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ABSTRACT This chapter’ describes a new approach to the inverse problem of
estimating the shape of a ship-towed hydrophone array using near-field acoustic
measurements. The data consist of the relative travel tires of arrivals along direct
and reflected paths from sources deployed by two consort ships maintaining station
with the moving tow ship (the *dual-shot method™). Previous inversion algorithms
typically apply least-squares methods based on simplifying assumptions, such as
straight-line propagation and exact knowledge of the source positions. Here, a regu-

" larized inversion is developed based on ray theory, with the source positions included
as unknown parameters subject to a priori estimates and uncertainties. In addition, a
minimum-stritcture array shape is determined by minimizing the three-dimensional
curvature subject to fitting the data to a statistically meaningful level, thereby reduc-
ing spurious fluctuations (roughness) in the solution. Finally, the effact of the survey
geometry is investigated by defiring a mean sensor-position error measure based
on the a posteriori uncertainty of the inversion. The optimal source canfiguration is
determined by minimizing this error with respect to the source positions using an
efficient hybrid optimization algorithm. The inversion and optimization procedures
are illustrated using realistic synthetic examples.

6.1 Introduction

Towed arrays consist of a line of hydrophones housed in a neutrally buoyant,

acoustically transparent hose, and are commonly vsed in military sonar systems
and marine seismic exploration. For optimal array-processing performance, it is
important to determine the relative positions of the sensors (or, equivalently, the -
shape of the array}, a problem commonly referred to as array element localization

(AEL). For example, a general rule to achieve a loss of less than 1 dB in array- :
processing gain requires the sensor positions be known to within A /10, where A
is the wavelength at the frequency of interest [H*96). The shape of a towed ar-
ray is dynamic, and is influenced by changes in the tow ship’s course and speed
and by shear currents in the water column. Array-mounted instruments, such as
depth and heading sensors, can provide information on array shape. Typically,
such mnstruments-are distributed at intervals along the array, and do not provide
measurements of the positions of individual sensors. Sensor locations can be ob-
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tained by smoothly interpolating between measured positions (e.g., employing a
cubic spline), or by applying hydrodynamic modeling which attempts to account
for the dynamic behavior of an array with known properties (weight, drag, etc.)
under towing conditions.

Van Ballegooijen et al. [vB* 89} introduced an acoustic approach to towed-array
shape estimation which does provides individual sensor positions. This method
can be used to independently verify array shapes derived from depth and heading
measurements, or can be applied in conjunction with these measurements (it is
not, however, a practical approach for all operational scenarios). The approach,
known as the “dual-shot method,” makes use of explosive sources deployed in
the water column by two consort ships maintaining station with the moving tow
ship. The suggested survey configuration is to have the consort ships 500-1000 m
away from the array and spaced at an angle of 90° relative to the array center. The
measured data ideally consist of relative travel times of the acoustic arrivals along
direct, bottom-reflected, and bottom—surface reflected paths; however, in practical
cases, one or other of the reflected arrivals may not be usable. Assuming the source
positions and ocean sound speed are known, the travel-time data can be inverted
to infer the positions of the array sensors. A reference hydrophone installed on
the tow ship serves to locate the array with respect to the ship. The source depths
should be approximately equal to the array depth, and the survey is ideally carried
out at a deep-water site with a flat bottom. This ensures that the direct arrivals
travel horizontally while the reflected arrivals travel nearly vertically. This survey
geometry is designed to provide good three-dimensional (3-D) sensor localization,
with the direct-path arrivals providing horizontal (x—y) control, and the reflected
arrivals providing vertical (z) control.

The acoustic inversion applied to the dual-shot method [vB*89) represents an
application of the least-squares method (minimizing the squared data error). Other
approaches to similar AEL inversion problems are described in [H*96], [CD82],
{Mil83], (SH90], [B*96], and [OC97]. This chapter develops a new approach for
towed-array shape estimation. The algorithms presented here represent an exten-
sion of the approach to AEL recently developed for moored horizontal and vertical
hydrophone arrays in [D798b], [D*98a], and [DS99]. A number of sources of er-
ror, neglected in most previous AEL inversions, are addressed in the algorithms
developed here. For instance, AEL inversion algorithms typically treat the source
positions as known parameters. However, the inevitable errors in source positions
are often nonnegligible, and in some cases cause larger inversion errors than the
uncertainties of the travel-time data (i.e., source-position errors can represent the
limiting factor in AEL inversion). Therefore, the source locations are not treated
as known quantities here, but rather are included as unknown parameters (sflb-
ject to a priori estimates with uncertainties) in the inversion algorithm. Another
source of error often neglected involves the curvature of acoustic ray paths due
to the depth-dependence of the ocean sound-speed profile. To address this, a gen-
eral raytracing-based inversion algorithm is developed here. Third, errors in the
measured sound-speed profile affect the accuracy of AEL inversion. Sound-speed
measurernents are generally accurate in a relative sense, but can suffer from bias
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errors of up to 2 m/s due to inaccurate calibration [VH98). Hence, the sound-
speed bias is also included as a (constrained) unknown in the inversion. It should
be noted that it is also possible for the ocean sound speed to vary both laterally
and temporally in an unknown manner during an AEL survey; however, these
uncertainties are not constrained by the acoustic data and will not be considered
here.

The inversion algorithm is formulated to include both the travel-time data and °
available a priori information. In addition to prior estimates for some parameters
(source positions, sound-speed bias), the a priori information also inciudes the
physical expectation that the array shape is essentially smooth (i.e., does not in-
volve small-scale roughness or fluctuations). This is applied by minimizing the
thrée-dimensional curvature (roughness) of the array, subject to fitting the data
to a statistically meaningful level, to obtain a'minimum-structure solution. This
essentially applies a priori information about the correlation between sensor po-
sitions, rather than information about the positions themselves. Minimizing the
array curvature, subject to fitting the data, is physically reasonable, since the effect
of towing the array (even while turning) and the stiffness of the array-housing
tube typically preclude excessive roughness (e.g., sharp zig-zags in array shapes).
In addition, this procedure produces the simplest array shape that is consistent
with the data. Any deviations from a straight array are definitely required by the
data, and are not artifacts of the inversion algorithm. Seeking minimum-structure
solutions is philosophically consistent with Occam’s Razor, and in geophysical
inversion is often referred to as Occam’s inversion [C*87). In contrast, the least-.
squares method typically over-fits the data, in effect fitting the noise as well as
the data, which can lead to unphysically rough solutions that complicate acoustic
signal analysis.

A final issue concerns the use of relative travel-time measurements in AEL
inversion. Two approaches are possible here. The first approach is to remove the
source instants from the problem by considering appropriate differences between
the relative travel times as the data to be inverted. The alternative is to treat the
relative travel times as the data, and include each source instant as an unknown
parameter to be determined in the inversion. The latter approach is adopted here
since it results in data with smaller uncertainties, and since it allows the inversion
algorithm greater scope in the application of a priori information.

AEL represents a nonlinear inverse problem that is inherently nonunique, and
a closed-form solution does not exist. An effective approach is based on local
linearization and iteration, reducing the nonlinear problem to a series of linear
inversions that can be solved using methods of linear inverse theory. Section 6.2.1
considers lineanization of the AEL inversion, and Secction 6.2.2 describes Iin-
earized inversion with application of a priori information via the method of
regularization. In addition to determining the source positions, an estimate of the
error in these positions is derived. These error estimates can be applied to the prob-
lem of designing optimal AEL surveys by minimizing the sensor-position error
with respect to the source positions, as described in Section 6.2.3. The ray-theory
basis for the inversion and optimization algorithms is outlined in Section 6.2.4.
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In Section 6.3, the array-shape inversion and optimal survey design are illustrated
with a series of synthetic examples.

6.2 Theory

6.2.1 Linearization

The set of N acoustic arrival times t measured in an AEL survey can be written in
general vector form as

t =T(m)+n. 6.1

In (6.1), the forward mapping T represents the arrival times of the acoustic signals *
along ray paths between sources and receivers (an explicit expression for T and
an efficient method of computing ray arrival times is given in Section 6.2.4).
The model m of M unknown parameters consists of three-dimensional position
variables x;, y;, z; for each sensor, position variables x;, y;, z; and source instant
t? for each source, and the sound-speed bias cp. Finally, n represents the data
errors (noise). Equation (6.1) defines the AEL inverse problem: given a dataset
of measured arrival times t and knowledge of the forward mapping T, determnine
the model parameters m which gave rise to the data. As mentioned previously,
this inverse problem is nonlinear; however, a local linearization is obtained by
expanding T(m) = T{mg + m) in a Taylor series to first order about an arbitrary
starting model mg to yield -

t = T(my) + J5m, (6.2)

where 5m represents an unknown model perturbation and J is the Jacobian matrix
consisting of the partial derivatives of the data functionals with respect to the model
parameters

Jut = 3Ti(mg)/dm, (6.3)

(partial derivatives of the ray travel time are derived in Section 6.2.4). Defining
4t = t — T(my), the expansion can be written

Jém = 5t. | (6.4)

Equation (6.4) defines a linear inverse problem for m which can be solved using
methods of linear inverse theory. Once 5m is determined, the corresponding model
solution is m = my 4 dm. Since nonlinear terms are neglected in (6.4), the model
m may not adequately reproduce the measured data. In this case, the starting modetl
is updated, my < m, and the inversion is repeated iteratively until an acceptable
solution is obtained. ,

Least-squares methods are typically applied to invert (6.4), provided the inver-
sion is well-posed. For ill-conditioned inversions, some form of minimum-norm
solution is usually applied (i.e., the perturbation }dm|? is minimized at each it-
eration), such as singular value decomposition {CD82] or Levenberg-Marquardt
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[Mil83], [OC97] inversion. This approach has been referred to as the “creeping”
method [S*90] since it iteratively progresses toward a solution by a series of small
perturbations, with the final model retaining a dependence on the initial starting
model. Note that since the linear inverse problem (6.4) is formulated in terms of the
model perturbation (not the model), a priori information about the model cannot
be included directly in the inversion.

An alternative to the creeping method can be formulated by substituting m =
m — my into expansion (6.4) to obtain [Old83]:

Jm =5t + Jmy = d. 6.5)

This expression relates known quantities (the right side, which may be considered
modified data d} directly to m: the linearized inverse problem is formulated in
terms of the model, not the model perturbation. In this case, a priori information
regarding the model can be applied directly to the inversion, often leading to a
more physically meaningful solution [Q1d83). This approach has been referred
to as the “jumping” method [S*90), since the size of the model change at each
iteration is not minimized and the finai solution is generally independent of the
starting model. The jumping method was first applied to AEL inversion in [D*98a]
and [D*98b]; this approach is also followed hére.

6.2.2 Regularized Inversion

To consider the linear inverse problem (6.5), assume that the error #; on datum; is
due to an independent, Gaussian distributed random process with zero mean and
standard deviation v;. The least-squares solution for a system of linear equations
(6.5) is found by minimizing the x? misfit

x% = |1G(Jm — d)? (6.6)

with respect to the model m, where G = diag[1/vy, ..., 1/vy] weights the data
according to their uncertainties. The solution, determined by setting 8 x2/8m = 0,
is

m = [J7G7GJ] " J'GTGa. ©6.7)

The least-squares approach provides an unbiased solution, provided the matrix to
be inverted is nonsingular. In addition to the possibility of singularity, the ma-
trix can be ill-conditioned, leading to an unstable inversion (small errors on the
data lead to large errors on the solution). Ill-posed {singular or ill-conditioned)
inverse problems result when the data do not contain enough linearly independent
information to fully constrain the solution. In AEL, the source-receiver geome-
try essentially determines the conditioning of the inverse problem. Including the
source positions, as well as the sensor positions, as unknowns always leads to an
ill-posed inversion. '

The method of regularization provides a particularly useful approach to ill-
posed linear inversions. Regularization is based on formulating a unique, stable
inversion by explicitly inciuding a priori information regarding the solution. This
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is accomplished by minimizing an objective function ¢ which combines a term
representing the x? data misfit and a regularizing term that imposes the a priori
expectation that the model m in some manner resembles a prior estimate mm:

¢ = IGUIm — d)P + u[H(m - m)[%. (6.8)

In (6.8), H is a weighting matrix known as the regularization matrix (described
below), and the variable w serves as a trade-off parameter controlling the relative
importance assigned to the data misfit and the a priori expectation in the mini-

« mization. The regularized solution is obtained by minimizing ¢ with respect tom
to yield

m = 1a + [J7G7GJ + uH"H] "' [J7G7Gd - Ji]. (6.9)

The presence of the term wHTH within the square brackets in (6.9) ensures that
the matrix to be inverted is well conditioned. _

The regularization matrix H in {6.8) and (6.9) provides considerable flexibility
in the application of a priori information in the inversion. For instance, if prior
mode! parameter estimates m are available, an appropriate weighting is given by
[vS589]:

H = diagl1/&). ..., 1/Eum], ' (6.10)

where §; represents the uncertainty for the jth parameter estimate 1 ;. This weight-
ing correctly applies prior parameter estimates which can vary over orders of
magnitude in uncertainty. An alternative form of regularization is to apply a priori
information to derivatives of the model parameters [C*87], [P*92]. For instance,
if the a priori expectation is that the parameters are well approximated by a smooth
function, then an appropriate choice is 1t = 0 and

[ —1 2 -1 0 0q 0 o ... 0
' 0 -1 2 -1 0 0 o - 0
H= : ' D {6.11)
0o --- 0 ¢ 0 -1 2 -1 0
. 0 -~ 0 0 0 0 -1 2 -1

For this choice of th and H, H{m — ) represents a discrete approximation to the
second derivative of m, and the regularization term in (6.8} provides a measure of
the total curvature or roughness R of the model;

R = |H(m — m))>. (6.12)

Applying this regularization minimizes the model roughness, producing a
minimum-structure solution. In each case, the regularization is appropriately ap-
plied by choosing the trade-off parameter u so that the x? data misfit achieves
its expected value of {¥2) = N for N data [P*92], thereby applying the a priori
information subject to ensuring that the data are fit to a statistically appropriate
level. :
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The AEL inverse problem considered here involves both types of a priori in-
formation described above In particular, prior parameter estimates for the source
locations are available from the consort ship navigation, and the prior estimate for
the sound-speed bias is zero. The expectation that the towed array shape is smooth
can be applied by minimizing the three-dimensional curvature (roughness). To
simultanecusly apply two different types of a priori information to a linear in-
verse problem, an augmented objective function can be formed which includes
two regularization terms [D*98a]:

= [G(Jm - d)lz- + i Hy(m — )i + o |Ha(m — ring) 2, (6.13)

In (6.13), the first regularization term is taken to represent the a priori parameter
estimates for the source locations and sound-speed bias. Hence, iy consists of the
prior estimates for these parameters, with zeros for the remaining parameters. The
regularization matrix H, is of the form of (6.10) with diagonal elements consisting
of the reciprocal of the estimate uncertainty for parameters with prior estimates,
and zeros for the remaining parameters. The second regularization term is taken
to represent the a priori expectation of a smooth array shape. Hence, m; is taken
to be zero, and H; is of the form of (6.11) for the sensor position parameters, with -
rows of zeros comresponding to the remaining parameters. Rows of zeros are also -
included in H at appropriate locations to separate the measures of curvature in x,
¥, and z. In this case, minimizing (6.13) leads to the solution

m =5y + [J7GTG) + wH H, + woHI K] [7G7Gd — I ). (6.14)

The AEL inversion algorithm consists of an iterative application of (6.14), ini-
tiated from an arbitrary starting model. Convergence of the algorithm is based on
two criteria: (i) obtaining a misfit to the measured data of 2 = N for N data; and
(ii) obtaining a stable solution such that the rms (root-mean-square) change in the
sensor positions between iterations is A < 0.1 m. Regarding the first criterion,
note that although (6.14) is derived based on the x? misfit for the linear inverse
problem (6.5) that approximates the nonlinear problem (6.1} at each iteration, the
convergence of the inversion algorithm must be judged in terms of the misfit to
the nonlinear problem

= |G(T(m) - t)|*. (6.15)
An equivalent, and sometimes more convenient, measure is the rms data misfit
X =[x*/nN]"2, (6.16)

with an expected value {X) = 1.

The most subtle aspect of implementing the inversion has to do with assigning
values to the two trade-off parameters, wu; and u»,, which control the balance
between the data misfit and the two types of a priori information. An effective
procedure [D*98a] is to set

’ oy = op {6.17)
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for a fixed value of ¢, and determine the value of yx; at each iteration which
yields the desired x? misfit (discussed below). The final model obtained from
this procedure can then be examined to ascertain whether the value of & was
approprniate based on a comparison of the parameter residuals. This comparison
can be quantified by defining the rms misfit associated with the a priori estimates

X = [[Hi(m - iy)|*/411'72, (6.18)

where M is the number of model parameters with a priori estimates. To fit the
prior estimates within their uncertainties, X ~ 1.If X & 1, then a smaller value
of & is required; if X > 1, a larger value of ¢ is required. The inversion can be
repeated with a new value of @ until X <1 is achieved. In practice, determining
an appropriate value for o is a straightforward procedure, typically requiring only
two or three trial inversions. The value for & need not be refined too highly, since
the uncertainties of the parameter estimates are only approximate, and the sensor
positions recovered in the inversion are not generally sensitive to changes in o of
less than about a factor of 2.

The above procedure reduces the problem of determining two trade-off parame-
ters to a one-dimensional search for the parameter ¢, that produces the desired rms
misfit X at each iteration. The trade-off parameter u, is chosen so that X is reduced
by approximately a factor of 100 at-each iteration until X = 1 is achieved. Con-
trolling the change in misfit in this manner limits the change in the model at each
iteration. This helps ensure that the linear approximation is valid, and stabilizes
the convergence, Since X increases monotonically with gy, it is straightforward
to determine the value for £, which produces the desired X at a given iteration, At
early iterations an approximate value for ¢, is sufficient, and a bisection algorithm
is employed. Near convergence, the bisection solution is improved by applying
one or more iterations of Newton’s method to determine a precise value for p.

Finally, for alinear inverse problem and Gaussian noise, the marginal a posterior
probability distribution for the ith model parameter is also Gaussian, with mean
equal to the inversion result and variance given by the ith diagonal entry of the
solution covariance matrix

C = (m — (m))(m — {m))"). (6.19)
Substituting from (6.14) into (6.19) leads (after some manipulation) to
C=["G"GJ) + wH H, + 1, HIH;)"". (6.20)

This expression includes the effect of the smoothness regularization (s term).
However, it can be argued that this regularization represents a somewhat arbitrary
prior assumption which is difficult to quantify, and that it is preferable to omit this
term and define the covariance matrix

C=["G'GJ + wHH; . (6.21)

In practice, it is generally found that (6.20) and (6.21) produce very similar values,
although (6.21) always yields slightly larger variances (i.e., is a more conservative
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estimate). Finally, the expected standard deviation ¢; of parameter m; is given by

e g =G 62

The parameter error estimates o; depend on the data uncertainties through G, on the
uncertainties in the a priori parameter estimates through H;, and on the source—
receiver geometry through J. The above uncertainty analysis applies to linear
inverse problems; however, for linearized inversions such as AEL, it can provide
meaningful estimates of the expected uncertainty [DS99]. A particularly useful
application of the a posterior uncertainty is in optimal survey design, considered
in the following section.

6.2.3 Optimal Experiment Design

The previous section developed an inversion algorithm for localizing the sensors
of a towed array using sources deployed by two escort ships. This section con-
siders the related problem of determining the optimal survey geometry, i.e.. the
configuration of source positions that produces the most accurate inversion for
sensor positions. To this end, an AEL efror measure is defined based on the a
posterior uncertainties of the recovered sensor positions from {6.21) and (6.22). .
The optimal survey configuration can then be determined by minimizing this error
measure with respect to the source positions [D$99]. Note that this procedure is
based on an expected inverse problem (i.e., the array configuration, data errors, and
pai‘ameter uncertainties are assumed, but there are no data to invert). In this case,
an appropriate value of the trade-off parameter i in (6.21) can be determined
by carrying out a number of representative synthetic inversions with randomly
generated errors and uncertainties.

A number of different AEL error measures can be defined using the standard
deviations of the individual sensor-position parameters given by (6.22). Let o,
oy, o; represent the standard deviations of the x, y, z Cartesian coordinates of
the sensor positions and let o, = [6? + 67 + ¢7)'/2. The error measure that is
considered here is

: ] .
E = N; Zg,, (6.23)

where Ny is the total number of sensors to be localized. This measure represents
the mean three-dimensional error of the sensor positions. The source configuration
that minimizes this error measure will provide the sensor-position estimates that
are the most accuraie on average. Alternatively, the maximum sensor-position error
can be minimized [DS99]. Other error measures can also be devised and may be
appropriate for specific AEL objectives. For example, if accurate sensor depths
are deered more important than accurate horizontal positions, the o, term in the
definition of &, could be weighted by a factor greater than one and £ minimized,
however, such cases are not considered further here.

Optimal AEL survey design consists of determining the set of source-position
parameters that minimizes the sensor-position error £. This is a strongly nonlinear
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minimization problem which typically has a large number of local minima, and is
not amenable to linear optimization methods. Global optirization methods, such as
simulated annealing (SA) (HS94] and genetic aigorithms (GA) [HB98]), have been
apptied to minimization problems associated with geophysical experiment design,
but can be relatively inefficient. Recently, hybrid optimization methods have been
developed and applied to geophysical [L*95] and ocean-acoustic [FD99] inverse
problems. Hybrid methods combine local and global approaches to produce a
more efficient optimization. Here, a hybrid optimization algorithm that combines
the local downhill simplex (DHS) method with SA is applied to optimal AEL
survey design. For completeness, the following subsections briefly describe SA,
DHS and the hybrid simplex simulated annealing (SSA) algorithms. For more
details, see [D§99].

Simulated Annealing (SA)

SA is a global optimization method that can be applied to minimize a function
E with respect to a set of model parameters defined on a given search interval.
The algorithm consists of a series of iterations invelving random perturbations of
the parameters. After each iteration a control parameter, the temperature T, is de-
creased slightly. Perturbations that decrease E are always accepted; perturbations
that increase E are accepted conditionally, with a probability P that decreases with
T according to the Boltzmann distribution

P(AE) = exp(—AE/T). (6.24)

Accepting some perturbations that increase E allows the algorithm to escape from
local minima in search of a better solution. As T decreases, however, accepting
increases in E becomes increasingly improbable, and the algorithm eventually
converges. The rate of reducing 7" and the number and type of perturbations define
the annealing schedule. The method of fast SA (FSA) [SH76] is based on using
a Cauchy distribution to generate the parameter perturbations and reducing the
width of the distribution with the temperature. The narrow peak and flat tails of the
Cauchy distribution provide concentrated local sampling together with occasional
large perturbations, allowing a faster rate of temperature reduction than standard
SA.

Downhill Simplex (DHS)

Global optimization methods widely search the parameter space and avoid be-
coming trapped in unfavorable local minima. However, since individual steps are
computed randomly, these methods can be quite inefficient at moving downhill. In
contrast, local (gradient-based) methods move efficiently downhill, but typically
become trapped in a local minimum close to the starting model. The DHS method
[P*92] is a local inversion technique based on a geometric scheme for moving
downhill in E that does not require the computation of partial derivatives or the
solution of systems of equations. DHS navigates the search space using a simplex
of M + 1 models in an M-dimensional parameter space {e.g., Figure 6.1(a), for
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FIGURE 6.1. DHS steps in three dimensions (after [P+92])._

M = 3). The algorithm initially attempts to improve the model with the highest
value of E by reflecting it through the opposite face of the simplex (Figure 6.1(b)).
If the new model has the lowest E in the simplex, an extension by a factor of 2
in the same direction is attempted (Figure 6.1(c}). If the model obtained by the
reflection still has the highest E, the refiection is rejected and a contraction by a
factor of 2 along this direction is attempted (Figure 6.1(d)). If none of these steps
decrease E, then a multiple contraction about the lowest-E model is performed
(Figure 6.1(e)). This process is repeated until the value of E for each modet of the
simplex converges to a common value (i.e., the simplex shrinks to a single point).

Simplex Simulated Annealing (SSA)

The goal of hybrid inversion is to combine local and giobal methods to exploit the
advantages of each (i.e., to move efficiently downhill, yet avoid becoming trapped
in local minima). Here, a hybrid SSA inversion is described that incorporates
the local DHS method into a giobal SA search. Unlike standard SA, the $5A
imversion operates on a simplex of models rather than-on a single model, and
instead of employing purely random model perturbations, DHS steps with arandom
component are applied to perturb the models. To introduce the random component,
the DHS steps are not computed directly from the current simplex of models, but
rather from a secondary simplex which is formed by applying random perturbations
to all the model parameters and E values associated with the current simplex. The
perturbations to the current simplex used to produce the secondary simplex are
computed using a Cauchy distribution and reducing the distribution width with
temperature as foliows. Each source-position parameter u € {x, v, z} is perturbed
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according to
u—u+8, (6.25)

where § represents the difference between the upper and lower limits assumed
for u and the quantity { is a temperature-dependent, Cauchy-distributed random
variable computed as

¢ = [T,/ o) tan[x (n ~ 1)]. (6.26)

In (6.26), 7 is a uniform random variable on [0, 1], and T; is the temperature at
the jth step. The perturbation to the value of E associated with each model in the
simplex is computed according to

E«—E+[E, 6.27)

where ¢ is computed according to (6.26) and £ is the mean value of E for the current
simplex. Each new model proposed by a DHS step is evaluated for acceptance
based on the probabilistic criterion of SA applied to the actual (not perturbed)
energies, before and after perturbation, for that model. This provides a mechanism
for accepting uphill steps and escaping from local minima. If any DHS step results
in parameter values outside their given search interval, the parameters are set to
the interval bound prior to evaluation. After the set of perturbations is complete,
the temperature is reduced according to

T; = BT, (6.28)

where 8 is a constant less than one. An appropriate starting temperature T can be
determined by requiring that at least 90% of all perturbations are accepted initiaily.
Appropriate values for § and the number of perturbations per temperature step are
usually straightforward to determine with some experimentation.

At high temperatures where the random component of the perturbations dom-
inates, the SSA method resembles an FSA global search. At low temperatures,
where the random component is small, the method resembies the local DHS
method. At intermediate temperatures, the method makes a smooth transition be-
tween these two endpoints, The efficiency of the algorithm can be improved further
by “quenching” the optimization when it approaches convergence (i.e., when £
effectively stops decreasing) by switching to a pure DHS algorithm to avoid the
slow final convergence typical of SA. A block diagram illustrating the basic SSA
algorithm is given in Figure 6.2. : .

6.2.4 Ray Travel Times and Derivatives

For completeness, this subsection describes the classical ray theory applied to
compute the acoustic travel times and partial derivatives required in the inversion
and optimal survey design algorithms of the previous subsections. Consider an
acoustic source and receiver in the ocean at (x 7o ¥jzpyand (x;, ¥4, 2;), respectively,
with z; < z; (source above receiver is assumed in the equations given here; for

[ ]
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FIGURE 6.2. Block diagram illustrating the SSA algorithm (after [FD99]).

the reverse, a negative sign is required in all irn:égra]s uniess otherwise noted). The
horizontal range between source and receiver is given by

r =0 — xR + 5 — ¥R (6.29)

Expressions for the range r and arrival time' T along a (nonturning) ray path
between source and receiver are easily derived by applying Snell’s law to an infinite
stack of infinitesimal layers [T*76]:

= pe(zydz '
= BT (6.30)
’ ~/z. [1 — p2e2()]"
& dz . ' :
T=:""+ f , (6.31)
i e(2)[1 - pred(x)]'”?

where 1° represents the source instant. In (6.30) and (6.31), the ray parameter -

p = cos86(z)/c(z) is constant along a ray path, and defines the take-off (grazing)
angle at the source. The ray parameter for an eigenray connecting source and
receiver is usually determined by searching for the value of p which produces
the correct range (to a specified tolerance) using (6.30). An efficient procedure of
determining p for direct-path eigenrays is based on Newton’s method [D*98a). An
initial estimate py is calculated assuming straight-line propagation with a sound
speed cy representing the harmonic mean of the measured sound-speed profile
between source and receiver

Zi
op = (z; — Zj)/f ﬁz_ (6.32)
2; €(2)
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(this equation holds for z; < ¢; or z; < z;). An improved estimate p is obtained
by expanding r(p} in a Taylor’s series about py and neglecting nonlinear terms to
give

() = (o) + 522 1 = o) 63y
which has a solution
n=m+ |72 ")]-1 (r(p) — r(po). (634)
In (6.34), 3r/p is determined by differentiating (6.30) to yield
5= | T 639

If r(p)) computed from (6.30) is within the tolerance of the desired range, the
procedure is complete. If not, the starting value is updated, py <« p;. and the
procedure repeated iteratively until a satisfactory value is obtained. The travel
time along the ray path is then computed using (6.31). Since Newton’s method
converges quadratically near the solution, this is an efficient method of determining
direct eigenrays to high precision.

In addition to computing travel times, the linearized inversion algorithm requires
partial derivatives of travel time with respect to source and receiver coordinates,
source instant, and sound-speed bias. Consider first the partial derivative with
respect to horizontal coordinate x;. Employing the chain rule

aT _ 3T dp or AT Tar _li
ax;  8p ar dx; Bp apl ax

The three partiais on the right side of (6.36) can be calculated from {6.31), (6. 30)
and (6.29), respectively, vielding

ar
Fol plxi —x;)/r. 6.37)
X
Similarly, partial derivatives with respect to the other horizontal coordinates are
ar
Py p{x; —x)/r, (6.38)
xj
aT
5= plyi — ¥/, (6.39)
. 0¥
aT :
Pl Py — )/ {6.40)
Yi

The partial derivative of T with respect to vertical coordmate z; can be determined
by differentiating (6.31) 1o give

aT (% pc(x)dz " (dp 1
T — 2201372 - . 4
8~ ), 1= PP (31’:) ez (1 - prer(z])”? 4w

~J

(6.36)

e

%
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An expression for dp/dz; can be obtained by noting that

ar ¥ e(z)dz ap pe(z;)
ar =oz/ . c@dz (_.) S 1) NP
2z g [1-p22@F \3a /) [1- prer)]'”

Solving for dp/dz; and substituting into (6.41) yields

aT 1 1/2
— = —[1 - p%(z ) 6.43
dz; o) [1-» cl )] €43
Similarly,
oT 1 ‘ 172
— = 1— p%ci(z; . 6.44
5 c(z,-)[ pec(zp)] (6.44)

To account for bias in the measured sound-speed profile, let ¢(2) = ¢,(z) + cp,
where ¢,(z) is the true sound speed and ¢, is the bias. Differentiating (6.31) with
respect to ¢, {(and noting 3p/d¢ = —p/c) leads to

ar = dz
e o ; 6.45
dcy ]; c{(z) [} - pzcl(z)]l/2 ( )

Finally, the derivative of 7" with respect to the source instant 1° in (6.31) is simply
given by

aT

910
To implement numerically the equations derived above, it is assumed that a digital
sound-speed profile can be represented by a series of layers with a linear sound-
speed gradient in each layer. The simplest ray paths to trace involve bottom and/or
surface reflections, since these do not involve turning points (i.e., points where
the ray passes through zero grazing angle and changes vertical direction as the
result of refraction). Sea surface and bottom reflections are modeled using the
method of images, i.e., representing the reflected path by adirect ray path from
an image source located above the surface or below the bottom, respectively. Ray
paths involving both surface and bottom reflections require both an image source
and an image receiver. To apply the method of images, the sound-speed profile is
reflected about the interfaces in the same manner as the sources. In the following,
let {(zx. cx)} represent the sound-speed profile including the requisite reflections
for a particular reflected path, let {c}} be the corresponding sound speed gradients,
and let z; and z; be the source and receiver depths, respectively. For the case
of hinear sound-speed gradients, the integrals in equations (6.30), (6.31), (6.35),
and (6.45) can be evaluated analytically, yielding the following results, where
wy = (1 — preh)V*:

=1 (6.46)

i—1
Wr — Weq|

—, (6.47)
= P

r=
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i-1
1 cpe1(1 + wk)] :
T=1"4 —,[lo |, (6.48
ij & L% G F wern) )
o _ i Wy — Wiy (6.49)
= chkwkwk+1
EZ 1 [‘”k“ - .w_'z] (6.50)
acb k=; Ci Cit1 Cr ) ’

Calculating integrals along direct ray paths is somewhat more complicated, since
these paths can involve turning rays. Rather than simply integrating (surnming)
along the ray path from source to receiver as per the reflected rays above, the

~ possibility that the direct ray turns must be checked as it enters each layer along
its path. Consider the case of a downwa:d—propagaung ray entering the kth layer.
The turning depth for this ray is given by

zr=u+1/p—ca)fc. . {6.51)

If this depth is less than z;,; (the bottom of the kth layer) the ray turns; if not,
it proceeds into layer & + 1. If the direct ray does not turn between source and
receiver, (6.47)—(6.50) apply. However, if the direct ray tums in layer ¢, then the
correct procedure involves four steps:

(i) integrate from the source depth z; down to z, (the top of the rth layer) using
the above equations;

(ii) integrate from z, to the turning depth zr (where, by definition, wr = 0);
(iii) integrate upward from zy to z;; and

(iv) integrate upward from z, to the receiver depth z;. Applying this procedure
leads to the following equations for turning rays:

Wi — W 2w L owp - wee
r e Z = Wi LI E : = 652)
¥ P PCr = P

T =t°+§i [log Ck+1(1+wk)]

el + wiy) .

2 14w, &1 I: ci—1(1 + wy)
+ —log + — | log, —————= (6.53)
o pa ; Cimt (1 + wy—y)
ar Showp - wies 2 E 0w — we 654
ap Piclwiwes,  Cpw +Z 2¢h Wy (6:54)
=y & Wk Wkt P, o P £ Wk W1
LER ]l[w"“ —ﬂ]+%+m L [—-w"" —E’—"] (6.55)
dev 1o Ck+1 Gk a6t G La-r al T

(%}



PRI A -z

6. Regularized Inversion for Towed-Array Shape Estimation 93

600
20t
aoof,, ] "
— ar 1 — e
E E 200
> a0} >
of + ——0r |
a0}
-200
(@) (©)
180 o
_ 200t 1 _ 10l
N /\/ £ ”
" 210 1 " 200}% ]
220 300
0 100 200 300 400 200 0 200 400 600
X (m) x (m)
b {d}

FIGURE 6.3. Source-receiver geometry for the synthetic examples. (a) and (b) show the
towed array in x-v and x—z planes, respectively. (c) and {d) show the same at a larger
scale, and include the positions of the sources (asterisks) and the ship-mounted reference
hydrophone (cross).

6.3 Examples

6.3.1 Inversion for Towed-Array Shape

This subsection illustrates the regularized inversion algorithm for towed-array
shape estimation with a number of synthetic examples. Figure 6.3 shows the
source—receiver geometry for the examples. The array consists of 41 sensors, each
nominally separated by 10 m, for a total array length of approximately 400 m. The
array is curved in the horizontal (x—y) plane, as shown in Figure 6.3(a). representing
the effect of a course change by the tow ship (assumed to be to the left of the array,
see Figure 6.3(c)). The total horizontal deflection of the array is approximately
40 m. The array tilts generally upward (from fore to aft) in the vertical (x—z) plane
with a slight undulation near the center of the array, as shown in Figure 6.3(b). The

sensor depths vary from 200-210 m. The two acoustic sources are located at 500 m

range from the center of the array, and are separated by 90° with respect the array;
the source depth is 200 m (Figure 6.3(c) and (d)). The source positions are assumed
tobe known in x and y to within +10 m, representing the approximate accuracy that
could be obtained using DGPS (differential global positioning system) locations
for the consort ships. The uncertainty in source depth is 2 m, consistent with the
experiment described in [vB*89]. The reference hydrophone (mounted on the tow
ship) is located 100 m to the left of the array (Figure 6.3(c)). The ocean is 4000 m
deep with a typical N.E. Pacific sound-speed profile, shown in Figure 6 4.

The measured (synthetic) data consist of relative travel times along direct, bot-
tom reflected, and bottom—surface reflected paths. The data were computed using
the ray-tracing algorithm outlined in Section 6.2.4, and subsequently adding ran-
dom (Gaussian) errors. Several different levels of error (standard deviation) are
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FIGURE 6.4. Ocean sound-speed profile for synthetic examples.

considered. In particular, the errors for the direct-path travel times are either (.2,
0.5, or 1 ms. In each case, the errors for the bottom-reflected arrivals are twice
as large as those on the direct arrivals, while the errors on the bottom-surface
reflected arrivals are three times as large. The use of larger errors for reflected
arrivals is designed to represent two factors that affect actual data measurements
and inversion:

(1) the resolution in picking arrival times is generally lower for reflected paths
due to the loss of high-frequency energy; and

(ii) modeling errors are larger for refiected arrivals due to the fact that the sea
floor and surface are not completely flat and smooth.

In addition, the prior estimates for the source locations used in the inversion
included Gaussian errors with standard deviations of 10 m for the x- and y-
coordinates and 2 m for the z-coordinate. Finally, a sound-speed bias of standard
deviation 2 m/s was included in the sound-speed profile used in the inversion.
Figures 6.5 and 6.6 illustrate the convergence properties of the inversion algo-
rithm for data with an uncertainty of 0.2 ms (direct arrivals). Figure 6.5 shows the
convergence in terms of the rms data misfit X, the rms change in sensor positions
between iterations A, the rms misfit to the prior parameter estimates X . and the
array roughness R. The starting model (iteration Q) consists of a straight array
(see Figure 6.6(a)) with the source positions corresponding to the prior estimates.
Figure 6.5(a) shows that the data misfit X decreases by more than three orders of
magnitude over the first two iterations, then remains constant at the desired value
of X = 1 foriterations 3 and 4 while the rms change decreases below the threshold
of A = 0.1 m for convergence (Figure 6.5(b)). The rms prior misfit increases

over the first two iterations from X = 0 at the starting model to a value of (.85

Yy -
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FIGURE 6.5. Convergence properties of the regularized inversion algorithm: (a) rms data
misfit X; (b) rms sensor-position change between iterations A; (¢) rms prior misfit X and
(d) array roughness R,
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FIGURE 6.6. Towed-array shape at various iterations of the inversion: (a) and (b) show the
starting model; {c) and (d) show iteration 1; (&) and (f) show iteration 2; and (g) and (h)
show iteration 4 (final model). Dotted lines indicate the true array shape.
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FIGURE 6.7. Towed-array shape esttmates from regularized inversion for different error
levels: () and {(b) T ms; {b) and (¢) 0.5 ms; and (d) and (e) 0.2 ms.

(Figure 6.5(c)), which approximates the expected value of unity. Sirnilarly, the
array-shape roughness R increases from an initial zero value to a stable final value.
Figure 6.6 shows the array shape at various iterations of the inversion: it is apparent
that the inversion algorithm introduces structure into the solution in a controlled
manner. The final solution, shown in Figure 6.6(g) and (h), is an exceilent estimate
of the true array shape but, notably, exhibits slightly less overall curvature than the
true shape.

Figure 6.7 illustrates the results of inverting datasets with differing error levels.
Figure 6.7(a) and (b) shows the inversion result for data with an uncertainty of I ms
(direct arrivals). The estimated array shape is a reasonably good approximation
of the true shape, although it is noticeably smoother due to the limited resolving
power of the noisy data. Note, in particular, that despite relatively large errors on the
data, the solution exhibits no spurious structure, but rather represents a conservative
estimate of the array shape, exhibiting the minimum structure required to fit the
data. Figure 6.7(c) and (d) and Figure 6.7(e) and (f} show the array shapes estimated
by inverting data with errors of 0.5 ms and 0.2 ms, respectively. As the data errors
decrease, the estimated array shape more closely agrees with the true array shape.
However, in each case the solution exhibits slightly less structure (curvature) than
the true array.

To illustrate the advantages of the regularized inversion algorithm, the test cases
shown in Figure 6.7 are repeated in Figure 6.8 applying a standard least-squares
inversion algorithm that minimizes the data misfit and wreats source positions as
known parameters. Figure 6.8(a) and (b} shows that for data errors of 1 ms, the
least-squares solution is substantially rougher than the minimum-structure result
of Figure 6.7(a) and (b), with spurious fluctuations of up to 5 min x and y, and up
to 3 m in z. The fluctuations result from the tendency of a least-squares approach to
over-fit the data, in effect fitting the noise as well as the data. In addition, the array-
shape estimates in Figure 6.8 exhibit greater offsets from the true positions as a

&)
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FIGURE 6.8. Towed-array shape estimates from lea:st—squares inversion for different error
Ievels: (a) and (b) 1 ms; (¢) and (d) 0.5 ms; and (&) a:nd () 0.2 ms.
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FIGURE 6.9. Towed-array shape estimates from regularized inversion using only direct and
bottom-rcﬂectcd paths for different error levels: (a) and (b) 1 ms; {(c) and (d) 0.5 ms; and
(e} and (f) 0.2 ms. . .

result of treating (erroneous) source positions as known parameters. Figure 6.8(¢)~
(f) show that the magnitude of the fluctuations decrease as the data errors decrease;
however, the least-squares results remain signiﬁcantly poorer than those of the
regularized inversion,

The advantages of the reguiarized inversion are accentuated in cases where
travel-time measurements are not available along all three ray paths. To illustrate
this, Figures 6.9 and 6.10 show the regularized and least-squares results for the
same data errors as in Figures 6.7 and 6.8; however, the inversion is applied to only
the direct and bottom-reflected acoustic arrivals (i.e., the datasets do not include
the bottom-surface reflected arrivals).

'
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FIGURE 6.10. Towed-array shape estimates from least-squares inversion using only direct
and bottom-reflected paths for different error levels: (a) and (b} 1 ms; (¢) and (d} 0.5 ms;
and (&) and (f) 0.2 ms.

Comparing Figure 6.9 to Figure 6.7 (regularized inversion with complete data),
it is apparent that the effect of incomplete data on the regularized inversion is
that the solution simply becomes smoother, reflecting the decreased ability of
the dataset to resolve the array structure. However, Figure 6.10 shows that the
least-squares solution fares considerably worse with incomplete data. exhibiting
substantial spurious fluctuations and large”offsets from the true solution. Even
poorer results (not shown) were obtained for the léast-squares inversion when the
bottom-reflected arrivals (rather than the bottom—surface reflected arrivals) were
omitted.

6.3.2 Optimal Source Configuration

In this subsection, the AEL error measure and optimization procedures developed
in Section 6.2.3 are applied to investigate the effects of source geometry on towed-
array shape estimation using the dual-shot method. The test case considered here
is similar to that in Section 6.3.1, with a 400 m array towed at 200 m depth in
4000 m of water. However, since the optimization procedure is designed for a
representative (expected) inverse problem, a straight array is assumed here. The
data errors are 0.2 ms for the direct amrivals, 0.4 ms for bottom-reflected arrivals,
and 0.6 ms for bottom-surface reflected arrivals.-The source positions are assumed
to be known to within [0 min x and y and 2 m in z, and the potential sound-speed
bias has a standard deviation of 2 m/s. A number of randomly generated trial
inversions indicated that a trade-off parameter of 1 = 10 is appropriate for this
problem. The SSA algorithm described in Section 6.2.3 is applied to determine
the source positions (relative to the array) that minimize the mean sensor-position
error E given by (6.23).
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FIGURE 6.11. Convergence of the SSA optimization for source geometry: (a) shows the

mean sensor-position error £; and (b)~(g) show the source coordinates {x;, y;.z;, j =
1.2}

The convergence of the optimization procedure is illustrated in Figure 6.11,
which shows the mean sensor-position error E and the source coordinates
{x;,v;,2z;. j = 1,2} as a function of temperature step (all models in the simplex
are shown). The search limits were set to be (—800, 800) m for x and y, and
(100, 900) m for z. The annealing schedule for the optimizations was based on
the requirement that ten model perturbations be accepted at each temperature step,
with the temperature reduced by a factor of 8 = 0.95 between steps. Figure 6.11
shows that jnitially the source coordinates fluctuate over their entire allowed range,
and sensor-position errors as large as £ = 19 m are obtained. As the temperature
is reduced, the error decreases steadily (although not. monotonically), and the

" source coordinates gradually converge to fixed values. By temperature step 250,

the error has essentially stopped decreasing, indicating that the various models
in the simplex are simply fluctuating between good solutions. The optimization is
then quenched to collapse the simplex to the single best model. The sensor-position
error for the final solution is £ = 4.95 m.

The optimal sensor configuration obtained by the SSA algorithm is shown in
Figure 6.12. Figure 6.12(a) shows the source positions in the x-y plane; dotted lines
indicating a 90° angle with respect to the array center are included as a reference.
Note that, unlike the survey geometry suggested in [vB¥89], the two sources are
not equidistant from the array, and do not fall on the 90° lines. Figure 6.12(b) shows
the source positions in the x-z plane. The sources are located at different depths,
slightly deeper than the array. The optimal configuration in Figure 6,12 appears to
be unique: repeating the SSA optimizations with different sequences, of random
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FIGURE 6.12. Optimal source positions (crosses) in: (a) the x—y plane: and (b) the x-z
plane. The heavy line indicates the array position, and the dotted lines in (a) indicate a 90°
angle with respect to the array center.

model perturbations produced configurations that were essentially identical to that
shown, up to reflections about the x- and/or y-axes. However, Figure 6.11 indicates
that in the course of the optimization, many different configurations were obtained
that were almost as good as the optimal configuration. Therefore, it is interesting
to compare the optimal configuration to the source geometry suggested in [vB*89]
(sources at the same depth as array, equidistant from the array and separated by
50°). To this end, Figure 6.13 shows the mean sensor-position error E computed
for the suggested configuration as a function of the range » from the sources to the
array center. The error has a minimum of £ = 5.13 m at a range r = 339 m. At
shorter ranges, the error increases rapidly; at longer ranges, E increases gradually.
Theerror E = 4.95 m obtained for the optimal configuration is included as a dotted
fine in Figure 6.13. It is apparent that the difference in the sensor-position error
that results from using the optimal configuration or the suggested configuration

[

200 400 600 800 1000 °
r{m)
FIGURE 6.13. Mean sensor-position error £ for the sources at the same depth as array,
equidistant from the array and scparated by 90° as a function of the range » from the
sources to the array center. The dotted line indicates the error for the optimal configuration.
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"is small (for a good choice of r}. In practice, the source geometry suggested in

[vB*89] would seem to be an excellent chotce.

6.4 Summary

This chapter considered the inverse problem of estimating the shape of a towed
hydrophone array using the relative travel times of direct and reflected acoustic
arrivals from sources deployed by a pair of consort ships (the dual-shot method).
An algorithm was developed to invert dual-shot data for the most meaningful array-
shape estimate. To date, this inversion has been solved as a least-squares problem
(minimizing the squared data error), assuming straightline acoustic propagation
and neglecting the inevitable errors in the source positions. The new approach
is based on an iterated linearized inversion of the ray-tracing equations, which is
solved using the method of regularization. The three-dimensional positions of both
sources and sensors are treated as unknowns, subject to a priori information. For
the sources, the prior information consists of position estimates and uncertainties.
For the sensors, the prior information is that the array shape is expected to be
smooth: this is applied by minimizing the three-dimensional curvature of the array
to obtain a minimurm-structure solution. The regularized inversion provides smooth
solutions without the spurious fluctuations present in the least-squares solution.

Fluctuations in the least-squares solution result from the tendency of a minimum-
misfit approach to over-fit the data, in effect fitting the noise as well as the data.
The regularized inversion avoids this by trading off data misfits with physical a
prior information. In addition, treating source positions as (constrained) unknowns
reduces offset-errors in the solution, particularly in cases when not all acoustic
arrivals can be used in the inversion.

Finally, the effect of the survey geometry was investigated by quémtifying the
sensor-position error using the a posterior uncertainty of the inversion. The optimal
source configuration was determined by minimizing the sensor-position error with
respect to the source positions using an efficient hybrid optimization algorithm.
It was found that the standard source configuration typically employed for the
dual-shot methed, although nonoptimal, provides a good, practical approach to
the acoustic survey.
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