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ABSTRACT

// This Technical Communication describes the underlying theory and use of the FORTRAN pro-
gram AMAD (Added Mass And Damping), which calculates the hydrodynamic pressure distribu-
tion on the body surface, the added mass, and damping of a two-dimensional, laterally symmetric
body heaving in the free surface of an unbounded fluid. Because AMAD uses the simple, free-space
Green function G = log(1/r), “irregular frequencies” are not likely to occur//

RESUME

Cet exposé technique décrit les principes de base et I'utilisation de AMAD (acronyme de
"Added Mass and Damping", ce qui signifie "masse d'eau ajoutée et amortissement™) un
logiciel en FORTRAN, qui calcule la distribution de pression hydrodynamique sur la
surface d'un corps, la masse d'eau ajoutée, et I'amortissement d'un corps bidimensionnel a
symétrie latérale en mouvement de pilonnement sur la surface libre d'un fluide illimité.
Puisque AMAD utilise la fonction simple de Green en espace libre G = log (1/1), il est peu
probable qu'apparaitront des "fréquences irréguliéres”.
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NOTATION

™
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53IIIRTMQT mQE ST ae

Complex displacement of the body
Complex matrix to solve for ¢

Damping

Dimensionless damping

Breadth of body

Amplitude of body displacement

Body surface contour

Gravitational acceleration

Green function

Fluid depth

= \/“—_1

Complex vector to solve for ¢

Added mass

Dimensionless added mass

Wavenumber

Unit normal vector to S pointing out of the fluid
z and y components of n

Offset point on the body

Offset point on the free surface

Offset point on the radiation boundary
Total number of offsets

Pressure

Hydrodynamic pressure amplitude
Nondimensionalized hydrodynamic pressure
Integral of logr along a segment

Integral of 2 logr along a segment
Distance between the field and source points
Fluid region

Real part of a complex variable

Fluid boundary

Body surface boundary

Body surface boundary in the plane z > 0
Free surface boundary

Free surface boundary in the plane z > 0
Sea bottom boundary

Sea bottom boundary in the plane z > 0
Left radiation boundary

Right radiation boundary

Body surface velocity

Coordinates of the field point

iv




ZL, R Left and right radiation boundary positions, respectively
Free surface elevation

Vertical displacement of the body
Kronecker delta function

Hydrodynamic pressure phase angle

Offset y-coordinate '

Segment angle with the horizontal
Wavelength

=wl/g

Coordinates of the source point

Fluid mass density

Space component of ®

Circular frequency of oscillation of the body
Time dependent velocity potential

Gradient operator

|-<

> R
.
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Subscripts
1,7 Indicies for contour segments




1. INTRODUCTION

The purpose of this Technical Communication is to describe the FORTRAN program AMAD
(Added Mass And Damping), which calculates the added mass, damping, and the hydrodynamic
pressure distribution of a two-dimensional body heaving sinusoidally in the free-surface of water.

Added mass is an effective mass of the fluid which accelerates with a body. Damping is the
energy loss due to wave making from the fluid reactions in phase with the velocity of the body. For
a given frequency of oscillation the added mass and damping are functions of the body form and
the density of the fluid. Under some simplifying assumptions, the added mass and damping may
be calculated from the velocity potential on the body in a straightforward manner.

In AMAD, the boundary-value problem for the velocity potential is solved by the boundary-
integral equation method using the free-space Green function for two-dimensional Laplace’s equa-
tion. The radiation boundaries are artificially set at a finite distance from the body for computa-
tional purposes. Although AMAD treats only symmetric bodies and a flat sea bottom, the solution
method can be modified for any shape of the body and seabed; see, for example, Yeung!. As well,
extension of the present method to swaying and rolling motions is straightforward because only the
boundary condition on the body surface needs to be modified.

The mathematical formulation of the linearized problem is outlined in Section 2. Section 3
describes the solution method, which can be used for both symmetrical and asymmetrical body
contours. Hydrodynamic pressure, added mass, and damping are derived in Section 4. In section
5, the effects of offset spacing and radiation boundary position on the added mass and damping are
given. Descriptions of the input and output to AMAD are described in Section 6 and 7, respectively.
Instruction on the execution of AMAD is described in Section 8. Finally, concluding remarks are
given in Section 9.

2. FORMULATION OF THE PROBLEM

Figure 1 shows the coordinate system. The body executes a sinusoidal oscillation in the vertical
direction (“heaving motion”) about the equilibrium point o in the undisturbed free surface. The
amplitudes of motions and velocities of the body and the fluid are assumed small. The undisturbed
free surface corresponds to the plane y = 0, and the positive y—axis points vertically upwards. The
body contour is described by F(z,y,t) = 0.

It is assumed that the fluid is incompressible, inviscid, and its motion irrotational. The last
assumption guarantees the existence of the velocity potential. To find the quantities of interest
(hydrodynamic pressure, added mass, and damping), it is first necessary to calculate the velocity
potential.

The velocity potential ® satisfies Laplace’s equation

62@(373/,0 + 62<§(z,y,t) -
Oz oy? -

Vz@(x’y’t) = 0 (1)

in the fluid domain.
The kinematic condition on the body surface requires that the fluid particles next to the body
have the same normal velocity as the body. This condition is expressed by
%

— =V-n 3)
on F(z,9,t)=0



where n=(n;,n;) = n = VF/|VF| is the normal vector pointing out of the fluid, V is the gradient
operator, and §/dn = n - V. The velocity of the body surface is

V = ()i (4)

with a(t) denoting the body displacement in the vertical direction. Thus, the boundary condition
on the body surface can be expressed as

0%

-a—;&- s = nyd(t) (5)

where ny is the y component of the unit vector normal to the body surface So.

On the free surface, & must satisfy two conditions. One is the kinematic condition that that
the fluid particles on the free surface remain on the free surface. Let the free surface elevation be
described by y = Y(z,t), then the kinematic condition is given by

8| __ % . Vy-v)
on y=Y(z,t) vV1i+Y, 'V(y - Y)I

or,

~&,(2,Y,1)Y; + &, = Y,. (6)

The other is the dynamic condition that the pressure on the free surface be equal to the atmospheric
pressure (that is, zero gauge pressure). Applying Bernoulli’s-equation at the free surface gives

®4(z,Y,t) + gY + %IV@I’ =0. (7

Assuming small body displacement and wave amplitudes, the second order terms of (6) and
(7) can be neglected. The resulting linearized conditions

9y ~Y: =0 (8)
and '
<I>t+gY=O (9)

are applied on the undisturbed free surface y = 0. Equations (8) and (9) can be combined to
eliminate the unknown Y, ' '
: @ 4+9%,=0 on y=0. (10)
Equation (10) is the condition to be applied on the free surface in the formulation for AMAD.
On the sea bottom, no flow may cross the boundary; so the sea-bottom condition is

0%| .

_— =0 11
on|,__y (1)

where H is the depth of water.
In addition, the radiation condition at infinity needs to be satisfied to make the solution unique.




2.1 TIME-HARMONIC PROBLEMS

The body is assumed to be heaving sinusoidally at an angular frequency w with an amplitude
C (forced motion). Then, the displacement of the body takes the form

o(t) = Re[a(t)] = Re[Ce™“*] = C coswt (12)
with § = /=1 .
The body boundary condition (5) suggests that the ve}odty potential ® be expressed as
8(z,9,t) = Re[¢(z,)a(t)] = ¢14(t) + wra(2) (13)

where ¢ = ¢; + i¢ represents the velocity potential due to the body motion with unit velocity,
and is dependent only upon the space coordinates and has dimensions of length.

Now substituting (13) into the governing equations (1),(10),(5), and (11) gives the following
boundary-value problem for ¢:

Vi = oo+ ¢y, =0 for y<0 (14)
¢y—vp=0 on y=0, (15)
7]
535 = ny (16)
ij
-a—is =0 (17)

where v = w?/g, So is the body contour below y = 0, and Sgp is the sea bed. In a.ddition,.a condition
at infinity is needed to make the solution unique. Here the following Sommerfeld radiation condition
is adopted: 3

lim Va(SL % imog) = 0 (18)

r—+do0

where m, is the wave number, and is the root of the following transcendental equation
motanhm,H = v. (19)

Note that m, — v as H — oo. For computational purposes, the radiation condition is set at a finite
distance from the body. This condition will be valid if, where the condition is set, the difference
between the total potential and the propagating wave potential is negligible. Radiation conditions
now take the form

P .
“8%(3713, y) = ’mo¢ y TR 0 (20)
8 .
a_i(”’”) = —im,p , <0 (21)
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3. SOLUTION METHOD

The present method for solving the boundary-value problem for ¢ expressed by (14)-(17), (20),
and (21) is based on the simple Green’s function approach. That is, the Green’s function G is the
simple source function

G(z,y;6m) = log ; (22)

where (x,y) and (£,7) are two points in the fluid domain, and r is the distance between these
points, i.e., 7 = /(2 — £)?+ (y—n)?. A more traditional Green’s function (see, for example,
Frank?) sat1sﬁes the boundary conditions on the free surface and a flat bottom of an infinitely deep
fluid, and the radiation condition at infinity. Using such a Green function has the advantage over
the present method in that only the body boundary needs to be discretized; however, while the
present method can be modified to accomodate an arbitrary sea bottom contour at finite depth,
Frank’s method cannot. Also, Frank’s method breaks down at certain wave frequencies, called
irregular frequencies. The method used here is unlikely to suffer from the phenomenon of irregular
frequencies because of its simple kernel.

As illustrated in Figs. 1 and 2, the geometry of the problem is described as follows. Let R

be a closed regular region in two dimensional space, whose boundary is S. If we restrict the point
(2,y) to lie on S, then by applying Green’s second identity, we get (see, for example, Newman?)

wh(a) = § (526 - 952 ) @5, (23)

Referring to Figure 2, let S consist of the body contour So, the free surface Sg, two radiation
surfaces Sg and Sp, and the bottom Sp. Then we obtain from equation (23) together with equations
(14)-(17), (20), (21), the following integral equation for the unknown values of ¢ on §:

rd(z, y) = /¢—(logr)d5+/¢[5- logr — vlogr}dS + /¢-—a—(logr)d.5‘

So

+ / ¢[5—; log r — im,logr]dS + / d)[a—n logr — im,logr]dS — / n,log rdS. (24)
s

3.1 HEAVING MOTION OF SYMMETRIC BODIES
For heaving motion of laterally symmetric bodies, the potential ¢ is symmetric about z =0,
#(—=,y) = ¢(z,y). (25)
The integral equation (24) can then be written as

/ nflogrt +logr~)dS = —x¢(z,y) + / ¢[ T+ log rt 4 -a—a——log r~)dS
s s3

+ / @[ ( logr —vlogrt) + ( —logr~ — vlogr™)ldS




a + - + a -— - —
+/¢[(—an+ logr™ — im,logr )+(_—6n‘ logr™ — im,logr™)]dS
Sr
+/¢[__Q_1 r++ilo r~]dS 26
on+ %8 dn- & (26)
53

where §F, S} and S§ indicate respectively the segments of So, S, and Sp that are in the half
plane, z > 0, and

0 0 b}
512_"' = "a-gnz + gany (27)
on- dE™* an ¥

rt=[z- £+ (y-n)?k (28)

rm = [z + 6+ (y -0k

3.2 DISCRETIZATION OF THE INTEGRAL EQUATION

After discretization of the boundary, the integral equation (25) is reduced to a set of linearly
independent equations for ¢. The solution gives the values of ¢ along the boundary. Then, as
shown in Section 4 below, hydrodynamic pressure on the body, added mass, and damping can be
calculated using the potential along the body.

The entire fluid boundary is divided into a series of straight line segments running from offset
(&55m;5) to (€i41,Mj+1); see Figure 3. The points j = 1 and j = Ny are on the line of symmetry.
Each segment makes an angle 8; with the horizontal, defined by

0; = arctan Ditr =75 (29)
§iv1—&;
and the normal vector’s y component is
ny, = cosd;. (30)

The distribution of ¢ along each segment is assumed to be constant with ¢ = ¢(§-f-"—'2§f-ﬂ, miz’llﬂ-)
for j =1,2,---,Ng — 1. The field point (z;,;) is taken at the midpoint of each line segment.

To simplify the ensuing mathematical expressions, the following notation is introduced. (For
details of (31)-(34), see, for example, Frank?.) Let

(&i+1m541)
Pj = / " logl(zi - ) + (yi — s

(&5.m;)
= cos 6;{(£; — &5+1) — %(-’ﬂi ~ &) log[(2i — &i41)? + (3 — i )F) + %(z.- ~ &;)log](z: - &;)°
+ (3: — 9;)%1} + sin 6;{(n; — nj+1) - %(yi = njy1)log[(z; — €41)° + (3 — nj41)?]
+ ‘21;(!15 - n5)logl(z:i — &) + (¥: — 1,)*1} — QEl(3i — njs1) cos 8; ~ (2i — £;41) sin ;] (31)
Pj = PR(=¢&5,m55—€541,0541) (32)




and

E+min) g
af= | oo logl(z: — £ + (us — m)?12dS

€5:m5)
= a,rcta.n( ) arctan(ug-ﬂ) (33)
- E.‘I §J+1
= -Qf(- 51’771§-Ej+1,77j+1)- - (34)

Thus, Qf} = 0 when i = j.
Using (31)—(34), discretization of (26) can be expressed as

N, Nz
- =z, yi) + 2%‘[@5 + Q{'j] + Z ¢J‘[Q5 - VP;'? + QiLj - VPi?]

Jj=1 j=Ns+1
N3 Ng~1

+ Y $QF - im.PF+ QL - im,PHI+ Y 4;1Q% + QF —Zny, [PR+PL  (35)
j=Na+1 j=Na+1

for i =1,2,3,-+-Np — 1.
Equation (35) can be simplified as

Nr-1
> Aijgi=Ki i=1,2,3,---,Nr—1 ‘ (36)
j=1
—r6i; + QijE + QF;, forj=1,--+,Ns j=Na+1,---,Np—1
A,J—- {-—W&,J-I-(Qg—VP,?)'I'(Q{',—VR{; j=N5'+1,°",N2
—=76i; + (QF — imoPF) + (QE — imoP%) j=Na+1,---,Ns

Ns
K= ny[P}+Pj

i=1

where the Kronecker delta function §;; is defined by
b6;5=1, if i=j, and &;=0, if i#j. (37)

Solving equation (36) will give the potential along all boundaries.

4. HYDRODYNAMIC PRESSURE, ADDED MASS, AND DAMPING

Define )
m+ i;b = p/ on,dS (38)

where Sp includes the left hand side of the body, m is the added mass, b is the damping, and p is
the density of the fluid.




Discretization of (38) gives

Ns
.1
m 4 z;b = 2_,'=Z1p¢jnw [(fj+1 = fj)2 + (741 — 77:’)2]%-

Introduce dimensionless added-mass and damping coefficients as follows:

b p—.
Imo(£)?
s b
Fr(E)

where B is the breadth of the body at y = 0. Then (39) becomes

16 2;\31 Binyl(Eis1 — €)% + (Mjs1 — 0;)%)% .

M+ ib= 5

(39)

(40)

(41)

(42)

Values for added mass and damping for an infinitely deep fluid are calculated by Frank? using a
more conventional Green function. Figure 4 plots values of added mass and damping calculated
by AMAD and Frank, against frequency. These values agree quite well with each other at high
frequencies, since a depth of a third of a wavelength can be considered infinitely deep. At low
frequencies, the values diverge. This is expected, since the effects of finite depth are more noticeable.

Hydrodynamic pressure P on the body surface is found from the linearized Bernoulli’s equation

Substituting (13) into (43),
P = w?pC[¢ coswt + ¢ sinwi].

The amplitude of the hydrodynamic pressure is

|P| = p®C/ 4% + ¢3.

€ = arctan (%12—) .

If € is positive, hydrodynamic pressure is lagging the displacement.

and the phase angle €

The hydrodynamic pressure amplitude is nondimensionalized as follows:

5 _ 1P|
P ——e—
pgC

vy 6 + 43

It

(43)

(44)

(45)

(46)

(47)



5. BOUNDARY DISCRETIZATION PARAMETERS

A scheme for determining the radiation boundary position, and the offset spacing for the free
surface, radiation, and bottom boundaries is given here.

In general, the dimensionless frequencies of interest in ship motion are

2

w*B
0.2 < —2—9—' < L.5. (48)

Therefore, test calculations were rx'm,de at low, middle, and high frequenc}es, (w?B/2g = 0.2,0.9,
and 1.5) with two different values of (2H/B).

5.1 RADIATION BOUNDARY POSITION .

Figures 5(a)-5(c) show the effect of radiation boundary position on the added mass and damp-
ing. For the range of the frequency parameter indicated in (48), the effect of variations of the values
of (zp — B/2)/H on the added mass and damping is seen to be small. These values are calculated
with a free surface spacing, (£;41 —€;)/A = 0.05, and 6 points on the radiation boundary to a depth
of a third of a wavelength.

5.2 FREE SURFACE SPACING

: Offset spacing on the free surface is uniform, that is, £;43 — §; = lp = constant, for Ng+ 1 <
j £ N,. Figures 6(a)-6(c) are calculated using the value (zxgr — B/2)/H of 0.8, and 6 points on the

radiation boundary to a depth of a third of a wavelength. It is seen that the effect of the value of

Ir/A on the calculated added mass and damping is small. ’

§.3 RADIATION BOUNDARY SPACING

The effects of waves on fluid motion rapidly diminish with depth, so that offset spacing may
be increased with increasing depth. Also, virtually no fluid motion occurs beyond a depth of
approximately a third of a wavelength. In the light of these facts, offset spacing on the radiation
boundary in the formulation of AMAD is increased with increasing depth according to the cosine
distribution from the free surface down to a depth of a third of a wavelength: that is,

ﬂj:—-;— [l—cos(zzr-l:—%z—-t—l)], N +1<j<N+ N2 +1.

The value of N is set equal to 4 in AMAD. For the rest of the radiation boundary and the sea
bottom, offset spacing is made equal to the final spacing (i.e. spacing at depth one third the
wavelength). Figures 7(a)-7(c) show the effect of the number of offsets on the added mass and
damping, where NRAD is the number of offsets on the radiation boundary to a depth of A/3. The

number of offsets to this depth should be 5 or greater. These values are calculated with a free
surface spacing, (§;+1 — €;)/A = 0.05, and radiation boundary position of (zr — B/2)/H of 0.8 .

6. DESCRIPTION OF INPUT

Data Set 1 (72 characters or less - CHARACTER FORMAT)
TITLE Used for identification of the body section.
8




Data Set 2 (1 Integer - FREE FORMAT)

NP The number of offsets which makes up the body.
Data Set 3 (NP Real numbers - FREE FORMAT)
(X1(1),I=1,NP) The X-coordinates of the body points. The first

point must be on the y-axis (XI(1)=0), and all
points must be positive.

Data Set 4 : (NP Real numbers - FREE FORMAT)
(ETA(I),I=1,NP) The Y-coordinates of the body points. The last
point must be on the x-axis (ETA(NP)=0),
and all points must be negative. The last
point will be taken as the half breadth of
the body (ETA(NP)=B/2)

Data Set 5 (1 Real - FREE FORMAT)
XRAD Dimensionless radiation boundary condition
position, XRAD = %ﬂ. A value of
0.8 or greater is suggested.

Data Set 6 (1 Real - FREE FORMAT)
FS Dimensionless free surface segment length
FS= (OFFSET SPACING)/A. A value of 0.06 or
smaller is suggested.

Data Set 7 (1 Integer - FREE FORMAT)
NRAD The number of offsets on the radiation
boundary to a depth of A\/3 which
are spaced by a cosine function. A value
of 5 or greater is suggested.

Data Set 8 (1 Integer - FREE FORMAT)
NOD The number of different dimensionless fluid depths

Data Set 9 (NOD Real Numbers - FREE FORMAT)
(DH(I),I=1,NOD) Dimensionless fluid depths (DH(I)=41).

Data Set 10 (1 Integer - FREE FORMAT) . .
NOF Number of dimensionless frequencies of oscillation for the

given depths. '
Data Set 11 (NOF Real numbers - FREE FORMAT)

(DOMEGA(I),I=1,NOF)  Dimensionless frequencies of oscillation. (DOMEGA(I)=4B).
A sample input is given in Appendix A.

7. DESCRIPTION OF OUTPUT

Appendix B shows the corresponding output from the sample input of Appendix A. Output
begins with a printout of the input file name, the title, the body breadth, the offsets constituting
the body form, and parameters dealing with boundary offset spacing, and radiation condition
position. Then for each combination of dimensionless depth (DH), and frequency of oscillation (DS),
values for dimensionless added mass and damping are printed. Hydrodynamic pressure distribution

9



follows, giving the dimensionless pressure amplitude (PBAR), and phase angle (EPSILON),
for each segment of the body.

8. EXECUTION OF AMAD

The following is an example of the execution of AMAD

RUN AMAD ' (SYSTEM)

AMAD - This program will determine the added mass, damping, and hydrodynamic
pressure distribution for a laterally symmetric cylinder heaving in the
free surface of fluid with a flat bottom.

Input filename? (9 characters) (SYSTEM PROMPT)
CIRC1i.DAT (USER INPUT)
Output filename? (9 characters) {(SYSTEM PROMPT)
ADMAD.DAT (USER INPUT)

AMAD will now run and print calculated values into the output file.

9. Concluding Remarks

The boundary-integral equation method using the simple source, log (1/r), is applied to calcu-
late the hydrodynamic pressure distribution, added mass and damping of a two dimensional body.
Although only the case where the body has lateral symmetry and is heaving in the free surface of a
fluid with a flat bottom is treated in AMAD, extension to asymmetric bodies as well as to swaying
and rolling motions is relatively straightforward.

The present method requires discretization of all boundaries of the fluid domain including
radiation boundaries. While this does result in large matrices to solve, this method is advantageous
in two respects. First, the phenomenon of “irregular frequencies,” at which the more traditional
Green function method fails, is not likely to occur. Second, the resulting equations have simple
kernels and are easy to program.

On the other hand, compared with the method based on the Green function that satisfies
all the boundary conditions except for the body boundary condition, the present method requires
considerably more computer time. For example, on a DEC 20 computer, Frank’s method takes
less than 1 second of CPU time to execute the sample input given in Appendix A, while AMAD
takes approximately 5 seconds. (Note that, in Frank’s method, the fluid is treated as infinitely
deep.) A major portion of the computer time for AMAD is spent on computing the terms of the
* main matrix. In setting up the boundaries for the problem, it should be borne in mind that the
computation time is roughly proportional to the square of the number of line segments.

10
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Fig. 1. Geometry of the problem.

Fig. 2. Boundary value problem for ¢.
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APPENDIX A: SAMPLE INPUT

Data Set 1
Data Set 2
Data Set 3

Data Set 4

Data Set 5
Data Set 6
Data Set 7
Data Set 8
Data Set 9
Data Set 10
Data Set 11

CIRCLE OF RADIUS ONE

11

0.0 0.1564344 0.3090170 0.4539904
0.5877852 0.7071068 0.8090170
0.8910065 0.9510565 0.9876883 1.0
-1.0 -0.9876884 -0.9510565 -0.8910066
-0.8090170 -0.7071068 -0.5877852
-0.4539905 -0.3090170 -0.1564345 0.0
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APPENDIX B: SAMPLE OUTPUT

FILEIN=CIRC1DAT
TITLE=CIRCLE OF RADIUS ONE
BREADTH=  2.00000
SYMMETRIC BODY
OFFSET X1 ETA
0.00000  -1.00000
0.15643  -0.98769
030902  -0.95106
045399  -0.89101
058779  -0.80902
0.70711 - -0.70711
0.80902  -0.58779
0.89101  -0.45399
095106 . -0.30902
10 098769  -0.15643
11 1.00000 0.00000
[Xr-B/2VH, XRAD= 0.80
(FREE SURFACE SEGMENT LENGTH)YLAMBDA = 0.0500
NUMBER OF OFFSETS TO A DEPTH OF LAMBDA/3 - 4

V002U &t

DH=2H/B= 5.00
DS=(SIGMA™2*B)/(2G)>= 0.90
DIMENSIONLESS ADDED MASS= 0.59150
DIMENSIONLESS DAMPING= 0.47304
HYDRODYNAMIC PRESSURE DISTRIBUTION
OFFSET PBAR EPSILON

) (DEGREES)

1 0.6668 230
2 0.6475 24.3
3 0.6109 27.3
4 0.5619 324
s 0.5096 405
6 0.4691 52.6
7 04610 679
8 0.5005 83.1
9 0.5850 944
10 0.6968 100.6
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