects.layout.Legend
https://plotly.com/python-api-reference/generated/plotly.graph_objects.layout.html#plotly.graph_objects.layout.Legend
https://macwright.com/2016/09/26/the-180th-meridian.html
https://github.com/uber/h3-py/issues/187
https://community.plotly.com/t/color-bleedthrough-invalid-polygon-or-geojson/52549
https://community.plotly.com/t/color-bleedthrough-invalid-polygon-or-geojson/52549
https://github.com/plotly/plotly.py/issues/3288

CAN UNCLASSIFIED

Annex A Search and Rescue—Python module input

This annex lists the Python code to create Figure 5.✞ ⊵
1 from geohexviz . builder import PlotBuilder
2
3 myBuilder = PlotBuilder ()
4
5 # set hexbin layer
6 myBuilder . set_hexbin (
7 data="<path to data.csv >" ,
8 hex_resolution =4,
9 manager=dict (

10 colorscale=" Viridis " ,
11 colorbar=dict (
12 x=0.8325
13)
14)
15)
16
17 # add region layers
18 myBuilder . add_region (
19 name=" sample_Region_CANADA " ,
20 data=" CANADA "
21)
22
23 # add grid layers
24 myBuilder . add_grid (
25 name=" sample_Grid_CANADA " ,
26 data=" CANADA "
27)
28
29 # invoke functions
30 myBuilder . clip_layers (
31 clip=" hexbin + grids " ,
32 to=" regions "
33)
34 myBuilder . adjust_focus (
35 on=" regions " ,
36 buffer_lat =[0 , 3]
37)
38 myBuilder . logify_scale (
39 exp_type="r"
40)
41
42 # finalize and output
43 myBuilder . finalize ()
44 myBuilder . output (
45 filepath="<path to output (. pdf)>" ,
46 crop_output=True
47)✝ ✆

DRDC-RDDC-2021-D183 43

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Annex B Mass shootings—Python module input

This annex lists the Python code to create Figure 6.✞ ⊵
1 from geohexviz . builder import PlotBuilder
2
3 myBuilder = PlotBuilder ()
4
5 # set hexbin layer
6 myBuilder . set_hexbin (
7 data="<data file location >" ,
8 hex_resolution =3,
9 hexbin_info=dict (

10 binning_field=" killed_injured " ,
11 binning_fn="sum"
12) ,
13 manager=dict (
14 colorbar=dict (
15 x=0.8365
16)
17)
18)
19
20 # add region layers
21 myBuilder . add_region (
22 name=" sample_Region_USA " ,
23 data=" UNITED STATES OF AMERICA "
24)
25
26 myBuilder . add_point (
27 name=" sample_Point_EPICENTERS " ,
28 data="<epicenters file location >" ,
29 manager=dict (
30 textposition =[
31 "top center " ,
32 "top center " ,
33 " middle right " ,
34 "top center " ,
35 "top left" ,
36 " bottom right " ,
37 "top center " ,
38 "top center " ,
39 "top center " ,
40 "top center "
41] ,
42 marker=dict (
43 symbol="square -dot" ,
44 size=4,
45 line=dict (
46 width =0.5
47)
48)
49)
50)
51
52 # invoke functions
53 myBuilder . remove_empties ()
54 myBuilder . adjust_focus (
55 on=" hexbin + grids " ,
56 buffer_lat =[0 , 1 5] ,
57 rot_buffer_lon=- 8

44 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

58)
59 myBuilder . logify_scale (
60 exp_type="r"
61)
62
63 # finalize and output
64 myBuilder . finalize ()
65 myBuilder . output (
66 filepath="<output path >" ,
67 crop_output=True
68)✝ ✆

DRDC-RDDC-2021-D183 45

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Annex C World War 2 bombings—Python module input

This annex lists the Python code to create Figure 7.✞ ⊵
1 from geohexviz . builder import PlotBuilder
2
3 myBuilder = PlotBuilder ()
4
5 # set hexbin layer
6 myBuilder . set_hexbin (
7 data="<data file location >" ,
8 hexbin_info=dict (
9 binning_field=" high_explosives_weight_tons " ,

10 binning_fn="sum"
11) ,
12 hex_resolution =4,
13 manager=dict (
14 marker=dict (
15 line=dict (width =0.45)
16) ,
17 colorscale=" Viridis " ,
18 colorbar=dict (
19 x=0.82
20)
21)
22)
23
24 # add region layers
25 myBuilder . add_region (
26 name=" sample_Region_EUROPE " ,
27 data=" EUROPE "
28)
29
30 # add grid layers
31 myBuilder . add_grid (
32 name=" sample_Grid_EUROPE " ,
33 data=" EUROPE " ,
34 convex_simplify=True
35)
36 myBuilder . add_grid (
37 name=" sample_Grid_RUSSIA " ,
38 data=" RUSSIA " ,
39 convex_simplify=True
40)
41
42 # update grid manager
43 myBuilder . update_grid_manager (
44 marker=dict (
45 line=dict (width =0.45)
46)
47)
48
49 # update figure geos
50 myBuilder . update_figure (
51 geos=dict (
52 lataxis=dict (
53 range =[35 , 58]
54) ,
55 lonaxis=dict (
56 range =[0 , 43]
57) ,

46 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

58 projection=dict (
59 rotation=dict (
60 lat =46.63321662159487 ,
61 lon =11.21560455920799
62)
63)
64)
65)
66
67 # invoke functions
68 myBuilder . clip_layers (
69 clip=" hexbin + grids " ,
70 to=" regions "
71)
72 myBuilder . logify_scale (
73 exp_type="r"
74)
75 # * Unlike JSON input mechanism , in a module adjust \ _focus is not
76 # * invoked by default , the user has to invoke it
77
78 # finalize and output
79 myBuilder . finalize ()
80 myBuilder . output (
81 filepath="<output path >" ,
82 crop_output=True
83)✝ ✆

DRDC-RDDC-2021-D183 47

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Annex D Forest fires—Python module input

This annex lists the Python code to create Figure 8.✞ ⊵
1 from geohexviz . builder import PlotBuilder
2
3 myBuilder = PlotBuilder ()
4
5 # set hexbin layer
6 myBuilder . set_hexbin (
7 data="<data file location >" ,
8 hexbin_info=dict (
9 hex_resolution =4,

10 binning_field=" FIRE_TYPE " ,
11 binning_fn="best"
12) ,
13 manager=dict (
14 marker=dict (
15 line=dict (
16 width =0.1
17)
18) ,
19 colorscale=" Dark24 "
20)
21)
22
23 # add region layers
24 myBuilder . add_region (
25 name=" sample_Region_USA " ,
26 data=" UNITED STATES OF AMERICA "
27)
28
29 # add grid layers
30 myBuilder . add_grid (
31 name=" sample_Grid_USA " ,
32 data=" UNITED STATES OF AMERICA "
33)
34
35 # alter figure layout
36 myBuilder . update_figure (
37 layout=dict (
38 legend=dict (
39 x =0.8043 ,
40 bordercolor=" black " ,
41 borderwidth =1,
42 font=dict (
43 size=8
44)
45)
46)
47)
48
49 # invoke functions
50 myBuilder . clip_layers (
51 clip=" hexbin + grids " ,
52 to=" regions "
53)
54 myBuilder . adjust_focus (
55 on=" hexbin + grids " ,
56 buffer_lat =[0 , 1 5] ,
57 rot_buffer_lon=- 8

48 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

58)
59
60 # finalize and output
61 myBuilder . finalize ()
62 myBuilder . output (
63 filepath="<output path >" ,
64 crop_output=True
65)✝ ✆

DRDC-RDDC-2021-D183 49

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Acronyms and abbreviations

GIS Geographic Information System

SAR search and rescue

OR&A Operations Research and Analysis

.csv comma-separated values

SMSS Search and Recue Mission Management System

JSON JavaScript Object Notation

50 DRDC-RDDC-2021-D183

CAN UNCLASSIFIED

CAN UNCLASSIFIED

DOCUMENT CONTROL DATA
*Security markings for the title, abstract and keywords must be entered when the document is sensitive.

1. ORIGINATOR (The name and address of the organization preparing
the document. A DRDC Centre sponsoring a contractor’s report, or a
tasking agency, is entered in Section 8.)

DRDC – Centre for Operational Research and
Analysis
NDHQ Carling, 60 Moodie Drive, building 7S.2,
Ottawa ON K1A 0K2, Canada

2a. SECURITY MARKING (Overall security marking of
the document, including supplemental markings if
applicable.)

CAN UNCLASSIFIED

2b. CONTROLLED GOODS

NON-CONTROLLED GOODS
DMC A

3. TITLE (The document title and subtitle as indicated on the title page.)

GeoHexViz—Geospatial visualization using hexagonal binning software: Design reference
and instruction manual

4. AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used. Use semi-colon as delimiter.)

Zeidan, T. A.; Rempel, M.

5. DATE OF PUBLICATION (Month and year of publication of
document.)

December 2021

6a. NO. OF PAGES (Total
pages, including Annexes,
excluding DCD, covering
and verso pages.)

57

6b. NO. OF REFS (Total
cited in document.)

60

7. DOCUMENT CATEGORY (e.g., Scientific Report, Contract Report, Scientific Letter)

Reference Document

8. SPONSORING CENTRE (The name and address of the department project or laboratory sponsoring the research and
development.)

DRDC – Centre for Operational Research and Analysis
NDHQ Carling, 60 Moodie Drive, building 7S.2, Ottawa ON K1A 0K2, Canada

9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant number under
which the document was written. Please specify whether
project or grant.)

06ac

9b. CONTRACT NO. (If appropriate, the applicable contract
number under which the document was written.)

10a. DRDC PUBLICATION NUMBER

DRDC-RDDC-2021-D183
10b. OTHER DOCUMENT NO(s). (Any other numbers which may

be assigned to this document either by the originator or by
the sponsor.)

11a. FUTURE DISTRIBUTION WITHIN CANADA (Approval for further dissemination of the document. Security classification must also
be considered.)

Public release

11b. FUTURE DISTRIBUTION OUTSIDE CANADA (Approval for further dissemination of the document. Security classification must also
be considered.)

Public release

CAN UNCLASSIFIED

CAN UNCLASSIFIED

12. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Use semi-colon as a delimiter.)

visualization; python; hexagonal binning

13. ABSTRACT/RÉSUMÉ (When available in the document, the French version of the abstract must be included here.)

Geospatial visualization is an important communication method that is often used in military
operations research to convey analyses to both analysts and decision makers. When these
types of visualizations include a large amount of point-like data, binning—in particular, hexag-
onal binning—may be used to summarize the data and subsequently produce an effective vi-
sualization. However, creating such visualizations may be frustrating for many since it requires
in-depth knowledge of both Geographic Information Systems and analytical techniques, not to
mention access to software that may require a paid license, training, and perhaps knowledge
of a programming language. In this document we describe GeoHexViz which aims to reduce
the time, in-depth knowledge, and programming required to produce publication-quality geospa-
tial visualizations that use hexagonal binning. We describe the high-level design of GeoHexViz,
its functional specification, and present four examples that demonstrate the capabilities of Geo-
HexViz in action. For each, we describe the two methods that GeoHexViz provides to do so: first,
a command-line script whose input is a JavaScript Object Notation file that contains the visual-
ization’s properties; and second, a Python script that imports and invokes functions found in the
software’s Python modules.

La visualisation géospatiale est une méthode de communication importante, souvent utilisée
pour transmettre des analyses aux analystes et aux décideurs participants à la recherche sur
les opérations militaires. Lorsque ces types de visualisation englobent une grande quantité de
données ponctuelles, le groupement de données par classe — et plus particulièrement le grou-
pement de données par classe hexagonale — peut être utilisé pour synthétiser les données
et ainsi générer une visualisation efficace. Cependant, la création de telles visualisations peut
être contrariante puisqu’elle suppose une connaissance approfondie des systèmes d’information
géographique et des techniques d’analyse, sans oublier l’accès à un logiciel (sous licence ou
pas), une formation et la maîtrise d’un langage de programmation. Dans le présent document,
nous vous présentons GeoHexViz, une ressource qui permet de réduire le temps, les connais-
sances et la programmation nécessaires à la production de visualisations géospatiales diffu-
sables basées sur des groupements de données par classe hexagonale. Nous décrivons la
conception de haut niveau et la spécification fonctionnelle de GeoHexViz, et présentons quatre
exemples qui illustrent les capacités de GeoHexViz. Pour chacun de ces exemples, nous expli-
quons les deux méthodes proposées par GeoHexViz : 1) un script de commandes dont le fichier
d’entrée est un fichier de notation objet JavaScript (JSON) qui contient les propriétés de la vi-
sualisation ; 2) un script Python qui importe des fonctions trouvées dans les modules Python du
logiciel et les exécute.

CAN UNCLASSIFIED

	Abstract
	Significance for defence and security
	Résumé
	Importance pour la défense et la sécurité
	Table of contents
	List of figures
	List of tables
	Acknowledgements
	1 Introduction
	2 Design specification
	3 Functional specification
	3.1 Software design
	3.2 Input data specification
	3.2.1 Hexbin layer and its properties
	3.2.2 Optional layers
	3.2.3 Extended hexagonal tiling (grid layers)

	3.3 Optional adjustments
	3.3.1 Plot adjustments
	3.3.2 Data adjustments

	3.4 Input mechanisms
	3.5 Processing
	3.6 Output

	4 Examples
	4.1 Search and Rescue
	4.2 Mass shootings in the United States of America
	4.3 World War 2 bombings
	4.4 Forest fires

	5 Discussion
	5.1 180th meridian issues
	5.2 Colour bar issues
	5.3 Grid generation issues

	6 Conclusion
	References
	Annex A Search and Rescue—Python module input
	Annex B Mass shootings—Python module input
	Annex C World War 2 bombings—Python module input
	Annex D Forest fires—Python module input
	Acronyms and abbreviations

