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Abstract

It is shown that unsupervised learning in a recurrent neural network (RNN) can lead to
explicit associative memory. Using two separate sensor arrays during training, the RNN
stores the information necessary to reproduce both images when presented with a single
sensor image after training. This is a system that is capable of learning to make
connections between different forms of sensory data. Memory is encoded in the
strengths of the connections between the nodes of the RNN. Only patterns that have
been seen during training generate strong recognition signals. Other patterns generate
signals indicating that they can not be identified.

The storage capacity of the RNN depends on the number of nodes and the number of
their input connections. It is shown that the RNN memory capacity does not decrease
abruptly with increasing number of training patterns. In fact, the reproduction precision
decays gradually. For a given RNN size, the memory simply becomes less clear as
more storage is attempted. If unacceptable indications of recognition and identification
are obtained, it is only necessary to increase the number of nodes.

Since the RNN uses a structure and learning rules that have previously been shown to
result in autonomous goal-driven motion in a simulated mobile machine, it may now be
possible to generate adaptive control for an autonomous vehicle by relating the input
from different sensor arrays with the actions taken by the machine in response to its
sensors. This may lead to a mobile machine that can learn and improve its actions with
experience.
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Executive summary

Development of autonomous intelligent systems has been 1dentified as an area of high
priority within DRDC, and autonomous land vehicle R&D will continue to be
performed at DRES.

Part of the DRES R&D has focussed on recurrent neural networks (RNNs) because
they appear to have the potential to generate some of the characteristics believed to be
required for the creation of intelligent behaviour in a machine. Memory of sensor
information, and the formation of relationships between patterns from different types of
sensors is one such characteristic. The ability to use sensor input to drive action is
another. Useful intelligence is expected to emerge when memory and association of
previously seen patterns can influence the machine action in such a way as to
demonstrably improve the achievement of goals. In an autonomous system, goals must
be internally generated by the structure of the machine itself. The structure and learning
mechanisms of an RNN are based on biological neural systems. An RNN is a collection
of artificial neurons {(nodes) with multiple feedback connections. Previous work has
shown that RNNs can be used to store and classify images using a form of explicit
memory, and can control the motion of a simulated mobile machine equipped with
sensors that respond to a radiating target.

In explicit memory, close reproductions of the patterns used in training are generated.
To achieve this, feedback learning in a memory region of the RNN is employed. When
an image that has been previously used in training is presented to the RNN through
sensor nodes, it stimulates reproduction of the image in an output array coupled to the
RNN memory region, and at the same time generates a signal indicating recognition. If
an image that has not been seen before is presented, no reproduction is generated and
the recognition signal is weak.

In previous work, only one sensor array was coupled to a memory storage region, and
there was no internal method for associating patterns from different sensor arrays.
Identification of a pattern was performed externally, by a comparison of recognized
images with stored patterns. The present RNN structure, however, now contains
separate memory regions for different sensor inputs, and this leads to self-organized
associative memory and direct, internally generated identification of known patterns.

The storage capacity of the RNN depends on the number of nodes and the number of
their input connections. The present work shows that the RNN memory capacity does
not decrease abruptly with increasing number of training patterns. In fact, the
reproduction precision decays gradually. For a given RNN size, the memory simply
becomes less clear as more storage is attempted. If unacceptable indications of
recognition and identification are obtained, it is only necessary to increase the number
of nodes.

By the repetition of image pairs during training, this system stores both images and
regenerates both even when only one of the pairs is presented after training. It is thus
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able to name patterns that it has repeatedly seen previously. Future work will now
attempt to link automatic associative memory with goal-driven motion control to create
a simulation of an adaptive, autonomous machine that can learn to improve 1ts
performance in obstacle avoidance and navigation. This 1s a requirement for an
autonomous vehicle operating in an unknown and dynamically changing environment.

This work was performed under a Technology Investment Fund project, entitled,
“Self-Organized, Goal-Driven Adaptive Leamning”.

Simon A. Barton. 2001. Associative Memory in a Recurrent Neural Network.
DRES TM 2001-053. Defence Research Establishment Suffield.
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Introduction

A recurrent neural network (RNN) is a set of connected processing units, called nodes.
Unlike the nodes in a feed-forward network, which are arranged in layers and are only
connected to nodes in the next layer, a node in an RNN can be connected to any number
of other nodes anywhere in the network. External signals may be supplied by one or
more sensor arrays connected directly to nodes in specified input regions of the RNN.
This is a dynamic system with ubiquitous internal feedback, so that even with a fixed
input pattern, the node outputs may take many cycles before stabilizing, or they may
become periodic or chaotic depending on the network parameters. As an RNN
operates, the connection strengths can be made to vary with the signal strengths, and
this can lead to properties that may be useful in the development of an intelligent
machine. The ways in which the connections vary are called the learning rules.
Previously [1], we have established conditions under which an RNN will operate in the
stable regime; i.e. with a fixed input pattern the RNN rapidly moves to a state where all
the nodes give constant outputs.

It is well known that fully connected networks are capable of self-organized image
storage and classification [2]-[6], and we have shown that our form of RNN is capable
of memory,re cognition and identification of patterns in images [7],[8]. Our RNN
structure and learning rules also lead to goal-driven behaviour in a simulated mobile
machine [9],[10]. In the latter work, a mobile machine with light sensors was able to
move automatically to a stationary radiating energy source. In recent, unpublished
work we have found that an RNN-controlled machine is strongly attracted to a moving
source, and will continue to closely follow the source for thousands of network cycles.
The attractive behaviour was found to be most effective if the RNN 1s composed of
neurons that are either excitatory or inhibitory; i.e. a neuron either emits a positive
signal to all neurons connected to it, or it emits a negative signal. In this case the
connection weights are all positive but each neuron has an associated sign. The initial
work had used neurons that could be both excitatory and inhibitory; i.e. the neuron
outputs were all positive, but the connection weights were positive or negative,

In our last reports on pattern recognition [7],[8], identification was achieved by
comparing stored images with the image in an output array generated by the RNN
when a test image was presented to the RNN in the sensor array. The “closest” image in
the stored set was taken to be an identification. This required a pixel by pixel
comparison with all the images in the stored set, so for large images and sets this would
be very time consuming. The only perceived advantage of using an RNN over a
standard statistical classifier in that case was that the correlation between input pattern
and RNN output could be used as a measure of recognition, before attempting a
classification. If the image had already been seen and remembered by the RNN, the
correlation was high. If it was previously unseen, the correlation was low. The
correlation factor could also be used as a measure of identification confidence.
However, in that work we also suggested that when a known image is presented to an
RNN, it should be possible for the RNN to generate both the remembered image and a
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code vector identifying or classifying it. In this case, the classification would be read
directly, with a confidence level given by the image correlation.

The process of automatically remembering patterns and their identifications is a form of
associative memory. The aim of the work presented in this memorandum is to confirm
that associative memory of two separate sensor image streams is indeed possible with
our RNNs.

This associative memory process is explicit, self-organizing and adaptive. By explicit,
we mean that the images are stored 1n such a way that the original images may be
regenerated pixel by pixel. They are not regenerated in an abstract representation or as
extracted features.

This RNN system can learn to name objects or patterns by repeatedly being told what
they are; i.e. the name is the associated pattern. In a mobile machine, it could retain
sensor patterns and the future sensor state resulting from actions taken. It could also
associate sensor patterns with actions that lead to “improved” future sensory states, if
an internal mechanism exists for qualifying the concept of improvement.

The long-term aim is to link goal-driven behaviour with the memory and association of
multi-sensor input to develop adaptive, self-organized learning that improves the
control (navigation and obstacle avoidance) of a mobile machine,

The work is part of a Technology Investment Fund (TIF) project (under 2fm01) with

the long term goal of demonstrating self-organized, goal-driven adaptive learning in a
simulated mobile vehicle with multiple sensors. This is a requirement for an adaptive,
autonomous vehicle operating in an unknown and dynamically changing environment.

The details of the RNN structure and learning rules are given in Chapter 2. Chapter 3
presents results demonstrating associative memory, and Chapter 4 gives a discussion
and conclusions.
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Figure 1: ANN with associative memory

Structure and Learning Rules

DRES TM 2001-053

RNN structures and properties have been described previously (1], [7]. The principal
addition to the previous RNN structures is that there are now two memory regions that
store and regenerate patterns from two independent sensor arrays. We call these the
1mage sensor array (S;) and its associated code (S¢).

In Figure 1, an associative RNN is shown with a 4x6 image array on the left. The image
array is connected to the central region of 150 recurrently connected nodes (R nodes).
This input region is shown as 50 yellow R nodes. Each pixel in the image has a fixed
number of connections to R nodes in the input region, chosen randomly, but with the
constraint that no two image pixels have the same set of output connections. The code
sensor array S¢ is shown as a 4x1 array. It provides no direct input to the RNN. Output
arrays are shown on the right, connected to blue upper and lower R node regions;
memory node arrays M; and M provide output generation of S; and S¢ respectively.

Figure 1 indicates that 1t 1s only input from S; that generates responses in the memory
regions M; and M, and that during training there 1s feedback from the differences
between corresponding pixels in the image and code arrays. This feedback adjusts the
connection weights to R nodes in the memory regions so that the differences are
reduced. The details are given later in this section.

Each connection between two R nodes has a weight that modifies the signal transferred
between the nodes by a multiplicative factor. Each R node has the same number of




2.1

input connections. established randomly after the input connections from the sensor
nodes (S nodes) have been chosen. An R node can be connected to any other R node in
the RNN, but self-connection is not permitted. To ensure that there are no isolated
groups of nodes. each R node supplies input to the next one in the array.

The M; and M¢ nodes (M nodes 1n general) have input connections that are chosen
randomly from R nodes in the memory regions, but with the requirement that each M
node has an equal number of inputs from excitatory and inhibitory R nodes.

The connection sets for all nodes are unique. No S node can have more than one output
to any R node, and no two S nodes can have the same set of outputs. No M node can
have more than one input from any R node, and no two M nodes can have the same set
of inputs. No R node can have more than one input from any other node.

The weights are all positive in this RNN, and each R node has a fixed output sign. The
nodes in the RNN are thus either excitatory or inhibitory. Signs are chosen randomly,
but with a user supplied weighting: e.g. one may request the fraction of positive R nodes
to be 0.5, or one may generate an RNN that is predominantly excitatory or inhibitory.

The weights for connections from S nodes to R nodes, and from R nodes to M nodes
are kept constant, because these connections simply transfer information. Any learning
occurs within the R nodes. The magnitudes of the R node connection weights are
initially random, between the limits supplied by the user; e.g. 0.1 t0 0.9. The Sto R
node weights are all initially set to a user specified constant (default 1.0), as are the R to
M node weights.

The R node offsets are all initialized randomly between user defined limits; e.g. -1 to 1.
The M node offsets are set to zero.

Output signals for the R nodes are initialized randomly between 0.0 and 1.0.

Recurrent Node Responses

During operation of the RNN, a set of image/code pairs are input through the sensor
arrays. Each pair of patterns 1s held in the sensor arrays for a number of RNN cycles,
set by the user. We call this the exposure time. During training, the weights and offsets
of the R nodes are adjusted at each cycle, according to the Iearning rules given below

The nodes respond by passing a weighted sum of the incoming signals through a
sigmotd function. The responses are calculated at each cycle of the RNN. The weighted
input (x,) to the nth node at cycle ¢ is:

e
(1) =Y Wil fi!
i
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2.2

where 7, is the number of input connections, and the subscript jg ives an index for the
node providing input on the ith connection, with weight W~ I, The input connection
indices are stored 1n a matrix C,thu s j = C,;. The output of the node on the jth
connection is j;"l, and o, is its sign.

The sigmoid function has an exponent s,con trolling the steepness of the function, and
an offset xo,g iving the centre of its output range. The output of the nth node is then:

) fr=[1+exp(—sk ;- x5, "))

Fixed values for the sigmoid exponents (s,) are used for every R node. The M nodes
use a separately defined fixed value (s,,). The sensor nodes simply supply values
between 0.0 and 1.0.

Learning Rules

The algorithms for changing the variable parameters in a neural network are called the
learning rules.

In particular, by changing the R node weights and offsets, repeated patterns can be
stored and recalled, and when the output of an RNN is used to control motion, a mobile
machine with feedback from the environment through the sensors may generate
goal-driven behaviour [9] [10]. In the latter case, a learning rule based on that proposed
by Hebb [11] for biological systems was used. Explicit memory of images was also
achieved using learning based on feedback of the correlation between S node and M
node arrays [7]. In this work both Hebbian and feedback learning are used.

221 Hebbian Learning

The modified Hebbian learning rule can cause the activity of an RNN to
converge to a fixed point if an input pattern is retained during the RNN cycles.
Different patterns can generate unique fixed points in the RNN node output
space [7].

Hebbian learning was used for all nodes in the RNN that are not connected to
an M node; i.e. for those R nodes that are not being used to generate memory.

In Hebbian learning, neural connections are strengthened when a strong input
signal results in a strong output signal from the neuron receiving the input. A
decay term is added to ensure that a weight cannot grow without limit.

For an R node 7 at cycle ¢, which received an input jj" from the jth node and
generated an output f} the change in the weight W, connecting nodes » and j
is:

DRES TM 2001-053 5
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(3) AW, = af! fr =Y,

where a and v control the growth and decay rates respectively. Recall that the
connection index jis given by C,,.

The node offsets are also allowed to vary. This is necessary because a fixed
offset may result in an insensitive response to the input signal levels for some
nodes. The R node offsets are adjusted at each cycle using:

Q) Axg, = B(f, —0.5)

This tends to move the node output towards the centre of its range. In a
convergent system with a fixed input 1mage, all the R node outputs eventually
approach 0.5. With changing sensor input, or for an RNN operating in a
nonconvergent regime, the offsets change slightly at each cycle. The rate of
change is controlled by the parameter 3, supplied by the user.

Feedback Learning

By adjusting the input connection weights of each R node that provides output
to one or more M nodes, the correlation between the M and S array can be
maximized.

For the nth R node that is connected to one or more M nodes, we first
calculate a sum of differences between the signals in each connected M node
and its corresponding S node, in the following way:

O, Rem
) D= 2%,

Rem 3

where A, is the difference between the outputs generated by the ith S and M
nodes, n.,, is the number of connections to M nodes from the nth R node, and
G, is the output sign of the R node.

M node arrays (M}, M) for the image and its code are connected to different
regions of the RNN, as shown in Figure 1, so the summation above only
involves image differences or code differences for a given R node.

D, defines the required direction for the change in output signal strength of

the nth R node. Dividing by 7., confines the magnitude of D, to [0.0, 1.0];
i.e. it is a fractional value.

DRES TM 2001-053
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For the nth R node, the change in the jth input weight at cycle ¢ is calculated
in the following way:

(6) AW}, = pD, [0 iV},

where p is the feedback learning rate. The magnitude of a weight change
depends on the strength of the incoming signal f on the jth input connection
(from the R node whose index k = C,;), and on the strength of the weight
itself ().

The R node offsets are also moved in the required direction by using:

As the S and M arrays become correlated, offset and weight changes become
smaller.

DRES TM 2001-0563
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Figure 2: Ten image sensor patterns

Results

Figure 2 shows ten 4x6 sensor images (24 S nodes) that were used as a training set for
the RNN. In previous work, much larger images have also been stored using Hebbian
learning with feedback; a set of five 16x16 images [7], and objects in 32x32 IR images
(1024 S nodes) [8] were successfully identified.

The principal questions to be answered in the present work are the following: can a
pattern and its identification code be stored by the simultaneous presentation of two
sensor image streams during training; and can an identification be recovered from the
code memory array by the single presentation of a pattern in the image sensor stream?

The ten associated code sensor arrays are 4x1 vectors representing the binary form of
the decimal images shown in Figure 2. An example of an associated pair is given in
Figure 1 for the number 1.

To assess the effectiveness of an RNN in recalling a set of patterns, we have used the
following correlation function:

1 N ng
®) C=1- g2l

|A,|, is the difference between the ith S and M nodes for the jth pattern, V is the
number of patterns, and #; is the number of sensor pixels. If every pattern is accurately
reproduced during training, C approaches 1.0 (|A;| — 0). During training, pattern jis
held in the S node array for the exposure time, ¢,. After ¢, cycles, the i sum is
calculated and the next pattern is presented for e, cycles. C is calculated over each
complete cycle of all patterns. Since there are two sensor arrays, there are actually two
correlations calculated, C, and C,, for the image and code arrays respectively.

The memory process is affected by the following parameters: the constant value used
for the S node to R node weights; the learning parameters, o, 3,7y and p; the node
sigmoid steepness factors s,,and s,,; the number of R nodes; the number of output
connections for the S nodes; the number of input connections for the R and M nodes;
the exposure time, e;; and the fraction of positive (excitatory) R nodes.

The RNN structural parameters (number of R nodes and connections, fraction of
positive R nodes) can be separated from the learning parameters. We used two different
RNN structures, which we will refer to as R250 and R500, containing 250 and 500 R

DRES T™M 2001-053
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Parameter | Value
a 0.005
B 0.0005
Y 0.0005
p 0.001
Sr 0.1
Sm 8.0
e 12

Tabile 1: Optimal learning paramelers

nodes respectively. In both cases the fraction of positive R nodes was fixed at 0.5, the
number of R node 1nput connections was 40 and the number of output connections for
each S node was also 40. For R250, the image input and memory regions had 100
nodes each, and the code memory region had 50 nodes. For R500 these regions were
doubled. It was found that for R250, the optimal number of input connections for the
memory node arrays (M, and M) was 20, while for R500 better performance was
obtained using 40 input connections.

Optimal values for the learning parameters are given in Table 1. The exposure time
shown (¢;) is in network cycles. In addition. the constant weight between S and R nodes
was 5.0, and the fraction of positive R nodes was 0.5.

It was previously found [7] that if the RF learning rate p is too high the training
becomes unstable. The present work confirmed this, and we found that the value of p
that maintains stability can be higher when fewer image/code pairs are used 1n the
training set; e.g. when only two pairs are used, p = 0.004 maximized the correlations,
but for 6 and 10 pairs p = 0.001 was required to maintain stability.

Feedback Learning Validity

To show that the learning rules described in Section 2.2 do in fact lead to associative
memory, just the first two image pairs were used as a training set. Clearly, with only
two training pairs. the correlations should approach 1.0 quite closely as the number of
training cycles increases. This is shown to be the case in Figure 3, for the R250
network. The maximum code correlation (0.9992 at 6000 cycles) is higher than that for
the images (0.9797) because the code array size is much smaller (4) than the image size
(24). As expected, the correlations improve 1f more R nodes are used; the R500 results
are shown in Figure 4, where both image and code correlations exceed 0.99. These
curves show that by adjusting R node connection weights in the memory regions using
our feedback learning method, the RNN can generate copies of the images and codes
that are presented during training. If the connection weights in the memory regions are
now fixed after training, and an 1mage pattern that was part of the training set 1s
presented in only the image sensor array, the RNN will then generate both a close copy




P516190.PDF [Page: 21 of 28]

tion
O
0
FT:IT:" T

Lurre.a

8] 1000

Zo00

2000

cles

Cy

200

5000

‘\IIJ__‘AL‘_L‘A._A‘J_U_A_‘JAA_A_AL._LAA_A L L Lo

£C00

Figure 3: Correlations for images (lower) and codes (upper), using a tramning set of size two with 250 R nodes

3.2

10

of the image and the code array that was associated during training. This validates the
feedback learning equations (2.5 to 2.7). A previously unseen pattern in the image
array will produce a low correlation (< 0.7), indicating a lack of recognition: in this
case no reliable identification can be obtained from the code array output.

Network Storage Capacity

For a network with a fixed number of R nodes, as the number of image/code training
pairs increases, the total correlation decreases. For example, using R250 with 2, 6 and
10 training pairs, the code correlations are shown in Figure 5. With a value greater than
0.8, the correlation for all ten 4x6 test image/code pairs is still good enough for reliable
identification using 250 R nodes. From previous work [7], we know that correlations
between sensor and memory image arrays will be less than 0.7 for unrecognized

(previously unseen) images.

The degradation in correlation, and hence in identification confidence, is a useful
measure of the storage capacity of the network. If the network does not give
correlations sufficiently high to ensure reliable identification. more R nodes may be

used.

If the number of R nodes is increased, the correlations can be improved. This is shown
in Figure 6, where the code correlations for ten training pairs are given for the R250

and R500 networks.
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Conclusions

The results given in Section 3 confirm that it is possible to generate explicit associative
memory of two separate sensor image streams with RNNs of the same form as those
that we have used in goal-driven autonomous navigation of a simulated machine. It
would not be difficuit to extend this technique to form associations between more than
two sensor streams that contain repeated simultaneous patterns.

It has been shown that a pattern and its identification code can be stored by the
simultaneous presentation of two sensor image streams during training. After training,
the correlations between input and output node arrays are high for a previously seen
pattern, and an image may then be directly identified by the output in the code memory
array.

With our feedback learning, explicit memory is encoded in the input connection
weights of the R nodes in the memory regions of an RNN, and the reproduction of a
remembered image is the result of an interaction throughout the entire RNN, from the
sensor array to the memory region. The memory is therefore distributed, and is only
recalled by the presentation of an image that has been seen during training, or one that
is very similar. An image that has not been seen before does not generate a strong
correlation signal, indicating that it can not be identified. Previous work [7] has also
shown that the RNN with feedback leaming is quite tolerant of noise in the input image;
e.g. with 40% maximum noise, 98% of the ten 4x6 images were correctly identified.

The storage capacity of an RNN depends on the number of R nodes and the number of
their input connections. The reproduction precision of remembered images also
depends on the number of input connections to the M nodes and the number of output
connections from the sensor nodes. Our results show that the RNN memory capacity
does not decrease abruptly with increasing number of training patterns. Rather, the
reproduction precision, as measured by the correlation values, decays gradually. For a
given RNN size, the memory simply becomes less clear as more storage is attempted. If
the correlation values become too low to give acceptable indications of recognition and
identification, it is only necessary to increase the number of nodes until correlation
values that give satisfactory results are obtained.

In future work, it may now be possible to relate the input from different sensor arrays
with the actions taken by a mobile machine in response to its sensors. This may lead to
adaptive control in a mobile machine that can learn. Its ability to navigate through
obstacles and reach a goal would then improve with experience. We are currently
developing a simulation of this scenario with the intention of demonstrating
self-organized, goal-driven adaptive learning.
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