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Abstract
&A new approach to multiple target
tracking ( MTT ) problem is developed. The data
association ( DA ) problem is solved by an
attributed subgraph isomorphism approach called
constellation matching ( CM ). The CM method
exploits, in the most direct way, the spatial
configuration of the collection of targets which are
subject to temporal and spatial constraints. The
CM-based tracking system combines the CM
technique with the Kalman filter to track and
confirm the trajectories of multiple targets. The
efficiency of this new approach is demonstrated
using real-life multiple target radar tracking data
and the results are compared to those obtained
by a multiple hypothesis tracking ( MHT )
system. /’
1. Introduction
Multiple target tracking (MTT) [1]
addresses the issues of using one or more
sensors to simultaneously track many moving
objects of interest ( targets ). It is an essential
requirement for surveillance systems to interpret
an environment that includes both true targets
and false alarms. The objective of MTT is to
partiton the sensor data into sets of

observations, or tracks, originated from the same
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source. Once tracks are formed and confirmed,
a number of quantities, such as number of
targets, target kinematics and other characteristic
parameters, can be estimated and predicted.
For single target tracking, a sequence of
target positions can be detected from sensed
data referred to as plots which can be plotted to
give a trajectory of the target. The detected
trajectory up to the current frame can be used to
predict the position of the target using standard
Kalman filter in the next frame. However, for a
MTT system, the problem is more complicated. A
major difficulty in tracking a large number of
moving targets is the uncertainty in the origin of
measurements; that is, in general it is not known
what the correct association is between
measurements and targets. For example, in the
case of a single sensor producing noisy
measurement of the ranges of N targets, there
are a total of N! possible associations between
the measurements and the targets. Thus even for
a relatively small number of targets, the number
of possible target/measurement associations can
be very large. The standard approaches to MTT
are based on some subset of the set of all
possible associations which can result in
computationally complex algorithms in the
application to collections of many targets in the
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same validation gate.

In this paper, a novel method called
constellation matching (CM) [2] is proposed to
solve this assignment problem. The CM-based
MTT system consists of two major components:
association and prediction. Because Kalman
filtering is sequential and optimal in the minimum

" mean-square sense, it is used in our MTT system
to perform the prediction. As for association, this
new MTT system uses the CM technique to
perform observation-to-track assignment. The CM
method forms a complete graph on the tracks
and matches it to graphs formed by the
measurements received in the next scan to
minimize possible errors arising from local target
positional variation or false alarms due to the
presence of noise. Our MTT system then
combines the CM technique with the Kalman filter
to track and confirm the trajectories of multiple
targets.

In Section 2, the constellation matching
technique and its application to the association
problem is described. In Section 3, we present
the algorithm of the CM-based MTT system.
Evaluation of this new MTT system using real-life
radar tracking data and the comparison with a
muiltiple hypothesis tracking (MHT) algorithm are
reported in Section 4.

2. Data Association and Constellation
Matching

Data association (DA) is the process of
assigning observations to existing tracks. It is of
fundamental importance to a MTT system. For
closely spaced targets, it is likely that confiicting

situations may arise in the following cases: 1)
when mulitiple observations fall within the same
gate; 2) observations fall within the gate of more
than one track. In general, there are two
approaches to the DA problem. One is a
deterministic approach which includes nearest
neighbor (NN) and global nearest neighbor
(GNN) data association. The other one is the
probabilistic approach based on Bayesian
framework, which includes multiple hypothesis
tracking (MHT), probabilistic data association
(PDA) and joint probabilistic data association
(JPDA).

In this paper, a novel method called
constellation matching (CM) {2] is proposed for
data association. Basically, the CM method is &
special case of a more general methodology
known as optimal attributed subgraph
isomorphism [3,4], where the optimal DA is
achieved by assigning observations to tracks in
order to minimize a chosen objective function. In
the CM method, the objective function takes into
the consideration the preservation of spatial
configuration of associated points between
consecutive frames. The CM method s
deterministic; it is, however, more general than
the NN approach since it tries to preserve
maximal spatial correspondence between
configurations of data points in two consecutive
frames. It is also similar to the MHT in the sense
that it generates possible data correspondence
between two consecutive frames. However, the
CM method chooses the best solution for the two
consecutive scans while the MHT generates a

number of candidate hypotheses and uses new




data to select the best track. The general
principles of CM-based DA is described in the
following.

Consider a group of Ntargets { T, i= 1,
..., N} represented by an attributed graph G in
which each target T, is represented by a vertex v,
and (7, T}, the distance between T, and 7, is
the attribute value assigned to the edge ( v, v;).
The attribute graph G so defined is referred to as
a constellation.

Let G71 and G2 be the constellation in two
consecutive frames respectively. Association
between targets in different frames can be
realized by establishing an optimal one-to-one
mapping f between the vertices in G7 and G2
while optimizing a certain objective function F. F
is defined as:

RG1.G = 3 Cwmy (1)

Vv vEeGT I/
where

O ifanyoneotv, v, Rv), v} Isnull

Cwvv) = {|d(v,.v)-amv,),«v,))| otherwise
2

The CM technique is then the problem of
choosing fthat achieves optimal target matching
which minimizes F, and we denote such an
optimal mapping by .
The CM-based DA technique can be
summarized as follows:
1. For each pair v;and v;in G7, compute d(v, v));
2. For each pair u;and u;in G2, compute d(u, u);
3. Find all possible mapping; that is, find a set of
points u,’, U, ..., Uy’ in G2 where u,/ can be a
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null vertex ( one that assumes a null value but
can still be matched to a v;in G7) or an actual
vertex in G2 so that v, is matched to v, in G7,

4. For each feasible mapping, compute the value
of the objective function F;

5. Choose the mapping f” that minimizes F.
When the number of targets is large, a

combinatorial explosion may happen in the CM
method, either in computation time or in storage
space. Heuristics which exploit spatial/ geometric
constraints of the constellation are introduced to
reduce the computational complexity. The
following are some of the spatial and temporal
constraints we adopt:

1. One basic assumption of a MTT system is that
the distance a target can reach within the time
interval between consecutive frames which
cannot exceed a predefined maximum value (
i.e. the maximum distance the target can travel
within that interval ). Thus, a pre-specified
maximum size of the predicted region is
imposed while finding the possible matches
between vertices in G7 and G2. This spatial
constraint is particularly useful in the track
initiation stage because there are not enough
plots to render meaningful prediction.

2. Another assumption is that the distortion of a
constellation cannot exceed a certain value,
ie. C(v, v) cannot exceed a predefined
maximum value. Hence, a pre-specified
tolerance of the change is distance between
two consecutive frames is introduced in our

CM system to eliminate the infeasible matches.

3. When there are too many vertices in G7
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needed to match with vertices in G2, a space
partitioning method using the maximum
entropy method [5] can be introduced to
partition G7 into several subgraphs ( or sub-
constellations ), each of which would contain
say 5 to 10 vertices. Thus the solution space
for CM is drastically reduced. This makes the
CM method feasible and effective for scenarios
with large number of plots.
To illustrate the idea of using CM for DA, an
example using the real-life radar tracking data is
shown in figures 1 to 4. Data are extracted from
five consecutive frames. As are used to denote
plots received in scan number 1, 3 and 5, and Bs
are used to represent those in scan 2 and 4. For
figures 2 to 4, numbers of plots are the same for
the two consecutive frames, and we observe that
the CM produces correct associations for four
scans. In figure 1, there is an extra plot in the
first scan, however, the CM method can still
perform a correct graph matching between the

two frames of data.

3. A Constellation Matching Based MTT
System

The CM-based MTT system proposed in this
paper consists of five major components:

1. Data pre-processing

The measured kinematic quantities of data
points may not be in the suitable form for
performing MTT function. Hence, the first step in
our MTT system is data pre-processing which
transform the original data format received by the

radar to a suitable one to be used for subsequent

analysis. In this study, the radar data is

transformed from polar to Cartesian coordinates.

2. Gating and clustering

The purpose of this step is to classify an
observation into one of the two categories:
isolated observation and closely spaced
observation. Clustering is used to form
constellations for the future target association.
Gating is used to partition the measurements in
the next frame into two categories: i) candidates
within the connected neighborhoods ( or gates )
of points in the previous frames, and ii) data
points that can be considered for new tentative
track initiation. Figure 5 illustrates the application
of gating to four new observations based on the
gates of two points in the previous frame. In
figure 5, P1 and P2 are the tracks. Let O1, 02,
O3 and 04 be four observations in the current
frame. Gate1 and GateZ2 are the circular gates of
P1 and P2 respectively with the maximum
estimated target displacement between
consecutive time frames as their respective
radius. Here, O7, O2 and O3 are within Gate2
whereas O7 is also within Gate?. Hence, O1, O2
and O3 can all be considered to be associated
with P2 whereas O7 can be considered as
associated with either P71 or P2. These three
observations belong to the first category. O4 is
outside of both gates and hence cannot be
associated with either P17 and P2. Hence, O4
belongs to the second category.

3. Data association using CM

CM method is used to obtain the
correspondence between the observations in the
last frame and those in the new frame as

described in the previous section.




4. Track formation

In this step, each assigned observation is put
into its corresponding track which records the
trajectory of the associated target. The maximum
size of the predicted region is used as the radius
of the circular gate for the measurement
association. There are two possible situations:
isoiated observations and closely spaced
observations. Once a new scan of measurement
is received, three cases may arise for an isolated
observation:

i) If there is no measurement in its association
gate, the region is enlarged to the pre-
specified size. If there is still none, then no
assignment can be made to that isolated
observation.

ii) If only one observation is found in its
association gate, then it is assigned to the
proceeding isolated observation.

iii)if more than one observation is found in its
association gate, then use the prediction to
choose the most suitable observation for the
assignment.

Closely spaced targets are those whose

predicted regions overlap with others. We group

these observations to form a cluster, and these
observations together become the vertices of G7.

In the new frame, choose those observations that

lie within the combined region ( or cluster ) to

form another constellation G2. Then apply CM to
find the target association between G7 and G2.

5. Trajectory prediction

In the CM-based MTT system, a Kalman filter
given as
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X(R) = (x(R), (R )
k1) = @K +KRIMR-HAB] ()
KK = ©PRH THPRH T+ AR
Plk+1) = [@-KIKHIP(R® T+ Q(K)

where x(k) = ( x(k), ¥(k) ) is the kth time point of
the specific target, is used for trajectory prediction
to provide predicted gating to reduce the number
of measurements for data association.

4. Real Data Analysis and Comparison with
the MHT

In September 1986, under the auspices of the
Technical Cooperation Program, Canada and
United States established a data base of raw
radar data on formations of closely spaced
military aircraft to support research and
development on multiple target tracking. The
experiment took place at Canadian Forces Base,
Cold Lake, Alberta. Six CF-18 fighter aircraft,
flying prescribed routes in prescribed formations,
served as "raid" targets. Formations of CF-18
fighter were flown in two missions, each
consisting of two tests. For the first mission, a
formation of three aircrafts and a formation of two
aircrafts were used; for the second mission, two
formations of three aircrafts were used. The
layouts of the two formations are shown in figure
6. For each test, the spacings between aircrafts
in the group and between groups were varied. In
both tests, the aircraft flew the same prescribed
routes. Flying time per test was about one half
hour.

Only four types of data were kept for the

database: primary radar detections (ASR),
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secondary radar detections (SSR), correlated
detections from primary and secondary radars
(SSRC) and time marks (TIME). There are four
data sets designated as R1T1.dat, RiT2.dat,
R2T1.dat and R2T2.dat. Table 1 reports the
statistics of the experimental results of the CM-
based MTT system. The first row tabulates the
total number of CMs conducted between
consecutive frames. The second row reports the
number of CMs that yield correct data association
out of the total number tabulated in the first row.
The third row reports the number of CMs which
do not yield completely correct data association
due to abrupt change of the trajectory. The fourth
row reports the number of CMs which do not
yield completely correct data association due to
the presence of noise. The fifth row reports the
number of CMs which do not yield completely
correct data association due to the missing
information in the plots.

In. order to understand the CM-based tracking
technique further, various experiments are
conducted. First, we remove all the plots without
target ID to make it easier to evaluate the
tracking performance. Since it is impossible to
show the complete result of the CM for all frames
in detail ( there are totally around 180 frames ),
we show part of the matching results in Figure 7.
In order to get detailed information on the change
of formation of this constellation we also plot a
sequence of time frames in Figure 8 where the
tracks start from the lower right corner of the
figure.

Next we use the ASR data to analyze the

performance of the CM method. There are

usually five or six targets in a data set, but only
two of them are given ID. To test the correctness
of CM, we could only use targets with known ID’s
for confirmation; i.e., during each step of target
association, we match all the observations ( both
ASR and SSR ) between the two consecutive
frames. But for testing, we are only able to
determine if the matches are correct for the SSR
data. If a target in the previous frame is
associated with the target in the succeeding
frame with the same ID, we consider it a correct
match. Part of the global resuits for one CM is
shown in Figure 9. Also, a sequence of time
frames starting from the lower right corner are
plotted in Figure 10 to illustrate the matching
results. Figure 11 and 12 show the global results
for two typical targets in Ri1T1.dat ( with ID
numbers of 130 and 205 respectively ).

To compare the efficiency of the CM-based
MTT technique with conventional methods, a
multiple hypotheses tracking (MHT) [7] algorithm
is implemented and applied to the same real data
sets for comparison. The main idea of MHT is
that if a difficult association decision arises when
a new scan of plots is received, MHT attempts to
defer the decision by assigning all reasonably
likely association as hypotheses. Each hypothesis
is then given a probability given as

L3 -poMep By

c

Nc (4)
b:_[ Ny, - H)?,B)]P,(k—1 )

=1

PR -

where P,, B, B, are the probability of detection,
the density of the false targets, and the density of




new targets, respectively. ¢ is a normalization
constant and P(k-1) is the probability of the
hypothesis L(k-1). N(x,B) denotes the normal
distribution and B = HP,H’ + R where P, is the
covariance of a target estimate for the prior
hypothesis L(k-1) and R is the measurement
noise covariance. It is anticipated that incorrect
hypotheses will lead to highly unlikely cumulative
probabilities, and hence only the most likely
hypothesis will be found at the end.

Aithough the MHT is theoretically sound, its
major handicap is the high computation cost due
to the exponentially growing hypothesis tree. The
situation becomes worse when the number of
targets or clutter are large. In order to limit the
growth of the hypothesis tree, four auxiliary
techniques used in the CM-based MTT method
are also introduced in the MHT algorithm so that
we can have a fair comparison.

1. Gating: the same gating used in the CM-based
MTT method is used here. In other words,
those plots that fall outside of the gate are not
used for potential hypotheses of the target.

2. Pruning: hypotheses with low probability are
eliminated to keep a manageable hypothesis
tree. In our implementation, we limit the
number of new tracks generated to a
maximum of three.

3. Merging: those tracks or hypotheses whose
effects are similar ( say with the same value
within the newest frames ) are merged to form
a new track or hypothesis.

4. Clustering: those hypotheses which interact
with each other are combined into one cluster.

The flow chart of our MHT implementation is

given in Fig.13.

The same four data sets are applied to both
MTT systems and the statistical results are listed
in Table 2. The statistical results are made using
same targets along same time frames. From
Table 2, the CM method appears to have a better
performance than the MHT for these four real
data sets. Figure 14 shows an example of the
comparison between the tracking of the same
target using the CM method and the MHT, and
the improvements of the CM method are
highlighted.

5. Discussion and Conclusion

In this paper, a new muitiple target tracking
system based on the constellation matching
technique is introduced. Preliminary experimental
results using real-life radar tracking data indicate
that the CM-based MTT system is efficient in the
sense that it produces over 80% of correct target
associations. It fails only when the aircraft
performs high maneuvering turns and missed
detections occur. Comparing with the MHT, the
CM-based MTT shows improvement in the
computational cost and tracking accuracy due to

the effective use of spatial constraints.
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Figure 1 Pairly Constellation Matching Result 1

Figure 2 Pairly Constellation Matching Result 2
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Figure 3 Pairly Constellation Matching Result 3
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Figure 4 Pairly Constellation Matching Result 4
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R1T1 R1T2 R2T1 R2T2
No. of Occurance of
Constellation Matching 172 177 187 168
No. of Correct 147
Constellation Matching 145 143 137
No of Wrong Constellation
Mairching due to Sudden
change 16 21 29 19
No of Wrong Constellation 5 g
Matching due to Noise 8 3
No of Wrong Constellation
Matching due to Info. Lose 3 8 6 4

Table 1 Result of the CM-based MTT System
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RIT2.DAT

RITL.DAT

Total | Correct | Wrong

CM | 72| 145 | 27
MHT| 172 130 42
R2T1.DAT

Total | Correct | Wrong

CM | 187 147 40
MHT| 187 116 71

Total | Cormect | Wrong
M 177 143 34
MHT| 177 127 S0
R2T2.DAT
Total | Correct | Wrong
| cM | 168 137 | 31
MHT| 168 131 37

Table 2 Statistical Results of the CM-based MTT and the MHT Tracking




