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Some Neural Computing Approaches to Target Tracking

by
Joseph N. Maksym

Defence Research Establishment Atlantic

Abstract

Cf(/ Multiple targets, false detections, and manoeuvres present difficulties
in the application of tracking and data association algorithms. The
discussion examines potential applications of neural networks in target
tracking and data association problems. While neural computing has
proved useful for many pattern recognition and control applications, it is
not yet clear how and where neural networks should be used in systems for
tracking targets. Preliminary work on the application of neural networks
as adjuncts to more conventional Kalman filter tracking systems will be
discussed. This paper examines the possible use of neural networks
applied to model s:lection in a multiple model approach to tracking
manoeuvring tar, :, as well as a neu.al network approach to
measurement-to-track data association.(/(
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/ Overview \

» Kalman Filter Target Tracking

~ Signal model

~ Kalman equations
- Manoeuvres

~— Data Association

e Neural Networks
- mizatio rks {(Hopfield
Optimization networks ( ogu:n))

~ Rapid learning (Gaussian
~ Multisensor track initiation

2& Defencs Ressarch Estabiish —an/
The talk is in two parts. \

The first part is a kind of introduction to some
of the issues involved in target tracking. It
reviews a traditional approach - target
tracking with Kalman filters.

Some of the issues involved are signal
models, the Kalman equations, the effect of
manoeuvres, and the problem of data
association.

The second part looks at several neural
computing paradigms that may have
application to target tracking — especially for
multiple target multiple sensor situations.

In particular we will examine Hopfield
networks, and rapid learning networks
applied to a multisensor track initiation /

problem.
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x'k+1)=F' x'k) + G' u'k) + f'k+1k)

200 = Hx'0 +w®

Time index: k=0,1,...,N
Target index: t=1,2,..,S

Measurement index: j=1, 2, ..., m(k)

NG oot

First a review of the Kalman filter approach to multiple\
target tracking.

This is basically a parametric method. We model the
target state (e.g. its position, velocity etc.) by the top
equation. In general there is one such stochastic
model for each target.

u(k) is a zero-mean white Gaussian noise vector with
covariance Q, and f(k+1|k) represents a
deterministic input such as a target manoeuvre, and
w(k) is a zero-mean white Gaussian noise vector
with covariance R.

At each time step k a number m(k) of measurements
are made. This number will often ditfer from the
number of targets because of missed detections
and false alarms.

\_ /
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/~ [Kaiman Filter State Estimation|

Measurement Update* :
%(klk) = Tkik-1) + K(k) {z(k) - H £(kik-1)]
S(k)= HP(kk-1)H" +R
K() = P(kik-1) H' S(x)!
Pkk)'=Pkk-1)'+HTRTH

Time Update® :
L(k+11k) = F (klk)
Pk+1k)=FPkk) FT+GQGT

* Target index t has been dropped for clerity.
4 Delencs Ressarch Extablishment Atk

The basic Kaiman filter equations are summarized\
here (the target index t has been dropped).

Basically, Kalman tracking consists in picking an initial
state for each target, and an initial value for the
filter covariance matrix P, and then updating these
expressions using measurements made at each
time step.

There are two steps: a measurement update where
the target state and covariance estimates are
updated to account for the new measurement, and
a time update, which uses the assumed target
model to extrapolate to the next time step.

\_ /
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/ Data Association Problem \
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Track-2

Muitiple targets complicate the problem of dat)
association, as illustrated here for a simple situation
with two converging tracks.

The problem is to decide which observation is to be
associated with each track.

Each Kalman filter computes a gate region centred on
the expected measurement (Size of the gates
depends upon the target stochastic model as well
as measurement noise).

Normally the gate size is chosen such that the true
target return will be inside the gate, say 0.999 of the
time.

A very simple data association techniques is the
nearest neighbour method, which minimizes the
distance of the chosen measurement from the
prediction made by the filter. The distance measure

illustrated in the viewgraph can be used. /
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This viewgraph illustrates the nearest neighbour
method in a simulation.

At time = 3 we have three false alarms (small dots)
and the true return inside the gate.

The nearest-neighbour associated the true return
with the track.
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/~ [Nearest Neighbour: k=4]
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At time = 4 the nearest measurement is a false \
alarm.
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Nearest Neighbour: k=6
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outside the gate.

At time = 6 the filter loses the true return — it falls\
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/ Tracking a Manoeuvring Target \

AN e e

Clearly, a Kalman filter based on assumed
dynamics (constant velocity target, for example)
is mismatched when a strong manoeuvre
occurs.

This is shown here. A good deal of work on
adaptive filters is reported in the literature on
Kalman filter tracking. Most of these adaptive
studies propose some form of system
identification, which models the non-white
residual error occurring during a manoeuvre.

g /
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Modified Nearest: k =5 \

i J
o s 10

Distance in Kms
Delence Ressarch Establishment Atlantc /

Basically, when a residual associated with a\
measurement is highly correlated with past
residuals the measurement is a good choice
for association.

A simple technique for improving nearest
neighbour data association can be based on
this concept.

The viewgraph illustrates how the modified
nearest neighbour tends to associate the true
return rather than a false alarm, which
happens to be closer to the expected
measurement.
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In this viewgraph an example with two crossing\
targets is shown.

The modified nearest neighbour association can
assist in preventing target returns from being
associated with the wrong track.
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/ Manoeuvre ldentification \

z Kalman Filter |

Neural Net

The examples we have just seen indicate th
importance of having a correct model for a target —
during manoeuvres the Kalman filter becomes
mismatched.

The use of neural networks for system identification is
now well established.

The viewgraph indicates, conceptually, how it might
work in a Kalman filter tracker. Here the neural net
would be used as an adjunct to a Kalman filter.

There are several problems, however:

1. Standard backpropagation networks have long
training times and would need to be trained off-line.

2. Alarge variety of manoeuvres are possible.

\ /

38

T : - I B |




( Neural Networks \

Some Network Types

» Multi-layer Backpropagation

* Hopfield Networks (energy minimisation)
» Self-Organizing Nets (Kohonen, ART)

* Probabilistic Networks

~ S

The remainder of the talk will look at some neuD
network concepts for multiple sensor target tracking.

Some of the neural architectures considered were the
multilayer backpropagation network, energy
minimisation networks such as the Hopfield,
self-organizing nets, and probabilistic networks.

The discussion will focus on Hopfield and Probabilistic
networks.

\_ %
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/ Multi-sensor Multi-target Tracking\

Consider a scenario consisting of three targets anm
two sensors that produce only a bearing
indication for each target. In practice, noise will
introduce bearing errors, false detections, and
missed detections, but these issues will be
ignored for the moment.

Given the set of detected bearings at each sensor
the tracking problem is to determine the location
of the three targets.

There are two aspects of the problem: data fusion,
and constrained optimization.

We will examine a system that combines two neural
architectures, a probabilistic network and a
Hopfield network.

\_ /
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/ Multi-sensor Data Fusion \
and
Tracking System

Problem Constraints
Sensor 1 Distance ‘ Target
Detections ™= Pror?augfuc Matrix HNopﬂeal'd Tragks
SUr ” eur »
Sensor2 ] Network Network
Detections

~ S

The inputs to the probabilistic network are the sets of\
detections from the sensors.

If a detection at one sensor and a detection at another
sensor are similar the probabilistic network
produces a high output — that is the distance
measure between feature vectors is small.

The resulting distance matrix is passed to a Hopfield
network where it determines, in part, the
interconnection weights.

The Hopfield interconnection weights are also
influenced by problem constraints.

Problem constraints might include a limit of one target
present on each detected bearing, an impossibility
of targets in a given region, etc.

\ _/
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Probabilistic Neural Network

Q= {0, 0,...0,]

m 2
Fxl@= ——l—oo exp[."_".‘&”_],

(21‘)‘i Gnm k=1

g(x)=px i ®)p(w,), i=1,2,..., 8

K g(x) for each class.

This briefly summarizes a probabilistic network (It\

may also be referred to as a Gaussian sum or
Parzen window approach).

Suppose we have S classes of pattern, and that
within each class there is some variation,
although smaller than variation between classes.

We can develop a density function for the feature
vactor x for a class as the summation of some
number, say m, of individual Gaussian densities,
each centred on an example feature vector.

The resulting "Gaussian sum” thus reflects the
(variations) within the class.

Training the network is rapid — a set of network
weights are stored for each training exempilar.

After training, the network computes discriminants

/
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4 [Character-Recognition Network
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A character-recognition example illustrates thN
implementation.

An square array of neural units receives input
characters.

There is a second layer of units for each class. The
links from each unit in the second layer store
example patterns during the learning phase. For
this network there are twenty-five units in the
second layer for each class. Consequently, up to
twenty-five exemplars can be stored.

The top layer is a set of single units. Each unit forms
the Gaussian sum. The output values (height of
black bar) indicate probability of the input
belonging to the various classes.

Here, the trained network is presented the character
"eight". The largest output is that corresponding to

the class "eight", although some output is
\ observed for the classes "three™ and "six" due ty
rn similarities.
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Hopfield Net for Two \
Sensor Track Initiation
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The viewgraph illustrates a mapping between\
potential target locations and neurons in a
two-dimensional Hopfield net.

The target location T1, for, example maps into the
neuron labelled v11.

With three detections on each sensor there will be
nine potential target locations consistent with the
observed detections.

[ , B .



/ ﬁetwo?ﬁesign N\

Cost function'

E= ‘%‘2 Z ViV m+§-,§. i i"ij"u*’%i

i=lj=1 k= i=1lj=1 1=1 i=1j

Minimisation favours the following:
» Network states with at most one "on" neuron per row.

» Network states with at most one "on" neuron per
column.

» Network states where "on" neurons correspond to a low
distance measure djj between detection-i on sensor-1
\and detection-j on sensor-2.

Hopfield network design is usually based on definitioh
of an energy or cost function that the network is
expected to minimize.

Shown here is a possible cost function for the two-
sensor three-target problem.

Basically, the network is to select those target
locations that have maximum distance of target
features subject to satisfying constraints of the
problem.

In most applications of the Hopfield net seen in the
literature, constants A, B, C, etc. were empirically
adjusted for good performance. This is seen here
as potential source of difficulty.

= /
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/ Interconnections N
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IConnections into the ij*" neuron|

The form of the energy function translates into
link weights.

This is shown in the sketch, which indicates links
going into the ij-th neuron.

First, there are inhibitory links of strength A acting
along each row.

Next, there are inhibitory links of strength B
acting along each column.

Finally, each neuron has a cyclic link (from its
output back to its input). The strength of this
link is dependent on distance — a high
distance.

\_ _/
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Difference Equations
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This viewgraph shows the difference equations for\
updating the network.

Each neuron produces an output v(i,j) that is a
nonlinear function of its input u(i,j). The
nonlinearity is usually a soft limiter, such as the
expression at the top of the viewgraph. Lambda
is a gain constant, which determines the shape
of the nonlinearity.

At each iteration the input to a neuron is the sum
of: the previous input decayed with a time
constant, a weighted sum of the outputs of all
neurons in the network, and an input current I.

Actually, Tank and Hopfield's original papers
described an analogue implementation
involving operational amplifiers, resistors, and
capacitors.

N /
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/” [Two Sensor Four Target Example| \

Example Scenario

Final network state

- seretsssie =

The action of a small Hopfield network for a two-sensor\
problem is shown here:

Operation is as follows:

Detections are received from each sensor — these
determine the size of the Hopfield net.

A probabilistic network is used to learn probability
distributions for detections at each sensor. It also
computes distance, i.e. how likely is it that a
detection on sensor 1 represents the same target as
a detection on sensor 2.

The distance matrix, together with auxiliary
constraints determines the interconnections of the
Hopfield net.

The Hopfield net is then initialized with small random
values.

which should indicate the most likely target

The network then iterates, reaching a stable state,
&ocations.
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/ Two Sensor and Three Sensor \
Hopfield Networks

Two Sensor Network

The approach used for the two-sensor problem\
requires a Hopfield network that is a
two-dimensional array of neurons. The size of the
array will, however, depend on the number of
detections at each sensor.

For a three-sensor problem, a three-dimensional
array of neurons is required — one dimension per
sensor.
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Further Work

 Problem of convergence to local minima
+ Combining track initiation with track maintenance
» Feature selection at sensors

« Comparison with more traditional methods of
constrained optimization

\
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Some directions for further work are indicated here.

One potential probilem is the possibility of
convergence of Hopfield networks to a local
minimum. Some techniques that might be used
to avoid this have been reported in the literature.

Another potential direction is to extend the neural
network track initiation system to that of track
maintenance. Extension of the track initiation
system to multiple times as well as multiple
sensors is one possible approach.

An important issue is feature selection. Obviously a
Gaussian sum network that stores a complete
Lofargram for each detection is not practical.

Another question is whether traditional techniques
such as linear programming are in fact better
and more reliable. Certainly, for the simple
examples discussed in this talk a Hopfield net,

or other optimizer, is hardly necessary - simple/

search will do.
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