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In this paper a simplified approach is described for the computation of scattering from finite length
rough surfaces. In an earlier paper [Fawcett, J. Acoust. Soc. 118, 1348-1357 (2005)], it was
described how to solve such problems by considering a scattering chamber and using the method of
wavefield superposition to satisfy the various boundary and continuity conditions. In this paper, a
form of the field in the interior of the scattering chamber is assumed and the solution to the
scattering problem is reduced to solving a system of equations just along the rough surface. The
solution to this system of equations can then be used to compute the scattered or total fields
anywhere in the half-space. The results of this approach are compared to those obtained by other
methods. © 2009 Acoustical Society of America. [DOI: 10.1121/1.3085645

PACS number(s): 43.30.Hw, 43.30.Gv [WLS]

I. INTRODUCTION

In order to compute the field scattered from a rough
surface, various authors'~ have utilized boundary integral
equation methods (BIEMs). In Refs. |1 and 2, exact integral
equation solutions to an infinite surface scattering problem
are derived with the assumption that the surface is periodic
in nature. In Refs. 3 and 4, the integral equations for the
unknown fields on an infinite scattering surface are truncated
at finite integral limits. These limits can be varied until a
stable solution 1s obtained. In addition, the incident field is
tapered in order to minimize the effects of the truncation. In
the case that the deformations to the half-space are only in-
ward, one can use the half-space Green’s function appropri-
ate to the flat portion of the surface and obtain an integral
equation only on the deformed surface.” However, this ap-
proach is not valid if the deformation contains outward sec-
tions. In Ref. 6, an exact spectral formulation is described for
the solution of scattering from a finite periodic surface. There
are many other numerical approaches (see, for example,
Refs. 7 and 8) which can be used to model the scattering
from a rough surface.

Wavefield superposition methods have been used by
several authors™™"" in target scattering and range-dependent
propagation problems. In Ref. 9 wavefield superposition is
used to represent the scattered field external to a target and
the computational results are compared to those obtained us-
ing a Helmholtz integral representation. In Refs. 10 and 11,
wavefield superposition is again used to model target scatter-
ing but in the presence of waveguide or half-space bound-
aries. In Refs. 12 and 13 the method is applied to compute
the scattering from range-dependent seabed interfaces. In
these cases, the wavefield superposition method involves uti-
lizing multiple sets of point sources to model the fields (pos-
sibly elastic) in the seabed and in the water column. In the
present paper and in Ref. 14, a novel application of the
wavefield superposition method is used to reduce infinite sur-
face (but finite roughness) scattering problems to finite com-
putational domains. In Ref. 14 we described some of the
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problems associated with modeling scattering from a general
finite roughness section, particularly in the case of a distant
point source and possibly distant receivers. Truncated inte-
gral equation methods, including the extrapolation of the so-
lution using the half-space Green’s function in the Helmholtz
integral, were discussed. In that reference, the concept of a
surrounding scattering chamber (including the rough surface
as one of the boundaries) was introduced and wavefield su-
perposition was used to represent the interior and exterior
pressure fields. In this approach, there is a set of point
sources just exterior to the rough surface, a set of sources just
exterior to a bounding arc in the water column, and a set of
sources just interior to this same arc. The first two sets of
sources are free space sources and represent the interior field
in the scattering chamber. The last set of point sources are
the appropriate half-space sources which represent the exte-
rior field and ensure that this field satisfies the exterior
boundary conditions. The continuity conditions across the
arc and the boundary condition along the rough surface allow
for the solution of the coefficients of all these sources. In the
case that M coefficients are used for each set of sources, then
the solution of a system of 3M X 3M equations is required.

In this paper, we start from the same approach as Ref.
14. However, by assuming a representation of the field in the
interior, we can reduce the scattering problem to solving a
simple M X M system along the rough boundary. In Sec. II,
we describe this new approach and in the numerical ex-
amples we examine its accuracy for some rough surface scat-
tering problems using both integral equation approaches and
the full method of Ref. 14 for comparison.

Il. THEORY

In Fig. 1 a schematic of a pressure-release surface rough
surface bounding a constant velocity half-space is shown.
The curves C, and C, comprise the boundary and define the
curves for the placement of point sources in the computa-
tional method of Ref. 14, The curve C; includes the rough
surface and small flat sections of z=0, the curve C, is a
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FIG. 1. A schematic diagram showing the bounding curves and point
sources which are used in the field representations of Ref. 14 and this paper.

semi-circle in the water half-space. The sources exterior to
the scattering chamber (indicated by squares in Fig. 1) rep-
resent the field in the interior of the chamber. The sources
interior to C, (triangles) express the exterior, scattered field
and will not be considered in this paper. The positions of the
displaced point sources, exterior to C; will be denoted as S,
Jj=1,...,N and those exterior to C, as §;, j=N+1,...,2N.
These sources will have complex amplitudes defined as {d;}
and {b}, respectively. Thus, we can write for the field inte-
rior of Q=C, U C,,

P'(R)= 2 4,GAR:S)) + X b,GAR:S)). (1)
& C,

where G, denotes the free space Green’s function,
GAR:S)) =—il4Hy(kIR - S |), (2)

R denotes the Cartesian coordinate (x,z) and k denotes the
wavenumber in the half-space.

In this paper, instead of using Eq. (1) we will assume a
representation of the pressure field in the interior of £} in the
form

N

P'(R) =2 a,GAR:S ) + pi“(R). (3)
=

where p}r"" is the half-space incident field for a pressure-
release surface,

P = — A H kN (x - x) + (z - 2,)7)
~ HY(kN(x—x,)* + (2 + 2)9)] (4)

for a point source at (x,,z,). In Eq. (1) there is no explicit
representation of the incident field; however, in Ref. 14 it is
explicit in the representation of the external field and it im-
plicitly enters into the interior field through the continuity
conditions satisfied by the interior and exterior fields along
C,. In Eq. (3) we have reduced the number of point sources
to be just those lying to the exterior of C, but we have
explicitly introduced the half-space incident field. Intuitively,
it seems reasonable to consider the pressure field in () as
composed of the incident field, corresponding to the infinite
undeformed surface, and a scattered field represented by
point sources along the rough section of the pressure-release
surface. The coefficients a; in Eq. (3) are determined by sat-
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isfying the pressure-release boundary condition at the dis-
crete points R; along C|,
N
2 aGAR;:S)=-p“R), i=1,....N. (5)
j=1

The expression. Eq. (3), represents not only the interior
pressure field but can be used to define its spatial derivatives.
Thus, once we have found a; we can generate the normal
derivative of the pressure field along C, using the formula

N

ap(R; IGAR:S) Ip™(R,
p( l):Eaj [{ i 1}+ ph( l).
an on an

(6)
J=)
Let us consider a spatial point R=(x,z) that lies outside the
bounding curve C,. From Ref. 14, we can compute the pres-
sure field at this point from an integral over just the rough
section C,
s OPRG)) . v e

p(R):—f G,(R.R(s ))pTds +p™R).  (7)

¢

Here G,(R.R(s') is the half-space Green’s function

G(R.R(s')) = — iH4[H)(k\ (x = x(s"))* + (z = 2(s"))?)
~ Hyk\(x=x(s")*+ (z+2(s))].  (8)

For points R within (), the expression of Eq. (3) is used to
compute the field. The accuracy of Eq. (7) in computing the
pressure field in the domain exterior to £} is dependent on the
accuracy of dp(R)/dn computed using Eq. (6). This, in turn,
depends on the accuracy of the representation of the wave-
field, Eq. (3) (and its spatial derivatives), near the rough
surface C,.

The method of this paper will also apply for the case of
a rigid surface with the appropriate change of boundary con-
ditions and Green’s Function. In this case, Eq. (5) becomes

N n

IGAR;:S ap™(R,
Eaj )‘{ i }}=_ Ph ( )‘
=1

i=1,....N, 9
P 5 i (9)

where now pi™ denotes the half-space incident field for a
rigid boundary condition along z=0. The external field rela-

tion, Eq. (7), becomes

p(R) = f E:'(R.R(s'])p(.c’]ds'+p},“"(R). (10)
c on

|

In Ref. 14 we used the method of wavefield superposi-
tion to solve the continuity and boundary conditions along
the boundaries of the numerical scattering chamber. In this
paper we have reduced the scattering problem to simply sat-
isfy a boundary condition along C,. If we allow the super-
position point source positions §; in Egs. (3) and (9) to ap-
proach the boundary, we obtain a boundary integral equation
for the unknown source distributions a(s) for these two
cases, pressure-release and rigid boundary conditions, re-
spectively,

f G(R(s):R(s" ) als')ds" = -pil“C(R(s)}, (11)
C
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JGR(s);R(s)) . py(R(s)
— ) = ————
fu an on

(12)

—als)2 +

Here we have used subscripts with the incident fields to em-
phasize that they are different in the two cases and are the
half-space incident fields appropriate to the boundary condi-
tion along z=0. The advantage of using the boundary inte-
gral formulation is that it avoids any questions related to the
optimal positioning of the superposition point sources rela-
tive to the surface. The disadvantage is that one must account
for singularities in the Green’s function and its normal de-
rivative as a source point approaches the boundary. In Eq.
(12) this results in the term —a(s)/2. In Eq. (11) the singu-
larity is logarithmic and is not explicitly shown but can be
analytically integrated over a discrete panel. Once the distri-
butions a(s) have been found, then the integral form of Eq.
(3) can be used for both the pressure-release and rigid bound-
ary conditions to compute the pressure field within (2,

p’(R)=f al(s" )GAR:R(s"))ds" + p;“(R). (13)
L'l

Also once a(s) has been determined, then either Eq. (7)
(pressure-release boundary condition) or Eq. (10) (rigid
boundary condition) can be used to compute the field exte-
rior to (1. In order to use Eq. (7), we compute (in a dis-
cretized form) the normal derivative of the field along C,
from

a(j;)dsf + apinc(R(s))
an an

(14)

dp(R(s)) J’ JGAR(s);R(s"))
m ) ;

and in order to use Eq. (10) for the rigid boundary condition,
we compute the pressure field along C, using

p(R(s})=j GAR(s);R(s"))als")ds" + p™(R(s)). (15)

C

In both these cases, since we are computing the field or its
normal derivative upon the surface itself, we must use the
appropriate analytic evaluation of the singular behavior when
the evaluation point R(s) is coincident with one of the dis-
crete points R(s").

In the numerical examples, we will require a method to
benchmark the proposed method of this paper. One possible
method would be to use the wavefield superposition method
of Ref. 14 using all the unknown sources. However, as an
independent approach we will implement a standard, trun-
cated BIEM. For the pressure-release and rigid conditions,
we will use the following integral formulations:

13p(R(s)) f dG(R(s);R(s") dp(s") |
- + ds
2 dn é an an'
_ 5’P'"C(R(S))’ ()
an
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FIG. 2. The total pressure fields (amplitude) for the pressure-release bound-
ary condition: (a) the result from a standard truncated BIEM, (b) the result
using the SISC method, and (c) the amplitude of the difference between the
two computed fields. The image values in this panel have been scaled so that
the maximum value of the grayscale corresponds to 0.5% of the maximum
value of the colorbar used in the upper two plots.

P(R(s)}_J‘ aG(R(S);R(S'))p(s')dS'=pi"C(R(S))-
[

2 on'
(17)

In this case, the incident field and the Green’s function are
those for free space, in contrast, to Egs. (11) and (12) where
the half-space Green’s functions are used. The integral equa-
tions of Egs. (16) and (17) should be over the entire half-
space boundary, but, numerically we will truncate them after
a sufficient length (i.e., the curve C will, in general, be
longer than C)) to have achieved a convergent solution.

lll. NUMERICAL EXAMPLES

For the numerical examples, we consider a flat surface
with a tapered sinusoidal deformation given by

z(x) =sin(mx)cos((x/3)w/2), -3<x<3, (18)

Z(x)=0, |x]>3, (19)

where increasing depth corresponds to increasingly negative
values of z. A 1500-Hz point source is located at a range of
4 m [with respect to (0,0)] and angle of 5° off the x-axis. For
the truncated integral equation approach, we consider the
computational domain —15 m=x=15 m with 1500 discrete
points used. For the superposition method, we consider the
interval =33 m=x=<3.3 m to define C; of Fig. | and the
unknown point source distribution using 600 discrete points.
The bounding curve C, is the semicircle |[R|=3.3 m. One can
certainly obtain accurate solutions using fewer than 600
points but for the error comparisons shown in Figs. 2 and 3
these values were used. Once the point sources have been
determined for the interval [-3.3 m 3.3 m], the pressure field
can be computed for a much larger numerical grid. Equation
(7) [after using Eq. (14) to compute the normal derivative on
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