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Abstract 
 
This report describes implementation of a sparse direct matrix solver, which was recently 
developed at DREA, into the VAST finite element program for linear and nonlinear static 
analyses. The procedures utilized and the new developments required in this implementation 
are presented in detail. Extensive numerical verifications have been conducted using test 
problems of various sizes. The numerical results indicated that the sparse solver produced 
identical finite element solutions as the skyline based direct solver, but required significantly 
less computation time.  These benchmark problems and results are documented in this report. 
 

 

Résumé 
 
Dans ce rapport, nous présentons la mise en place d’une méthode directe de factorisation des 
matrices creuses linéaires, récemment conçue au CRDA, pour les analyses statiques linéaires 
et non linéaires par le programme d’éléments finis VAST. Nous présentons en détail les 
procédures utilisées et les nouveaux développements qu’a exigés l’installation de cet 
algorithme. Nous avons réalisé de nombreuses vérifications numériques à l’aide de problèmes 
tests de tailles différentes. Les résultats numériques indiquent que ce factorisateur de matrices 
creuses a rendu des solutions d’éléments finis identiques à celles du factorisateur direct par la 
méthode du profil, tout en exigeant un temps de calcul considérablement moindre. Ces tests 
d'évaluation de performances et leurs résultats sont décrits dans ce rapport. 
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Executive Summary 
 

Background 

Finite element analysis is an important component of the ongoing Improved Ship 
Structure Maintenance Management (ISSMM) project, which aims to provide a tool 
for rapid and automated risk assessment of damaged structures. A requirement of the 
ISSMM Software Tool (IST) now under development is that a user be able to perform 
a risk assessment, which may include one or more levels of finite element analysis, 
within a day or less. The performance of the proposed IST finite element solvers 
(VAST and MAESTRO) may have to be improved to meet this objective. 

Principal Results 
This report describes implementation of a sparse direct matrix solver that was recently 
developed at DREA, in the VAST finite element program for linear and nonlinear 
static analyses. Procedures and new developments that were required for this 
implementation are described in detail. Numerical verifications have been conducted 
using typical ship-structure test problems of various sizes. The results indicated that 
the sparse solver produced identical finite element solutions as the skyline based 
direct solver, but required significantly less computation time.   

Significance of Results 
The results show that the VAST sparse solver can achieve solution speeds more than 
ten times greater than those of the VAST skyline solver, depending on the problem. 
This means that both more complex models and more loading cases can now be 
analysed in a given time period by using the sparse solver. The benefits of this will be 
felt not only in the IST, but in all of DND’s ship structural analysis tools that use 
VAST.  

Future Work 
The sparse solver has so far only been implemented for linear and nonlinear static 
finite element analysis. Similar improvement in performance can also be expected by 
using it for dynamic response, natural frequency and buckling analyses, and its 
implementation for these analysis types in VAST is recommended. 

 

L. Jiang; 2002; Implementation of a Sparse Matrix Solver for the VAST Finite 
Element Program; DREA CR 2002-026; Defence Research Establishment 
Atlantic. 
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Sommaire 
 

Cadre 

L’analyse par éléments finis est une composante importante du projet de Gestion améliorée de 
la maintenance de la structure des navires (GAMSN) dont l’objectif est la production d’un 
outil d’évaluation rapide et automatique des risques que comportent des structures 
endommagées. Une des commandes pour l’outil logiciel GAMSN en cours d’élaboration est 
la possibilité d’effectuer une évaluation des risques où interviendrait un ou plusieurs niveaux 
d’analyse par éléments finis, en au plus une journée. Pour atteindre cet objectif, on pourrait 
devoir améliorer le rendement des solutionneurs d’éléments finis qui sont proposés pour 
l’outil logiciel GAMSN (VAST et MAESTRO). 

Résultats principaux 
Dans ce rapport, nous présentons la mise en place d’une méthode directe de factorisation de 
matrices creuses, récemment conçue au CRDA, pour les analyses statiques linéaires et non 
linéaires par le programme d’éléments finis VAST. Nous présentons en détail les procédures 
utilisées et les nouveaux développements qu’a exigés l’installation de cet algorithme. Nous 
avons réalisé des vérifications numériques à l’aide de problèmes tests de tailles différentes 
représentant une structure typique de navire. Les résultats numériques indiquent que le 
factorisateur de matrices creuses a donné des solutions d’éléments finis identiques à celles du 
factorisateur direct par la méthode du profil, tout en exigeant un temps de calcul 
considérablement moindre.  

Importance des résultats 
D’après nos résultats, le factorisateur de matrices creuses du logiciel peut résoudre certains 
problèmes dix fois plus rapidement que le factorisateur par la méthode de profil dans le 
solutionneur d’élément fini VAST. En conséquence, en utilisant le factorisateur de matrices 
creuses, on pourra analyser des modèles plus complexes et davantage de cas de charge dans 
un temps donné. Les améliorations seront ressenties non seulement dans l’utilisation de l’outil 
logiciel GAMSN, mais pour tous les outils d’analyse structurelle qui utilisent le VAST.  

Travaux à venir 
À l’heure actuelle, le factorisateur de matrices creuses n’est opérationnel que pour les 
analyses statiques linéaires et non linéaires par éléments finis. On peut également prévoir des 
améliorations similaires des résultats pour l’analyse des réactions dynamiques, des fréquences 
naturelles et du flambage. Nous recommandons donc l’implantation du factorisateur de 
matrices creuses pour ce type d’analyse dans le VAST. 
 

L. Jiang; 2002; Implementation of a Sparse Matrix Solver for the VAST Finite 
Element Program (Mise en place d’un factorisateur de matrices creuses dans 
le programme d’éléments finis VAST); DREA CR 2002-026; Centre de 
recherches pour la défense Atlantique. 
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1. INTRODUCTION 

 

VAST is a general-purpose finite element program developed by Martec Limited over the last three 

decades under sponsorship of DREA [1].  The present version of VAST provides a large selection 

of beam, shell and solid elements based on the state-of-the-art element technology and can perform 

various types of engineering analyses, including static, buckling, natural frequency, shock spectrum, 

frequency response and dynamic time-history analyses.  Nonlinearities caused by arbitrarily large 

displacements and rotations, large strains, elasto-plasticity and hyper-elasticity can also be 

considered.  The VAST program has been successfully utilized to analyze numerous engineering 

problems and its reliability and accuracy have been well established. Recently, the VAST program 

has been selected as the finite element solver for the ISSMM Software Tool (IST), a DRDC Major 

Project now under development [2]. 

 

In addition to reliability and accuracy, numerical efficiency is also very important for a finite 

element program, especially when it is applied to ship structure analyses, which often involve large 

finite element models and numerous load cases.  In recent years, several attempts have been made 

to improve the efficiency of the linear algebraic equation solution capability in VAST.  First, in 

order to reduce I/O operations involved in the skyline-based matrix solver, a new module, called 

DECOM3, was generated, in which assembly, modification and factorization of the global stiffness 

matrix were combined [3].  Secondly, a commercially available matrix solver package, named 

DRMATHLIB, was incorporated into VAST for linear and nonlinear static analyses [4]. In this 

solution option, the global stiffness matrix was first assembled and modified using the VAST 

program and the modified global matrix was then transferred to the DRMATHLIB data format 

through a user interface provided by this package.  Thirdly, a group of iterative solvers were 

implemented in VAST based on the pre-conditioned conjugate gradient algorithm [5]. Various 

commonly used pre-conditioners, including Jacobi, SSOR and incomplete factorization, have been 

provided.  Numerical benchmark results indicated that these developments improved efficiency of 

the VAST program significantly.  However, further improvements are still required. 

 

Over the last two years, an experimental finite element program called FELAM has been developed 

at DREA using an object-oriented approach [6].  In this program, a direct linear algebraic equation 

solver was developed, based on techniques that fully exploit the sparsity of the coefficient matrix. 
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The node-ordering scheme used is the minimum degree algorithm, which minimizes the number of 

non-zero entries in the factorized coefficient matrix through a process of symbolic factorization.  

Early benchmark results obtained for typical ship structural finite element models indicated that the 

sparse direct matrix solver could be as much as an order of magnitude more efficient than the 

skyline direct solver in the VAST program. Recently, an out-of-core version of the sparse solver 

was developed, thus allowing its use for problems that exceed the physical memory of the 

computer. 

 

The purpose of the present work is to incorporate DREA’s out-of-core sparse direct matrix solver 

into the VAST program for both linear and nonlinear static analyses.  Because the VAST program 

is written in Fortran, and the sparse direct matrix solver in C++, special interface code is required 

to enable data transfer between the Fortran and C++ code.  Other modifications are also needed to 

allow the sparse direct solver to function with VAST’s more extensive analysis capabilities.  

 

In the next chapter, the procedure for implementing the sparse direct matrix solver into VAST is 

described, and the new code developments required in this implementation are also presented. 

These include the development of a new module, named DECOM5, and modifications to the 

existing modules, DISP1 and DISPFV.  As mentioned above, a set of special-purpose interface 

routines were also developed to ensure proper data communication between the Fortran and C++ 

code.  These interface routines are included in a new module, named VASTSP. 

 

In order to verify the accuracy and efficiency of the newly implemented sparse direct matrix solver, 

a large number of linear and nonlinear finite element problems of different sizes have been 

considered.  These test problems were solved using the new sparse matrix solver and the various 

older matrix solvers providing in the VAST program, such as the skyline-based direct solver and 

the iterative solver based on the pre-conditioned conjugate gradient algorithm.  A comparison of 

the numerical results and computation times indicated that the sparse solver produced identical 

solutions as the existing solvers, but required significantly less execution time. The benchmark 

problems and results are documented in Chapter 3 in detail. 

 

The concluding remarks and recommendations for further work are given in Chapter 4. 
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2. IMPLEMENTATION OF SPARSE DIRECT MATRIX SOLVER IN VAST  
 

To ensure efficient implementation of the sparse direct solver into VAST, a new module, named 

DECOM5, was first developed.  This development was based on an existing module, DECOM3, 

which was developed earlier to enhance the performance of the skyline direct matrix solver.  In 

DECOM5, statistical information of a finite element problem, such as total number of displacement 

nodes (NDN), number of degrees of freedom per node (NDF), and total number of elements 

(NELM) et al., were first retrieved from the binary intermediate files generated during element 

stiffness calculations. Boundary conditions, including boundary springs, multi-point constraint 

(MPC) equations and rigid links, were then read from the input data file.  If the penalty method is 

utilized for treating the multi-point constraints and rigid links, penalty stiffness matrices must be 

computed.  After all these information become available, subroutines from the sparse direct matrix 

solver package are called to perform assembly, modification and factorization of the global stiffness 

matrix.  In the sparse solver option, element stiffness matrices are stored in a random-access file, 

which ensures the efficiency of assembly operations. 

 

Because the assembly algorithm adopted in the sparse direct matrix solver requires that the element 

stiffness matrices be formulated in terms of nodes rather than degrees-of-freedom, some special 

considerations are required for the penalty stiffness matrix formulation.  Expressing the MPC 

equations in matrix form, we have: 

 

      i

i j
j

 
  =  

 

U
G G 0

U
 (1) 

 

where iU  and jU  indicate the master and slave degrees-of-freedom, respectively.  iG  and jG  are 

matrices which contain coefficients in the multi-point constraint equations.  For rigid links, the iG  

and jG  matrices are updated continuously during nonlinear analyses using the most updated 

problem geometry.  With the above MPC equations, the penalty stiffness matrix can be readily 

formulated as: 

 

 
T
i

p i jT
j

 
 =      

G
K A G G

G
 (2) 
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where A  is a diagonal matrix containing the penalty parameters.  If the sparse direct solver is 

selected, this penalty stiffness matrix must be expended to include complete set of nodal degrees-

of-freedom for all the nodes involved in the MPC equations. 

 

In addition to factorization, subroutines from the sparse matrix solver were also needed to be 

implemented into the DISP1 module to perform forward reduction and backward substitution. For 

linear analysis, the implementation was straightforward, because it just required solution for a single 

right hand side vector R  as: 

    1−=U K R    (3) 
 

where U  denotes the displacement vector and K  the global stiffness matrix.  For nonlinear 

analysis, however, the implementation of the sparse solver was slightly more complicated because 

the use of the advanced solution algorithm for nonlinear finite element problems, such the arc-

length method, required two solutions of the linearized system in each equilibrium iteration.  For 

instance, writing the linearized equilibrium equations as: 

 

                                   ( )( 1) ( ) ( 1) ( ) ( )
int

t t k k t t k k t t kλ λ+∆ − +∆ − +∆∆ = + ∆ −K U R f  , (4)  

 
intermediate solution vectors were first computed as: 

 

 
1( 1)t t k −+∆ −=Y K R    (5) 

 ( )1( 1) ( 1) ( )
int

t t k t t k t t kλ−+∆ − +∆ − +∆= −Z K R f  

 
and the solution vector was expressed as a function of the incremental load parameter as: 

 
 ( ) ( )k kλ∆ = ∆ +U Y Z .  (6) 
 
This relationship was subsequently used in the solution step control equation, such as the constant 

arc-length equation, to determine the incremental displacements and incremental load parameter, 

simultaneously.  In the above equations, t t+ ∆  and ( )k  indicate the current time step and iteration 

number, respectively. intf  and R  denote the internal force vector and reference external load 

vector. 
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In addition to the regular displacement solution module DISP1, the sparse matrix solver has also 

been implemented into a fast version of displacement module, DISPFV, which are specially 

developed for handling large numbers of load cases.  In this module, multiple load cases are solved 

simultaneously, and the number of load cases can be considered in each solution pass depends on 

the memory available.  Separate subroutines from the sparse direct solver are utilized for treating 

the situation of multiple load vectors. 

 

In the present implementation, the sparse direct matrix solver can be simply activated by setting the 

main solution control parameter ISOLVE=4 and the master control code IDECOM=5.  In addition, 

master control codes for assembly, IASSEM, and stiffness matrix modification, ISTIFM, must be 

set to zero. 
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3. NUMERICAL VERIFICATION AND BENCHMARK 
 

In order to verify the correctness and benchmark the efficiency of the newly implemented sparse 

direct matrix solver in VAST, an extensive numerical study has been conducted using a large group 

of test example problems involving linear and nonlinear static analyses.  For all the test problems, 

numerical results produced by the new sparse solver and the various existing solution algorithms 

were compared and exact agreement between these solutions was identified.  In the following 

section, computation times required by the various linear algebraic equation solvers are compared 

for the test problems. 

 

3.1 Linear Static Analyses 
 

Six test problems involving linear static analyses of shell structures were first considered. These 

models were initially generated at DREA for testing the C++ finite element program FELAM [6] 

and were provided to Martec for the present contract. The sizes of these models vary widely from 

500 and 25000 nodes, as summarized in Table 3.1.  For the full CPF model Cpfgbl shown in Figure 

3.1, as many as 207 load cases were considered.  For all the other test models, linear elastic 

displacements and stresses were computed for single load vector.  The computation times required 

by the skyline-based and sparse direct matrix solvers for factorization (DECOM) and forward 

reduction/backward substitution (DISP) are compared in Table 3.1.  The percentage savings gained 

by using the sparse solver are shown in the last column of the table. These results clearly 

demonstrate the efficiency of the sparse direct solver.  They also indicated that the benefit of using 

the sparse solver is problem-dependent. For huge finite element models of complicated shell 

structures, for which the bandwidth reduction algorithm is unable to effectively reduce the total 

number of entries below the skyline, the sparse direct matrix solver can be a magnitude more 

efficient than the skyline-based solver.  The predicted deformed configurations of the two largest 

test models, Frm43nbSag and Hopper, are displayed in Figures 3.2 and 3.3. 

 

As has been reported before, although the pre-conditioned conjugate gradient solver implemented 

in VAST did not perform satisfactorily for shell-like structures, it was very efficient for problems 

having comparable dimensions in all three directions, such as a solid cube modeled by 3D brick 

elements [5].  To compare efficiency of the sparse direct solver and the iterative solver of this type 

of problems, an 8-noded solid element model of the PDE engine mount was considered.  The 
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engine mount contains steel top and bottom plates and a soft rubber core, which are shown in red 

and blue, respectively in Figure 3.4.  Linear static solution of the mount under lateral load was 

obtained by using both the sparse direct matrix solver and the pre-conditioned conjugate gradient 

solver. The deformed configuration predicted by both solvers was identical and is shown in Figure 

3.5.  In the solution using the iterative solver, pre-conditioner based on the symmetric successive 

over-relaxation method (SSOR) was employed.  The solution times required by the sparse direct 

solver and the pre-conditioned conjugate gradient solver are compared in Table 3.2.  For this 

particular problem, the iterative solver was more efficient.  It should be mentioned at this point that 

the skyline-based solver failed for this problem due to the huge memory requirement of the 

bandwidth reduction computation.  

 

3.2 Nonlinear Static Analyses 
 

To benchmark the sparse direct solver for nonlinear analyses, two test example problems were 

considered.  The first problem involved computation of complete load-shortening curve of a typical 

single stiffened panel, and the second problem involved large displacement, elastic-plastic analysis 

of an icebreaker girder subjected to lateral pressure load.  The sizes of these shell element models 

are given in Table 3.3. 

 

For both nonlinear problems, identical results were obtained by using the skyline-based and sparse 

direct solvers.  The final deformed shape of the single stiffened panel is displayed in Figure 3.6. The 

load-shortening curves predicted by the skyline and sparse solvers were identical as depicted in 

Figure 3.7.  For the icebreaker girder, the predicted final deformed configuration and load-

deflection curves at a typical node are shown in Figures 3.8 and 3.9, respectively.  The computation 

times for solving linear algebraic equations in both solver options are compared in Table 3.3.  The 

times reported in this table are the total times required for the entire nonlinear analysis.  For the 

single stiffened panel problem, there were 48 solution steps and a total of 149 iterations.  For the 

icebreaker problem, nonlinear solutions were obtained for the first 10 steps and a total of 30 

iterations were taken to achieve convergence. For both problems, the sparse matrix solver is 

considerably more efficient than the skyline-based solver and the percentage savings are consistent 

with those observed in linear analyses. In addition, the successful computation of the complete 

load-shortening curve using the sparse matrix solver confirmed its ability to handle linear algebraic 
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equation systems having non-positive definite coefficient matrices. 

 

 

Table 3.1 Comparison of Computation Times Required by the Skyline and Sparse Direct Matrix 
Solvers for Linear Static Analyses for Test Models of Different Sizes. 

 
Skyline Solver (sec.) Sparse Solver (sec.) Model Name # of Nodes 

DECOM3 DISP DECOM5 DISP 
Savings (%) 

LSPCurve 527 0.66 0.00 0.61 0.05 0.00 
Detail1 4929 113.97 6.70 17.30 0.39 85.34 
Frame31Hog 7160 115.9 5.49 33.23 0.44 72.26 
Cpfgbl  7534 116.11 417.38 127.21 65.25 63.92 
Frm43nbSag 10645 442.70 57.89 66.13 0.77 86.64 
Hopper 25154 7237.36 487.80 449.07 25.43 93.86 

 

 

Table 3.2 Comparison of Computations Time Required by the Pre-Conditioned Conjugate 
Gradient Iterative Solver and the Sparse Direct Solver for Linear Analysis of PDE Engine 

Mount. 
 

PCG Solver (sec.) Sparse Solver (sec.) Model Name # of Nodes 
DECOM7 DISP DECOM5 DISP 

PDEmount 14424 10.05 261.50 1068.85 42.67 
 

 

Table 3.3 Comparison of Computations Time Required by the Skyline and Sparse Direct 
Solvers for Nonlinear Analyses of Test Models of Different Sizes. 

 
Skyline Solver (sec.) Sparse Solver (sec.) Model Name # of Nodes 

DECOM3 DISP DECOM5 DISP 
Savings (%) 

LSpanel 1211 585.59 41.96 413.11 18.77 31.18 
IceBreaker 7343 6864.64 699.88 1366.45 24.99 81.61 
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FIGURE 3.1: The Finite Element Mesh for Test Model Cpfgbl 
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FIGURE 3.2: Linear Static Deformed Configuration of Test Model Frm43nbSag 
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FIGURE 3.3: Linear Static Deformed Configuration of Test Model Hopper.  
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FIGURE 3.4: Finite Element Mesh for PDE Engine Mount 
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FIGURE 3.5: Linear Static Deformed Configuration of the PDE Engine Mount. 
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FIGURE 3.6: Final Deformed Configuration of a Single Stiffened Panel Resulted from a 

Complete Load-Shortening Curve Computation 
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FIGURE 3.7: Comparison of Load-Shortening Curves Computed Using the Skyline and Sparse 

Direct Matrix Solvers 
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FIGURE 3.8: Deformed Configuration of an Icebreaker Panel under Large Displacement, 

Elastic-Plastic Deformation 
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FIGURE 3.9: Load-Deflection Curves at a Typical Node on the Icebreaker Panel Predicted by 

Skyline and Sparse Direct Matrix Solvers 
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4. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 
 

In this report, we have described a recent implementation and verification of a sparse direct matrix 

solver in the VAST finite element program.  The sparse direct solver was developed at DREA and 

has been incorporated in VAST as an external linear algebraic equation solver package to perform 

linear and nonlinear static analyses.  In order to ensure seamless connection between VAST and the 

sparse matrix solver, a new module, named DECOM5, was created and the existing modules 

DISP1 and DISPFV were modified.  To verify the correctness and benchmark the efficiency of the 

newly implemented sparse matrix solver, extensive numerical studies have been carried out using a 

group of carefully selected linear and nonlinear problems.  A comparison of the numerical results 

and computation times for using various solver options provided by VAST confirmed that the 

sparse direct matrix solver did produce correct solutions, even in the post-buckling range where the 

tangent stiffness matrix already became non-positive definite.  The sparse matrix solver can be as 

much as one magnitude more efficient than the skyline-based solver, depending on the size and 

complexity of the problem. 

 

The numerical results obtained in this work indicated that the sparse direct matrix solver is very 

promising.  However, the present implementation is only limited to linear and nonlinear static 

analyses and it should definitely be extended to eigenvalue and dynamic problems. The finite 

element procedures for eigenvalue and dynamic problems are more complicated.  In addition to 

solving systems of linear algebraic equations, repeated matrix-vector multiplication must also be 

performed.  As a result, in order to ensure numerical efficiency of the sparse solver in eigenvalue 

and dynamic analyses, additional capabilities must be developed in the sparse solver package to 

carry out this multiplication in a highly efficient manner.  To this end, the assembled global stiffness 

and mass matrices may need to be stored using the sparse matrix format. 

 

Due to the speed up of the VAST modules involved in solutions of linear algebraic equations, the 

modulus for element and stress calculations took a much more significant portion of the total 

computation time, especially for nonlinear analyses of finite element models of moderate size. An 

example is given in Table 4.1.  As a result, in order to further reduce the total computation time, 

we have to also improve the efficiency of element formulation and stress calculation in VAST, in 

addition to further speed up of the linear algebraic equation solver. 
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Table 4.1 Comparison of Total Computation Times Required by Skyline and Sparse Direct 
Matrix Solvers for Load-Shortening Curve Computation. 

 
Skyline Solver Sparse Solver VAST Module 

Time (Sec.) Percentage (%) Time (Sec.) Percentage (%) 
Element Formulation 314.07 23.81 314.61 33.89 
Matrix Factorization 825.11 62.54 462.07 49.77 

Displacement Computation 59.33 4.50 25.89 2.78 
Stress Calculation 120.76 9.15 125.89 13.56 

Total 1319.27 100.00 928.46 100.00 
 
 



 

 

20

5. REFERENCES 
 

[1] MARTEC LIMITED. “Vibration and Strength Analysis Program (VAST): User’s Manual 
Version 8.2”. Martec Limited, Halifax, 2000. 

 
[2] PEGG, N. G. “Development of the ISSMM Software Tool for Residual Strength 

Assessment of Ship Structures”. (DREA TM 1999-055). Defence Research Establishment 
Atlantic, 1999. 

 
[3] JIANG, L., NORWOOD, M. E., CHERNUKA, M. W., and COVILL, J. D. “Pilot Study in 

Improving Efficiency of the VAST Finite Element Program”. Martec Technical Report TR-
96-19, Martec Limited, Halifax, 1996. 

 
[4] JIANG, L., and CHERNUKA, M. W.  “IVAST-An Efficient VAST Finite Element 

Program for Linear and Nonlinear Static Analysis”. Martec Technical Report TR-98-05, 
Martec Limited, Halifax, 1998. 

 
[5] JIANG, L., and CHERNUKA, M. W. “Improved Nonlinear Solution Techniques in the 

VAST Finite Element Program”. Martec Technical Report TR-99-32, Martec Limited, 
Halifax, 2000. 

 
[6] SMITH, M. J. “First-Ply Failure Prediction of Fibrous Composites with Finite Element 

Analysis”. (DREA TM 2001-065). Defence Research Establishment Atlantic, 2001. 
 






