
Defence Research and
Development Canada

Recherche et développement
pour la défense Canada

CAN UNCLASSIFIED

DeLaTeXify:
Grammar-Checking Enabler for LATEX

User Manual

S. Guillouzic
DRDC – Centre for Operational Research and Analysis

Terms of release: This document is approved for public release.

Defence Research and Development Canada
Reference Document
DRDC-RDDC-2021-D076
October 2021

CAN UNCLASSIFIED

CAN UNCLASSIFIED

IMPORTANT INFORMATIVE STATEMENTS

This document was reviewed for Controlled Goods by Defence Research and Development Canada (DRDC) using the Schedule
to the Defence Production Act.

Disclaimer: This publication was prepared by Defence Research and Development Canada, an agency of the Department of
National Defence. The information contained in this publication has been derived and determined through best practice and
adherence to the highest standards of responsible conduct of scientific research. This information is intended for the use of the
Department of National Defence, the Canadian Armed Forces (“Canada”) and Public Safety partners and, as permitted, may be
shared with academia, industry, Canada’s allies, and the public (“Third Parties”). Any use by, or any reliance on or decisions
made based on this publication by Third Parties, are done at their own risk and responsibility. Canada does not assume any
liability for any damages or losses which may arise from any use of, or reliance on, the publication.

Endorsement statement: This publication has been published by the Editorial Office of Defence Research and Development
Canada, an agency of the Department of National Defence of Canada. Inquiries can be sent to:
Publications.DRDC-RDDC@drdc-rddc.gc.ca.

© Her Majesty the Queen in Right of Canada, Department of National Defence, 2021

© Sa Majesté la Reine du chef du Canada, ministère de la Défense nationale, 2021

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Abstract

DeLaTeXify is a Python-based software that converts LATEX documents to plain text, so
that their grammar can be verified using tools such as Microsoft Word. It is based on text
replacement rules defined using regular expressions. Users can define additional rules to
process commands that are not yet supported by DeLaTeXify or are defined locally. They
can also override the rules provided with DeLaTeXify if desired. The user manual provides
installation and usage instructions, as well as information about how to define and debug
new text replacement rules.

Résumé

DeLaTeXify est un logiciel programmé en langage Python qui convertit les documents
LATEX en texte brut, de façon à ce que l’on puisse vérifier la grammaire avec des outils
comme Microsoft Word. Il est fondé sur des règles de remplacement de texte définies à l’aide
d’expressions régulières. Les utilisateurs peuvent définir des règles additionnelles pour traiter
les commandes qui ne sont pas encore prises en charge par DeLaTeXify ou qui sont définies
localement. Ils peuvent aussi remplacer les règles fournies avec DeLaTeXify au besoin. Le
manuel de l’utilisateur contient les instructions d’installation et d’utilisation, ainsi que de
l’information sur la façon de définir et de déboguer de nouvelles règles de remplacement de
texte.

DRDC-RDDC-2021-D076 i

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Table of contents

Abstract . i

Résumé . i

Table of contents . ii

List of figures . iv

Acknowledgements . v

1 Introduction . 1

2 Installation . 3

2.1 Software requirements . 3

2.2 Installation files . 3

2.3 Microsoft Windows . 3

2.4 Linux . 4

3 Usage . 5

3.1 Graphical User Interface (GUI) . 5

3.1.1 File names . 5

3.1.2 Debugging options . 7

3.1.3 Debugging log . 7

3.2 Command-Line Interface (CLI) . 8

3.3 Usage notes and limitations . 8

3.3.1 LATEX log file or \usepackage commands 8

3.3.2 Default rule confusion . 9

3.3.3 Stray parentheses with re module 10

3.3.4 Percent signs in \verb commands 10

3.3.5 Escaped curly brackets . 10

ii DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

4 Replacement rules . 11

4.1 Syntax . 11

4.1.1 Search pattern . 11

4.1.2 Replacement specification . 12

4.1.3 Flags . 13

4.2 Examples . 13

4.2.1 Example 1: \label . 13

4.2.2 Example 2: \ref . 13

4.2.3 Example 3: sectioning commands 14

4.2.4 Example 4: footnotes . 14

4.2.5 Example 5: \subcaption . 15

4.3 Debugging options . 15

4.3.1 nodefault option . 15

4.3.2 nolocal option . 15

4.3.3 steps option . 16

4.3.4 trace option . 16

4.3.5 times option . 18

4.3.6 re option . 18

5 Conclusion . 19

References . 20

Annex A Local rules . 21

Annex B Order of rule application . 24

Annex C Syntax errors . 26

Abbreviations, acronyms and initialisms . 29

DRDC-RDDC-2021-D076 iii

CAN UNCLASSIFIED

CAN UNCLASSIFIED

List of figures

Figure 1: Example of LATEX-to-text conversion with DeLaTeXify 1

Figure 2: DeLaTeXify GUI (Version 3.0 beta 3) 6

Figure 3: CLI help message of DeLaTeXify (Version 3.0 beta 3) 9

Figure 4: Sample output from the steps option 17

Figure A.1: Fictitious local_delatexify.py file . 21

Figure C.1: Baseline file to illustrate syntax errors 26

Figure C.2: Syntax error if an invalid capturing group is referenced 26

Figure C.3: Syntax error if unbalanced parentheses are present 27

iv DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Acknowledgements

The author wishes to thank Fred Ma and Joshua Goldman for their help in beta testing
DeLaTeXify.

DRDC-RDDC-2021-D076 v

CAN UNCLASSIFIED

CAN UNCLASSIFIED

1 Introduction

While many text editors used with LATEX can perform spellchecking, support for grammar
checking is very limited. DeLaTeXify aims to fill that gap. It converts LATEX files to plain
text in such a way as to minimize the number of false positives when checking grammar with
Microsoft Word. Alternate grammar checking software can also be used on the resulting text
file. Rather than try to mimic the output from LATEX, as done by tools such as TeX4ht [1]
or Pandoc [2], DeLaTeXify extracts the text that can be checked for grammar and discards
the rest. For instance, each equation is replaced by an empty pair of dollar signs ($$).
This notation does not interfere with the grammar checking done by Word and is easily
recognized by LATEX users as representing equations. Similarly, cross-references obtained
using \ref, \eqref and \cite are respectively replaced with generic X, (X) and [X], since
the exact numbers are irrelevant for checking grammar.

An example of a conversion performed with DeLaTeXify is shown in Figure 1, with the
LATEX source and the DeLaTeXify output respectively shown in Figures 1a and 1b. Each
paragraph is wrapped by DeLaTeXify into a single line, with paragraphs separated by empty
lines. As indicated above, the equation and the cross-reference are respectively replaced with

1 \ documentclass { article }
2
3 \ usepackage { amsmath }
4
5 \begin { document }
6 The first sentence introduces an equation :
7 \begin { equation }
8 1 + 1 = 2.
9 \label {eq: trivial }

10 \end{ equation }
11 The second sentence ends the paragraph \ footnote {What a short paragraph !}
12 and refers to equation ~\ eqref {eq: trivial }.
13
14 The second paragraph is even shorter and only has one sentence .
15 \end{ document }

(a) Source document.

1 The first sentence introduces an equation : $$. The second sentence
ends the paragraph and refers to equation (X). (What a short
paragraph !)

2
3 The second paragraph is even shorter and only has one sentence .

(b) Converted document.

Figure 1: Example of LATEX-to-text conversion with DeLaTeXify.

DRDC-RDDC-2021-D076 1

CAN UNCLASSIFIED

CAN UNCLASSIFIED

$$ and (X). In addition to this, the footnote is moved to the end of the paragraph and put
in parentheses to avoid interrupting sentences and triggering false grammar errors. Finally,
the \documentclass, \usepackage, \begin{document} and \end{document} commands
are removed.

The conversion is performed by applying a set of replacement rules based on regular ex-
pressions [3]. Regular expressions provide a formal syntax to define sophisticated search
patterns that can be used to extract information from a text or to identify parts where text
substitutions should be made. In DeLaTeXify, such replacement rules have been defined
for the more common LATEX commands. More rules can be added as required in order to
support additional commands.

Sections 2 and 3 of this manual respectively indicate how to install and run DeLaTeXify.
They are the only two sections required reading in order to start using the tool. Section 4
then describes how to customize DeLaTeXify by creating new rules to process more LATEX
commands, if required. Finally, Section 5 provides concluding remarks. Annexes A to C
cover more advanced subjects that are not required for basic usage: the definition of a local
repository of rules in Annex A, the order of rule application in Annex B and syntax errors
in rule definitions in Annex C.

2 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

2 Installation

This section describes how to install DeLaTeXify. Section 2.1 summarizes the software
requirements, and Section 2.2 lists the files included in the distribution. Sections 2.3 and 2.4
go over the steps required to install it on Windows and Linux, respectively.

2.1 Software requirements

DeLaTeXify runs on both Python 2 and 3. It was tested with Python 3 on Windows 7 and
with Python 2 and 3 on Linux. It processes regular expressions using the third-party regex
module [4] if available, but defaults back to the standard re module [5] if not. While the
regex module allows DeLaTeXify to run about twice as fast, the re module is present in all
Python distributions and thus ensures portability. As graphical user interface, DeLaTeXify
uses Tkinter [6], which is also a standard component of all Python distributions.

2.2 Installation files

DeLaTeXify is distributed as a set of five files, of which only the first one is absolutely
required:

• delatexify.py: The Python script itself;

• delatexify.ico: Icon used for DeLaTeXify on Windows (, which is the letter L for
LATEX inscribed in the letter G for grammar);

• Quick Start.txt: Concise installation and usage instructions;

• Change Log.txt: List of changes between versions; and

• User Manual.pdf: This user manual.

2.3 Microsoft Windows

To install DeLaTeXify on Windows:

1. Save delatexify.py and delatexify.ico to a destination folder of your choice;

2. Run delatexify.py without any command-line argument in order to launch its Graph-
ical User Interface (GUI);

3. In the main window of the DeLaTeXify GUI, click on the Shortcuts button to spawn
the shortcuts dialog (see Section 3.1.1);

4. In the shortcuts dialog, choose where application shortcuts should be created and
click Create; and

DRDC-RDDC-2021-D076 3

CAN UNCLASSIFIED

CAN UNCLASSIFIED

5. Drag one of the shortcuts to the taskbar to pin it there.

Steps 2 to 5 are optional, but creating shortcuts streamlines usage by allowing drag-and-
drop. If the delatexify.py and delatexify.ico files are moved or if the version of Python used
to run the application is changed, Steps 2 to 5 must be repeated.

If DeLaTeXify is to be used in Command-Line Interface (CLI) mode on Windows, its
installation directory should be added to the PYTHONPATH environment variable and
the Python installation directory should be listed in the PATH environment variable.

2.4 Linux

To install DeLaTeXify on Linux, save delatexify.py to a directory that is listed in the PATH
environment variable and make sure that the file has execute permission.

4 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

3 Usage

DeLaTeXify can be used in GUI or CLI mode, respectively described in Sections 3.1 and 3.2.
Section 3.3 lists some elements to keep in mind when using DeLaTeXify.

3.1 Graphical User Interface (GUI)

Screenshots of the DeLaTeXify GUI are shown in Figure 2: Windows in Figure 2a and
Linux in Figure 2b. As can be seen from these screenshots, the main difference between
the two interfaces is the presence of three extra buttons in Windows (Check, Email log and
Shortcuts) for capabilities that have been implemented only for that operating system.

The GUI is split into three sections: File names, Debugging options and Debugging log.
They are described in more detail in the following three subsections.

3.1.1 File names

The File names section is where the input and output file names are specified and where
buttons for running DeLaTeXify are located. Clicking on the input field spawns a dialog
box where the user can choose the input file. It is populated automatically when a LATEX
file is dragged-and-dropped on one of the icons generated during installation. The output
field contains the pattern used to generate the name of the output file. In the pattern, %r
stands for the root name of the input file (in other words, the file name without extension).
The .txt is added automatically to the output file name and must not be included in the
output field. The default value of the output field is %r, which means that an input file
name of myreport.tex would result in an output file name of myreport.txt.

The first button is called Convert. Clicking it launches the conversion process, with di-
agnostic messages written to the Debugging log section. The debugging log can be saved
by clicking the Save log button. On Windows, the user has two more options once the
conversion is done:

1. Click the Check button to open the output file in Word and initiate the grammar
checking; or

2. Click the Email log button to start drafting an email in Microsoft Outlook with the
debugging log included.1

The last button on the Windows version is Shortcuts. It allows the creation of application
shortcuts in the following locations: the desktop, the SendTo menu and the Start menu.
DeLaTeXify cannot add a shortcut to the taskbar directly, but one can be added by dragging
one from the other three locations. As mentioned above, dragging-and-dropping a LATEX file
1 This button was added to facilitate reporting errors and unsupported LATEX commands to the DeLaTeXify
developer.

DRDC-RDDC-2021-D076 5

CAN UNCLASSIFIED

CAN UNCLASSIFIED

(a) On Microsoft Windows 7.

(b) On Linux.

Figure 2: DeLaTeXify GUI (Version 3.0 beta 3).

6 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

on one of these shortcuts starts DeLaTeXify and fills the input field automatically. However,
the shift key must be pressed when dropping a file on the taskbar; otherwise, Windows
adds the file to the jump list of the taskbar shortcut rather than launch DeLaTeXify.
Unfortunately, the jump list does not work with DeLaTeXify, as Windows sees it as a
Python jump list rather than a DeLaTeXify jump list.

3.1.2 Debugging options

This section of the GUI provides various options that can help with debugging when creating
or updating replacement rules:

1. nodefault: Deactivate the default rules that DeLaTeXify uses for LATEX commands
that have no explicit rules defined;2

2. nolocal: Omit local rules defined in a local_delatexify.py file (see Annex A);

3. steps: Print the converted text (in its current state) to the debugging log after ap-
plying each replacement rule;

4. trace: List to the debugging log the search patterns and replacement rules as they
are run;

5. times: Save the compilation and run times for the search patterns and replacement
rules to a Comma-Separated Values (CSV) file with the same root name as the output
file; and

6. re: Use the re module even if the regex module is available.

These options are described in more detail in Section 4.3.

3.1.3 Debugging log

DeLaTeXify writes debugging and diagnostic information to this section:

1. The path to the local rules file (local_delatexify.py) if one is used (see Annex A);

2. The name of the LATEX log file used to identify document classes and packages (or
the word missing if no log was found);

3. The path to files inserted into the main LATEX document using the \input, \include
and \bibliography commands;

4. The list of LATEX commands left at the end of the conversion, if any;

5. Converted text after the application of each individual replacement rule, if the steps
option is specified;

2 DeLaTeXify currently has four default rules. They remove \begin, \end and argument-less commands
from the text, and replace one-argument commands with the content of their argument.

DRDC-RDDC-2021-D076 7

CAN UNCLASSIFIED

CAN UNCLASSIFIED

6. Search patterns and replacement rules as they are executed, if the trace option is
specified;

7. Any syntax error encountered in regular expressions; and

8. Any Python error that occurs during program execution.

3.2 Command-Line Interface (CLI)

All of the DeLaTeXify functionality, aside from the Windows-specific buttons (Check, Email
log and Shortcuts), can be accessed from the command line. On Windows, it can be run by
typing python delatexify.py followed by the desired command-line arguments. On Linux,
delatexify.py can be used as the command name and there is no need to type python
before it. If no command-line argument is specified, DeLaTeXify starts in GUI mode. If
the -h option is specified, a help message is printed. (See Figure 3.) The --version option
prints out the version number of DeLaTeXify. All other arguments correspond to their GUI
equivalent.

3.3 Usage notes and limitations

This section provides a few usage guidelines for DeLaTeXify and summarizes its main
limitations.

3.3.1 LATEX log file or \usepackage commands

LATEX packages often depend on other packages and load them upon initialization. The
same is also true of some document classes. LATEX allows commands from classes and pack-
ages that are loaded indirectly by another one to be used even if they were not loaded
explicitly using the \documentclass and \usepackage commands. If the LATEX docu-
ment has been compiled, DeLaTeXify uses the log file produced by LATEX to identify those
classes and packages. However, if the LATEX log file is not available, DeLaTeXify only loads
rules for the document class specified using \documentclass and for packages loaded using
\usepackage.

For instance, the TikZ package loads the xcolor package, which provides colour-related
commands such as \definecolor. This allows \definecolor to be used in documents that
have \usepackage{tikz} even if \usepackage{xcolor} is not specified. If the LATEX log
file is available, DeLaTeXify realizes that xcolor is loaded when \usepackage{tikz} is
used and applies the rule for \definecolor even if \usepackage{xcolor} is not specified
in the document. However, if the LATEX log file is not available, the DeLaTeXify rule for
\definecolor is only applied if \usepackage{xcolor} appears explicitly in the document.
In order for DeLaTeXify to work properly, it is thus important to process the LATEX file
before running DeLaTeXify or to include an explicit \usepackage command for all packages
that provide commands used in the document.

8 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

usage: delatexify .py [-h] [-- outfile OUTFILE] [--gui] [-- version]
[-- nodefault] [-- nolocal] [--steps] [--trace]
[--times] [--re]
[INFILE .tex]

Convert LaTeX file to plain text in order to reduce the number of false
positives when checking grammar with Microsoft Word or other software .

positional arguments :
INFILE .tex input file

optional arguments :
-h, --help show this help message and exit
--outfile OUTFILE , -o OUTFILE

pattern for name of output file without extension , with
%r standing for root name of input file (name without
.tex extension); .txt extension added automatically ;
default : %r

--gui launch in GUI mode
--version print out version number and exit
--nodefault omit default rules , to help debug command - specific rules
--nolocal omit rules from local_delatexify .py
--steps print text to standard error after applying each rule , to

help debug interactions between them
--trace list patterns and rules to standard error as they are

run , to help identify the source of catastrophic
backtracking

--times save compilation and run times of regular expressions to
OUTFILE .csv

--re use standard re module even if third -party regex module
is available

Figure 3: CLI help message of DeLaTeXify (Version 3.0 beta 3).

3.3.2 Default rule confusion

As mentioned in footnote 2 on page 7 and in Section 4.3.1, DeLaTeXify provides default rules
to process environments, no-argument commands and one-argument commands for which
no explicit rule is specified. This helps reduce the number of explicit rules required. However,
the default rules can get confused when curly, round or square brackets follow a command
(even if the opening bracket is preceded by spaces), as the bracketed content is mistakenly
interpreted as an additional command argument. After \begin, it is removed with the rest
of the \begin command. After one-argument commands, it prevents the application of the
default rule. After no-argument commands, it leads to the erroneous application of the
default rule for one-argument commands. These problems can be mitigated in a number of
ways:

DRDC-RDDC-2021-D076 9

CAN UNCLASSIFIED

CAN UNCLASSIFIED

1. Creating an explicit rule for the affected command or environment;

2. Using an explicit space—either a tilde (~) or a backslash-space pair (\)—between
the last argument of the command and the following bracketed content; or

3. Wrapping the command in curly brackets.

Because of this issue and in order to reduce the amount of document customization required,
DeLaTeXify provides explicit rules for a number of common one-argument commands such
as \mbox, \emph and \textbf.

3.3.3 Stray parentheses with re module

When running the re module, certain combinations of LATEX commands lead to stray
parentheses being left in the document when there are more than two levels of curly
braces involved. More specifically, this happens when using a \footnote, \footnotetext
or \marginpar command in \newcommand, \renewcommand or \providecommand. This is-
sue does not arise with the regex module. The problem with the re module can be miti-
gated by placing the command definition between \makeatletter and \makeatother, as
DeLaTeXify discards all text between those two commands.

3.3.4 Percent signs in \verb commands

Percent signs (%) in \verb commands are not processed properly. They are interpreted as
starting a comment. A workaround is to replace \verb by the \lstinline command of the
listings package with the mathescape option set to true. With this option, LATEX commands
can be used between pairs of dollar signs in \lstinline and a command can be defined to
represent the percent sign.

3.3.5 Escaped curly brackets

DeLaTeXify makes no provision to process escaped curly brackets properly. They are inter-
preted as regular curly brackets and processed as such.

10 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

4 Replacement rules

As mentioned in the introduction, the text from LATEX documents is extracted through the
application of text replacement rules. The set of rules currently implemented in DeLaTeXify
covers LATEX commands used over the years by the author and users of the software. Addi-
tional rules can be defined as required. These rules can be stored in three possible locations:

1. Document: Rules for LATEX commands that are specific to a document should be
stored in the document itself, as described in this section;

2. local_delatexify.py: Rules for LATEX commands that a user defines locally but
uses in multiple documents may optionally be stored in a local_delatexify.py file (see
Annex A); and

3. delatexify.py: Rules for LATEX commands that come from standard LATEX packages
should be sent to the DeLaTeXify developer for inclusion into the main tool.

With a few exceptions, rules defined in a LATEX document are applied before those defined
in local_delatexify.py and delatexify.py and those in local_delatexify.py are applied before
those defined in delatexify.py. (More information about the order of rule application is
provided in Annex B.) This allows users to override rules provided with DeLaTeXify with
their own rules, if desired. It also lets them write rules in terms of those provided with
DeLaTeXify, which can help avoid reinventing or duplicating complex rules and ensure
consistency if standard DeLaTeXify rules are modified in future versions.3

The syntax of text replacement rules is described in Section 4.1, examples are provided in
Section 4.2 and the debugging features of DeLaTeXify are presented in Section 4.3. The
reader is assumed to have a basic knowledge of regular expressions.

4.1 Syntax

Replacement rules specified in LATEX documents are written in comments so not to interfere
with file compilation. Each rule is written as “% Rule(pattern, replacement, flags)”,
where % starts the comment (and must be the first character of the line), pattern is the
search pattern, replacement is the replacement specification and flags is an optional
set of flags that specify rule options. The pattern, replacement and flags arguments are
described in Sections 4.1.1 to 4.1.3. Each rule can be specified over multiple lines if required;
in that case, each continuation line must also start with %.
3 An example of this is provided in Figure C.1 at the beginning of Annex C. It shows how the rule for the
\eqref command is expressed in terms of the \ref command.

DRDC-RDDC-2021-D076 11

CAN UNCLASSIFIED

CAN UNCLASSIFIED

4.1.1 Search pattern

The search pattern is a regular expression. It uses the syntax defined in the documentation
for the Python re module [5].4 In addition, it also supports possessive quantifiers and atomic
groups from the Python regex module [4], as they can reduce the risk of catastrophic
backtracking.5 When the re module is used, they are automatically replaced with greedy
quantifiers and non-capturing groups, respectively.

DeLaTeXify defines a number of LATEX extensions to the usual regular expression syntax.
All of these extensions start with the percent character (%):

1. The %c, %r and %s strings in search patterns are replaced with regular expression
patterns that match arguments of LATEX commands:
(a) %c matches a pair of curly brackets with arbitrary content in between;
(b) %r is like %c, but for round brackets (parentheses); and
(c) %s is like %c, but for square brackets;

2. The %h, %n and %w strings in search patterns are replaced by regular expression pat-
terns that match optional white space:
(a) %h matches an arbitrary amount of horizontal white space (space or tab), includ-

ing none;
(b) %n is similar to %h, but may also include at most one newline character; and
(c) %w is similar to %n, but may include an arbitrary number of newline characters.

In the search pattern, arguments of LATEX commands can be marked as optional by putting
a question mark (?) after the corresponding %c, %r or %s.

The in-bracket content matched by %c, %r and %s is captured so that it can be referenced
in replacement specifications in the same way as the text captured by pairs of parentheses.
In other words, %c, %r and %s define capturing groups. These capturing groups are indexed
from 1:

1. The first %c, %r, %s or pair of parentheses defines capture group number 1;

2. The second %c, %r, %s or pair of parentheses defines capture group number 2;

3. . . .

The text matched by %h, %n and %w is not captured.
4 Regular expression syntax varies slightly from programming language to programming language.
5 Catastrophic backtracking happens when a regular expression does not match the text, but is written in
such a way that it takes an extremely long time for the search engine to determine that.

12 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

4.1.2 Replacement specification

For every part of the text that matches the search pattern, DeLaTeXify replaces the matched
text with the one specified by the replacement string.6 In the replacement string:

1. \1 refers to the first capture group of the search pattern (%c, %r, %s or pair of paren-
theses);

2. \2 refers to the second capture group;

3. . . .

Also, \n refers to a newline character.

4.1.3 Flags

The optional flags argument can be used to set the following two options:

1. ITERATIVE: The rule is applied iteratively until it no longer matches; and

2. DEFAULT: The rule is deactivated if DeLaTeXify is run with the nodefault option
specified.

The two options can be specified concurrently by setting flags to ITERATIVE|DEFAULT,
where | is the bitwise OR operator.

4.2 Examples

The examples provided in this section are extracted from delatexify.py, where they are not
prepended by the LATEX comment character (%). However, the % is included here to show
what the rules would look like if they were defined in a document.

4.2.1 Example 1: \label

% Rule(r'\\ label%c', '')
In this rule, the search pattern is r'\\label%c' and the replacement specification is ''.
It replaces all \label commands with an empty string—thus removing them from the text
entirely. The search pattern is prepended by r to indicate that it is a raw string; this
prevents Python from interpreting the backslashes as special characters. This is not needed
for the replacement specification, because it does not contain any backslash character. The
backslash is also a special character in regular expressions. In order to represent a single
backslash in LATEX, a double backslash must therefore be written in the regular expression.
That is why the search pattern starts with a double backslash.
6 For rules defined in LATEX documents, replacement specifications must be strings. For rules defined in a
local repository (local_delatexify.py), they can also be functions or classes. (See Annex A.)

DRDC-RDDC-2021-D076 13

CAN UNCLASSIFIED

CAN UNCLASSIFIED

4.2.2 Example 2: \ref

% Rule(r'\\ ref%c', 'X')
In this rule, the search pattern is r'\\ref%c' and the replacement specification is 'X'.
Since the replacement specification does not refer to any capture group, the replacement
text is constant. Each occurrence of the '\ref' command in the text is simply replaced
by the letter X, to represent the fact that its value is unknown. Since the actual reference
number has no impact on the grammar, there would be no benefit in determining it and
showing it in the text.

4.2.3 Example 3: sectioning commands

% Rule(r""" \\(?: part| chapter | section | subsection | subsubsection
% | paragraph | subparagraph)*?%s?%c""" ,
% r'\n\1\n\n\2\n')
In this rule, the search pattern is written as a multi-line string using triple quotes. Since
search patterns in DeLaTeXify are interpreted using the verbose option [5], the newline
character after the first line of the search pattern and the spaces at the beginning of its
second line are ignored. The vertical bar token | signifies alternation; it means that the
search pattern matches any of the sectioning commands, such as \part, \chapter and
\section. The alternation is encapsulated in a non-capturing group, denoted by (?:),
to indicate that the characters outside of the group are not part of the alternation. The
alternation group is followed by *? to indicate that the sectioning commands may be
followed by a star. This way, the search pattern matches both the regular and starred
versions of the sectioning commands. The optional star is followed by %s? and %c, which
respectively match the optional and mandatory arguments of the sectioning commands.

The replacement specification refers to both arguments. It replaces the sectioning command
by its two arguments separated by an empty line, the pair of which is preceded and followed
by newline characters. As long as the sectioning command is on a line of its own, this makes
each of the two title versions bracketed by empty lines—thus ensuring that Word sees each
of them as a single paragraph when checking grammar.

4.2.4 Example 4: footnotes

% Rule(r'(?s)\\ footnote (?: text)?%s?%c (.*?)\ n%h\n',
% r'\3 (\2)\n\n', ITERATIVE)
This iterative rule matches the \footnote and \footnotetext commands. The (?s) at the
beginning of the search pattern indicates that the period token . matches all characters in-
cluding newlines.7 The (?:text)? part of the search pattern indicates that text is optional,
which is what allows the search pattern to match both \footnote and \footnotetext.
Then, %s? and %c respectively match the optional and mandatory arguments of the com-
mands. Finally, (.*?)\n%h\n matches the rest of the paragraph after the end of the footnote
7 Without (?s), the period token . would match all characters except newlines.

14 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

up to the next empty line and assigns it to the third capturing group, denoted by the pair
of parentheses.

The replacement specification puts the footnote text in parentheses at the end of the para-
graph. It also drops the optional argument and replaces the empty line matched by the
search pattern. When a paragraph has more than one footnote, applying the rule once
moves the first footnote to the end of the paragraph, but leaves the other ones intact. The
ITERATIVE option added to the rule makes DeLaTeXify apply it until it no longer matches.
This way, all footnotes are individually moved to the end of their corresponding paragraph
in order of appearance.

4.2.5 Example 5: \subcaption

% Rule(r'\\ subcaption %s?%c', r'\\ caption [\1]{\2} ')
In this rule, the \subcaption command from the subcaption package is replaced by the
core \caption command. DeLaTeXify then applies the rule for the caption command.
This works because rules for core LATEX commands are applied after rules for packages (see
Annex B). The main advantage of this approach is that it ensures formatting consistency
between the two commands (\caption and \subcaption). If the rule for \caption is ever
modified, the one for \subcaption will be benefit from the modification automatically.
Another option would be to modify the rule for \caption so it applies to both commands.
However, \subcaption is provided by a package, and it is cleaner to load the applicable rule
only when needed in case another package provided a syntactically incompatible version of
the \subcaption command.

4.3 Debugging options

As mentioned in Section 3.1.2, DeLaTeXify provides a number of options to help debug
rules when they do not produce the anticipated result. They are described in more detail
in this section. Annex C provides additional debugging information for advanced users.

4.3.1 nodefault option

DeLaTeXify has four default rules that are applied to commands left after applying the
command-specific rules:

1. Remove argument-less commands;

2. Remove \begin commands;

3. Remove \end commands; and

4. Replace one-argument commands, except \begin and \end, with the content of their
argument.

DRDC-RDDC-2021-D076 15

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Sometimes, default rules can mask errors in other rules. The nodefault option deactivates
default rules in order to allow the user to see more clearly how well the command-specific
rules work.

4.3.2 nolocal option

DeLaTeXify allows the user to create a repository of local rules in a local_delatexify.py file
(see Annex A). The nolocal option deactivates these rules, to help diagnose if a problem is
caused by local rules.

4.3.3 steps option

Sometimes, problems with the text conversion arise because of interactions between multiple
rules rather than any single one. In those cases, it is useful to see how each rule changes the
text in order to analyze those interactions. When the steps option is specified, DeLaTeXify
outputs the text in its current state to the debugging log after every change along with the
rule that produced the change—thus allowing the user to step through the text conversion.
In order to simplify the analysis of the output produced by this option, it is better to use
it with short text excerpts rather than long documents.

An example of the output produced by this option is shown in Figure 4. The original LATEX
document is listed at the top of the output, in lines 1 to 4 in this case. The following lines
describe each rule that matched the document with the incremental output. For instance,
lines 5 to 12 correspond to the first rule:

• Line 5: separator between the original document and the first matching rule;

• Line 6: file, line and function where the rule is defined, followed by the rule definition;

• Line 7: number of times that the rule matched the document;

• Line 8: separator between the description of the rule and the output resulting from
its application; and

• Lines 9 to 12: state of text after the rule is applied.

In this case, four rules matched the document:

• The first rule (line 6) removed the \documentclass command;

• The second and third rules (lines 14 and 21) were default rules that removed all
remaining \begin and \end commands (there was only one of each); and

• The fourth rule (line 27) removed the remaining empty line at the beginning of the
document.

16 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

C
A

N
U

N
C

LA
S

S
IFIE

D

1 \ documentclass { article }
2 \ begin { document }
3 Hello world !
4 \end{ document }
5 ==
6 delatexify .py , line 2203 , rules_core : Rule(r '\\ documentclass %s?%c', '')
7 Matches : 1
8 --
9

10 \ begin { document }
11 Hello world !
12 \end{ document }
13 ==
14 delatexify .py , line 2317 , rules_cleanup : Rule(r '\\ begin%c(?:%c|%r|%s)*+%n', '', DEFAULT)
15 Matches : 1
16 --
17
18 Hello world !
19 \end{ document }
20 ==
21 delatexify .py , line 2318 , rules_cleanup : Rule(r '\\ end%c%n', '', DEFAULT)
22 Matches : 1
23 --
24
25 Hello world !
26 ==
27 delatexify .py , line 2330 , rules_cleanup : Rule(r '\A\n++', '')
28 Matches : 1
29 --
30 Hello world !

Figure 4: Sample output from the steps option.

D
R

D
C

-R
D

D
C

-2021-D
076

17

C
A

N
U

N
C

LA
S

S
IFIE

D

CAN UNCLASSIFIED

4.3.4 trace option

When the trace option is selected, DeLaTeXify prints each search pattern and replacement
rule to the debugging log before running it. This allows the identification of the culprit
when a search pattern or replacement rule faces catastrophic backtracking. Lines of the
trace log are similar to lines 6, 14, 21 and 27 of Figure 4. (Search patterns appear as
Pattern(pattern), where pattern is a regular expression that uses the syntax described
in Section 4.1.1.) However, a trace line is produced each time that a search pattern or
replacement rule is applied, even if it does not match. For the example shown in Figure 4,
the trace contains 1252 lines.

4.3.5 times option

When the times option is selected, DeLaTeXify saves the compilation and run times for
the search patterns and replacement rules to a CSV file. This allows the user to see which
rules are being applied and to assess their run time efficiency. The CSV file contains the
following columns:

1. File: name of file where rule is defined (delatexify.py, local_delatexify.py or the LATEX
document);

2. Line: number of line where rule is defined;

3. Scope: name of function or class where rule is defined (empty for rules defined in
LATEX document);

4. Compilation Time: compilation time in seconds;

5. Run Time: total run time in seconds, summed over all runs;

6. Run Count: number of times that search pattern or replacement rule was run;

7. Matches: number of times that search pattern or replacement rule matched the text,
summed over all runs; and

8. Object: definition of search pattern or replacement rule.

On Windows, the compilation and run times correspond to clock time; on Linux, they
correspond to Central Processing Unit (CPU) time.

4.3.6 re option

By default, DeLaTeXify uses the regex module whenever available because it leads to a
faster execution. The re option forces it to use the re module, for testing purposes.

18 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

5 Conclusion

DeLaTeXify converts LATEX documents to plain text, so that their grammar can be verified
using tools such as Microsoft Word. It is based on text replacement rules defined using
regular expressions. Rules are provided for many LATEX commands already, but additional
rules can be defined by users on a per-document basis for commands that are defined
locally or are not yet supported by DeLaTeXify. Such rules can also be used to override
those provided with DeLaTeXify in order to customize the output. While not mandatory,
users can create local rule repositories for custom commands used in multiple documents.
If users create rules for additional commands from the standard LATEX classes or packages
or the standard BIBTEX styles, they should forward them to the DeLaTeXify developer
for inclusion into the base product, so that others can benefit from them. DeLaTeXify is
expected to support an increasing number of LATEX commands and packages as its user
base develops.

DRDC-RDDC-2021-D076 19

CAN UNCLASSIFIED

CAN UNCLASSIFIED

References

[1] TeX4ht (online), TeX Users Group, http://tug.org/tex4ht/ (Access Date: January
2020).

[2] Pandoc: a universal document converter (online), John MacFarlane,
https://pandoc.org/ (Access Date: January 2020).

[3] Regular-Expressions.info (online), Jan Goyvaerts,
https://www.regular-expressions.info/ (Access Date: January 2020).

[4] regex: alternative regular expression module, to replace re (online), Matthew Barnett,
https://pypi.org/project/regex/ (Access Date: January 2020).

[5] re – Regular expression operations (online), Python Software Foundation,
https://docs.python.org/3/library/re.html (Access Date: January 2020).

[6] tkinter – Python interface to Tcl/Tk (online), Python Software Foundation,
https://docs.python.org/3/library/tkinter.html (Access Date: January 2020).

20 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

http://tug.org/tex4ht/
https://pandoc.org/
https://www.regular-expressions.info/
https://pypi.org/project/regex/
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/tkinter.html

CAN UNCLASSIFIED

Annex A Local rules

It is generally sufficient to keep custom replacement rules in the LATEX document itself.
However, if a user would like to use the same custom replacement rules for multiple docu-
ments, they can be placed in a local rules file named local_delatexify.py rather than in the
documents. This file should be placed in the same directory as delatexify.py. Figure A.1
provides a fictitious example of such a file.

1 import delatexify
2 from delatexify import Rule , RuleList
3
4 def rules_class_drdc_report ():
5 return Rule(r'\\ projectnumber %1 ', '')
6
7 def rules_package_foobar ():
8 return RuleList ([
9 Rule(r'\\ foo%c%c', r'\1 '),

10 Rule(r'\\ bar%c%c', r'\2 ')
11])
12
13 def rules_style_drdc_custom ():
14 return delatexify . rules_style_drdc ()

Figure A.1: Fictitious local_delatexify.py file.

The first line of local_delatexify.py imports delatexify.py, and the second line provides
shortcuts for the Rule and RuleList classes. These shortcuts allow rules to be written
exactly the same in the two files and to simplify the cutting-and-pasting of rules between
them. As discussed in Section 4, the Rule class is used to define conversion rules.8 The
RuleList class is used to group these rules into lists. RuleList objects have the same
interface as Python lists and as Rule objects. They are defined as RuleList(rules, flag),
where rules is a list of rules and where flag is an optional ITERATIVE flag as described in
Section 4.1.3.9 When the ITERATIVE flag is specified, the list of rules is repeated until none
of them match.

The rest of local_delatexify.py is composed of functions that return either individual rules
or lists of rules. The names of these functions all start with rules_. There are three main
categories of such functions:

1. rules_class_X: Return rules for documents of class X;

2. rules_package_X: Return rules for commands of package X; and
8 In delatexify.py and local_delatexify.py, rule specifications are not preceded by the LATEX comment char-
acter (%).
9 The DEFAULT flag does not apply to rule lists.

DRDC-RDDC-2021-D076 21

CAN UNCLASSIFIED

CAN UNCLASSIFIED

3. rules_style_X: Return rules for BIBTEX style X.10

When class, package or style names contain hyphens or periods, they must be replaced with
underscores in the function names. For instance, in Figure A.1, rules_class_drdc_report
returns rules for the drdc-report document class, rules_package_foobar returns rules for
the fictitious foobar package and rules_style_drdc_custom returns rules for a custom
version of the Defence Research and Development Canada (DRDC) BIBTEX style called
drdc-custom.

In addition to these three categories of rules_ function, local_delatexify.py can also contain
the following functions:

1. rules_setup: Return rules that are executed before those defined in the LATEX doc-
ument (Step 1 in Annex B);

2. rules_core: Return rules for core LATEX commands (Step 2e in Annex B);

3. rules_cleanup_braces: Return default rules for LATEX commands for which no ex-
plicit rules were found and to remove braces that are not part of commands (Step 3
in Annex B); and

4. rules_cleanup: Return rules to process remaining LATEX environments, symbols,
punctuation marks and spaces (Step 4 in Annex B).

Rules in delatexify.py are defined using the same function names as in local_delatexify.py. If
a rules_ function is present in both files, the rules returned by the function in delatexify.py
are applied immediately after those returned by the one in local_delatexify.py.

The functions shown in Figure A.1 illustrate three different ways in which a local rule file
can customize the rule set:

1. Replace an existing rule: The rule returned by the rules_class_drdc_report
function in local_delatexify.py is executed before those returned by the function of the
same name in delatexify.py, which means that the standard rule for \projectnumber
is effectively overshadowed by the local one;

2. Define rules for additional commands: The rules_package_foobar defines rules
for two commands of the fictitious foobar package; and

3. Indicate that a rule list defined for one class, package or style should be
used for another: By returning the rule list defined in delatexify.py for the standard
DRDC BIBTEX style, rules_style_drdc_custom specifies that these rules should also
be used for the locally defined drdc-custom style.

10 Some BIBTEX styles insert LATEX commands into the bibliography.

22 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

For rules defined in LATEX documents, the replacement text is always specified using a
string. There is however more flexibility for rules defined in local_delatexify.py. Indeed,
both in delatexify.py and local_delatexify.py, the replacement can be specified using any of
the three following means:

1. String: As discussed in Section 4.1.2;

2. Function: See documentation of re.sub function [5]; or

3. Class of function object: Similar to using a function, but the replacement text can
vary based on the matching order.11

11 Such a function object is used for instance by the rules that replace %c, %r and %s with search patterns
for command arguments. (See Annex C.)

DRDC-RDDC-2021-D076 23

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Annex B Order of rule application

DeLaTeXify applies rules in the following order:

1. Setup rules:
(a) Insert external files imported using \include, \input and \bibliography com-

mands;
(b) Remove comments;
(c) Remove lines between \makeatletter and \makeatother; and
(d) Convert symbols, punctuation marks, tabs and accented letters;

2. Main rules:
(a) Rules defined in the LATEX document;
(b) Rules specific to the document class;
(c) Rules specific to each package, in the order in which the packages are loaded into

the LATEX document;
(d) Rules specific to the bibliographic style; and
(e) Rules for core LATEX commands (aside from those processed by the setup and

cleanup rules);

3. Brace-cleanup rules:
(a) Replace one-argument commands with the content of their argument; and
(b) Remove curly brackets that are not part of a command; and

4. Final cleanup rules:
(a) Remove remaining \begin, \end and argument-less commands;
(b) Rules for explicit spaces, such as ~; and
(c) Wrap lines and remove all superfluous spaces left after the text conversion.

At each step, rules defined in local_delatexify.py—if present—are executed before those
provided by delatexify.py. (See Annex A for more information.)

When using the regex module, DeLaTeXify only needs to apply each rule once. It can do so
because, by using recursive patterns [4], it can identify command arguments irrespective of
the number of balanced bracket levels in each of them.12 However, the re module does not
support recursive patterns. Correspondingly, the search patterns for command arguments
when using that module are limited in the number of balanced bracket levels that are allowed
12 For each argument, unbalanced brackets of the type surrounding the argument are forbidden. For instance,
a curly-bracket argument can contain unbalanced parentheses and square brackets, but not unbalanced curly
brackets.

24 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

in arguments: they only allow one level in addition to the one surrounding the argument.13

If more than one level of brackets is present in an argument, the pattern does not match
and the rule is not applied. For this reason, when multiple levels of LATEX commands are
nested, DeLaTeXify must process the commands from the inside out and needs to apply
the rules multiple times in order to process all of them. It does so by looping over the rules
multiple times until they no longer match. More precisely, it loops over the rules in the
following manner:

• Step 1 (setup rules) is executed once;

• Step 2 (main rules) is executed repeatedly until none of its rules matches the text;

• If any of the brace cleanup rules in step 3 matches the text, the algorithm goes back
to step 2; and

• Step 4 (final cleanup rules) is executed once.

13 For each argument, the number of bracket levels is limited only for the type of brackets surrounding the
argument. For instance, a curly-bracket argument can contain an unlimited number of levels of parentheses
or square brackets, but only one level of curly brackets when using the re module. With the regex module,
the number of bracket levels allowed is practically unlimited.

DRDC-RDDC-2021-D076 25

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Annex C Syntax errors

When creating new rules, syntax errors may at times be encountered in search patterns and
replacement specifications. When this happens, DeLaTeXify writes an error message to the
debugging log detailing the problem. To illustrate this mechanism, let us consider a short
(and incomplete) LATEX file called example.tex listed in Figure C.1. The first line is a copy
of the rule provided in DeLaTeXify for the \eqref command of the amsmath package. It
does the same thing as the core \ref command, but in parentheses in order to mimic the
actual behaviour of \eqref. When this rule is applied to the second line, it yields (X).

1 % Rule(r '\\ eqref%c', r '(\\ ref {\1}) ')
2 \eqref{eq}

Figure C.1: Baseline file to illustrate syntax errors.

If the replacement rule referenced the non-existing capturing group 2 in the replacement
specification, the regular expression engine would raise an invalid capturing group error.
DeLaTeXify would report the location of the rule that generated the error and the error
message from the regular expression engine, as shown in the first line of Figure C.2.14 The
second line of the report contains the faulty rule definition.

1 regex error (example .tex , line 1,): invalid group reference
2 Rule(r '\\ eqref%c', r '(\\ ref {\2}) ')

Figure C.2: Syntax error if an invalid capturing group is referenced.

If instead of an invalid reference in the replacement specification, the search pattern had a
stray closing parenthesis between eq and ref, the regular expression engine would raise an
unbalanced parenthesis error and DeLaTeXify would produce the error report in Figure C.3.
The first line is similar to the first error situation, but this time the engine indicates the
position in the regular expression where the error was detected. In this case, the unbalanced
parenthesis is at character 18 (indexed from zero). The second line of the error message
contains the regular expression up to the error point. The third line highlights the position
of the error by a vertical line preceded by hyphens. The part of the regular expression that
comes after the error point is written in lines 4 to 24. (The comments and indentation in
the regular expression are only used to help users understand the search pattern. They are
ignored by the regular expression engine, because DeLaTeXify uses the verbose option.)

The search pattern displayed by DeLaTeXify in Figure C.3 is a lot more complex than the
one shown in Figures C.1 and C.2. The reason is that Figures C.1 and C.2 show the search
14 If the rule were defined in delatexify.py or local_delatexify.py, the name of the class or function where
the definition is located would be listed after the line number.

26 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

C
A

N
U

N
C

LA
S

S
IFIE

D

1 regex error (example .tex , line 1,): unbalanced parenthesis at position 18 (line 1, column 19)
2 (? <!(? <!\\) \\) \\ eq
3 ------------------|
4)ref
5 # CURLY - BRACKET ARGUMENT
6 (?: # Non -capt group for quantifiers
7 [\ \t]*\n?[\ \t]* # Drop white space (one \n max)
8 { # Opening bracket
9 (?= # Lookahead to ensure atomicity

10 (?P<c1 > # Start capturing group
11 (?: # Non -capt. group for alternative :
12 [^{}]+ # Non - brackets
13 | # Or
14 (?: # Balanced brackets
15 { # Opening bracket
16 [^{}]* # No bracket
17 } # Closing bracket
18) #
19)* # Capture as much as possible
20) # Stop capturing group
21) #
22 (?P=c1) # Consume text matched by lookahead
23 } # Closing bracket
24) # End non -capt group

Figure C.3: Syntax error if unbalanced parentheses are present.

D
R

D
C

-R
D

D
C

-2021-D
076

27

C
A

N
U

N
C

LA
S

S
IFIE

D

CAN UNCLASSIFIED

pattern as defined in DeLaTeXify or by the user, whereas Figure C.3 shows it as seen by
the regular expression engine. As mentioned in Section 4.1.1, DeLaTeXify replaces the %c
appearing in the search pattern of the \eqref rule by a regular expression that matches a
LATEX argument in curly brackets—as show in lines 5 to 24 of Figure C.3. The version shown
here is for the re module; the one for the regex module is slightly different. DeLaTeXify
also prepends the search pattern with (?<!(?<!\\)\\), to ensure that it matches \eqref
and \\\eqref, but not \\eqref.15 While not applicable here, when a search pattern ends
with an argument-less LATEX command, DeLaTeXify appends a regular expression that
swallows non-newline white space after the command and ensures that the pattern does not
match the beginning of longer commands—for instance, to prevent a pattern for \abc from
matching \abcd.

15 In LATEX, \\eqref stands for a newline character followed by eqref rather than the \eqref command.
While eqref is not likely to appear on its own in typical LATEX documents, this could be an issue with
commands that have more common names such \and.

28 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Abbreviations, acronyms and initialisms

CLI Command-Line Interface

CPU Central Processing Unit

CSV Comma-Separated Values

DRDC Defence Research and Development Canada

GUI Graphical User Interface

DRDC-RDDC-2021-D076 29

CAN UNCLASSIFIED

CAN UNCLASSIFIED

This page intentionally left blank.

30 DRDC-RDDC-2021-D076

CAN UNCLASSIFIED

CAN UNCLASSIFIED

DOCUMENT CONTROL DATA
*Security markings for the title, abstract and keywords must be entered when the document is sensitive.

1. 2a. SECURITY MARKING (Overall security marking of
the document, including supplemental markings if
applicable.)

CAN UNCLASSIFIED

2b. CONTROLLED GOODS

NON-CONTROLLED GOODS
DMC A

TITLE (The document title and subtitle as indicated on the title page.)3.

DeLaTeXify: Grammar-Checking Enabler for LATEX: User Manual

AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used. Use semi-colon as delimiter.)4.

Guillouzic, S.

DATE OF PUBLICATION (Month and year of publication of5.
document.)

October 2021

NO. OF PAGES (Total6a.
pages, including Annexes,
excluding DCD, covering
and verso pages.)

35

6b. NO. OF REFS (Total
cited in document.)

6

DOCUMENT CATEGORY (e.g., Scientific Report, Contract Report, Scientific Letter)7.

Reference Document

8.

9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant number under
which the document was written. Please specify whether
project or grant.)

99 – CG&S – Other

CONTRACT NO. (If appropriate, the applicable contract9b.
number under which the document was written.)

10a. DRDC PUBLICATION NUMBER

DRDC-RDDC-2021-D076
10b. OTHER DOCUMENT NO(s). (Any other numbers which may

be assigned to this document either by the originator or by
the sponsor.)

11a. FUTURE DISTRIBUTION WITHIN CANADA (Approval for further dissemination of the document. Security classification must also
be considered.)

Public release

11b. FUTURE DISTRIBUTION OUTSIDE CANADA (Approval for further dissemination of the document. Security classification must also
be considered.)

Public release

CAN UNCLASSIFIED

SPONSORING CENTRE (The name and address of the department project or laboratory sponsoring the research and
development.)

DRDC – Centre for Operational Research and Analysis
NDHQ Carling, 60 Moodie Drive, Building 7S.2, Ottawa ON K1A 0K2, Canada

ORIGINATOR (The name and address of the organization preparing
the document. A DRDC Centre sponsoring a contractor’s report, or a
tasking agency, is entered in Section 8.)

DRDC – Centre for Operational Research and
Analysis
NDHQ Carling, 60 Moodie Drive, Building 7S.2,
Ottawa ON K1A 0K2, Canada

CAN UNCLASSIFIED

12. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Use semi-colon as a delimiter.)

LaTeX; grammar; user manual; regular expression; Python

13. ABSTRACT/RÉSUMÉ (When available in the document, the French version of the abstract must be included here.)

DeLaTeXify is a Python-based software that converts LATEX documents to plain text, so that their
grammar can be verified using tools such as Microsoft Word. It is based on text replacement rules
defined using regular expressions. Users can define additional rules to process commands that
are not yet supported by DeLaTeXify or are defined locally. They can also override the rules pro-
vided with DeLaTeXify if desired. The user manual provides installation and usage instructions,
as well as information about how to define and debug new text replacement rules.

DeLaTeXify est un logiciel programmé en langage Python qui convertit les documents LATEX en
texte brut, de façon à ce que l’on puisse vérifier la grammaire avec des outils comme Microsoft
Word. Il est fondé sur des règles de remplacement de texte définies à l’aide d’expressions régu-
lières. Les utilisateurs peuvent définir des règles additionnelles pour traiter les commandes qui
ne sont pas encore prises en charge par DeLaTeXify ou qui sont définies localement. Ils peuvent
aussi remplacer les règles fournies avec DeLaTeXify au besoin. Le manuel de l’utilisateur
contient les instructions d’installation et d’utilisation, ainsi que de l’information sur la façon de
définir et de déboguer de nouvelles règles de remplacement de texte.

CAN UNCLASSIFIED

	Title page
	Abstract
	Résumé
	Table of contents
	List of figures
	Acknowledgements
	1 Introduction
	2 Installation
	2.1 Software requirements
	2.2 Installation files
	2.3 Microsoft Windows
	2.4 Linux

	3 Usage
	3.1 Graphical User Interface (GUI)
	3.1.1 File names
	3.1.2 Debugging options
	3.1.3 Debugging log

	3.2 Command-Line Interface (CLI)
	3.3 Usage notes and limitations
	3.3.1 LaTeX log file or \usepackage commands
	3.3.2 Default rule confusion
	3.3.3 Stray parentheses with re module
	3.3.4 Percent signs in \verb commands
	3.3.5 Escaped curly brackets

	4 Replacement rules
	4.1 Syntax
	4.1.1 Search pattern
	4.1.2 Replacement specification
	4.1.3 Flags

	4.2 Examples
	4.2.1 Example 1: \label
	4.2.2 Example 2: \ref
	4.2.3 Example 3: sectioning commands
	4.2.4 Example 4: footnotes
	4.2.5 Example 5: \subcaption

	4.3 Debugging options
	4.3.1 nodefault option
	4.3.2 nolocal option
	4.3.3 steps option
	4.3.4 trace option
	4.3.5 times option
	4.3.6 re option

	5 Conclusion
	References
	Annex A Local rules
	Annex B Order of rule application
	Annex C Syntax errors
	Abbreviations, acronyms and initialisms
	Document control data

