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ABSTRACT

A Jf Two feedforward neural networks with one hidden layer each were

trained using a fast backpropagation algorithm to determine the position of
an acoustic source in a waveguide. One network was trained to localize the
source in depth while the other was trained independently to localize in
range. The output layer consisted of one unit for each possible range or
depth of the source. The networks were trained with a signal-to-noise ratio
(S/N) of 50 dB and tested with patterns generated with S/N ranging from

0 dB to 20 dB. The performance of the neural networks (NNs) was
compared with that of a nearest-neighbor classifier. Evaluation of the
processors was done in the context of an estimation problem, i.e. by
measuring the root-mean-squared (rms) error of the processors' estimates.
The NNs turned out to be less resistant to noise than the conventional
processor, but were faster. An explanation is given as to why multilayered
feedforward neural networks cannot in general achieve the performances
of optimum classifiers. m

51




P131300.PDF [Page: 3 of 18]

CONTENT

PROBLEM STATEMENT
NN CONFIGURATION
TRAINING ALGORITHM

POTENTIAL AND ACTUAL SPEEDUPS
OVER CONVENTIONAL MFP

ROBUSTNESS ANALYSIS AND
COMPARISON WITH MFP

INTERPRETATION OF RESULTS

52




MATCHED FIELD PROCESSING

SEARCH GRID
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MATCHED FIELD PROCESSING (CONT)
- IMPLEMENTATION DIFFICULTIES

1 - MFP NEEDS A RELIABLE AND ACCURATE MODEL OF
SOUND PROPAGATION IN THE OCEAN. SHOULD
INCLUDE:

- RANGE DEPENDENT PARAMETERS
- SHEAR IN THE SUB-BOTTOM

- ROUGHNESS SCATTERING

- EXPLICIT 3D

2 - PROPER MODELLING NEEDS DETAILED KNOWLEDGE
OF ENVIRONMENTAL VARIABLES, SUCH AS:

- TOPOGRAPHY

- SOUND SPEED PROFILE

- SHEAR SPEED AND ABSORPTION
- ROUGHNESS

3 - MFP SEARCHES ALL POINT IN THE GRID. TIME OF
SEARCH AND STORAGE REQUIREMENTS SCALES AS
d r -a
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NEURAL NETWORKS

INPUTS HIDDEN LAYERS OQUTPUT

TRAINING:
- IMPOSE TARGET VALUES 0, FOR EACH SET OF INPUTS a,

- ADJUST WEIGHTS THROUGH GRADIENT DESCENT
(BACKPROPAGATION)
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NEURAL NETWORKS (CONT.)
- POTENTIAL ADVANTAGES

- CAN BE TRAINED ON REAL DATA
- CAN BE TRAINED TO GIVE DESIRED ANSWER
- GENERALIZE OVER SEVERAL DEPTHS OR RANGE
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NEURAL NETWORKS (CONT)
- POTENTIAL SPEEDUP OVER MFP

rd-N.
S =
Ni.h+-N,

S : SPEEDUP FACTOR
I : NUMBER OF POSSIBLE SOURCE RANGES

d : NUMBER OF POSSIBLE SOURCE DEPTHS
N, :NUMBER OF INPUTS
N., :NUMBER OF OUTPUTS

h: NUMBER OF HIDDEN UNITS
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TRAINING ALGORITHM

BACK-PROPAGATION
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FOR EACH WEIGHT

€

!

em o, IF sign(AW 1)=sign(AW{,)

€ =€ o IFsign(AW )zsign(aW)

i i+1

(1+= 11 8

MAX= 50
o =05

BACKTRACKIF E,,> B E AND RETRY WITH

0.5¢,,
1

[

£
B=

58




P131300.PDF [Page: 10 of 18]

E TRAINING ALGORITHM
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ENVIRONMENTAL MODELLING
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PREPROCESSING

EXCITATIONS
SENSORS B2 VoY,

o= =
FFT COVARIANCE REDUCED }—
O MATRIX ORTHOGONAL| _
O— ; SET  |—
X=F[x(f)] Ry2=X1X2 —
o Vv —

V: eigenfunctions of covariance matrix averaged over all source

positions

a: excitations of eigenfunctions V for R for a given source position
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excitation

EXCITATION vs RANGE

FOR DIFFERENT EIGENVECTORS
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INTERPRETATION OF
NEURAL NETWORK DECISION SPACE

|

2

INTERPRETATION OF
NEAREST-NEIGHBOUR DECISION SPACE




P131300.PDF [Page: 18 of 18]

CONCLUSIONS

NNs WERE TRAINED TO LOCALIZE IN DEPTH AND RANGE

THE TRAINED NNs WERE TESTED WITH NOISE

- APPRECIABLE SPEED UP ANS STORAGE IMPROVEMENT
- NNs TO BE USED IN HIGH S/N

TRAINING DOES NOT ALWAYS SUCCEED, AND CAN BE
VERY SLOW

NUMEROUS LOCAL MINIMA [N TRAINING ERROR SURFACE
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