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Abstract

Significant progress has been made in the direction of nanotube functionalization with polymers.
The initial approach, which involved the introduction of a non-conjugated polymer (poly(styrene
sulfonate)) was found to result in films that were poorly conducting and would likely not be
suitable for supercapacitor applications. We therefore turned our attention to the introduction of
conjugated polymers on the nanotube surface. Using the Suzuki coupling protocol that was
described in the previous report, we have prepared a series of nanotubes that are covalently
functionalized with conjugated polymers. In addition we have begun the preparation of
supramolecularly-functionalized nanotubes, in which the pristine nanotube structure is preserved.
These materials have been used to produce thin films, and the conductivity of these films has
been investigated.

Résumé

Des progr[s importants ont [t[ralis(s dans le domaine de la fonctionnalisation de nanotubes au
moyen de polym[tes. Il a [t[0[fabli que lfapproche initiale, consistant Cint[grer un polym(te non-
conjugul] soit le sulfonate de polystyrihe, donne des pellicules de piltre conductibilit[] qui ne
pourraient vraisemblablement pas [tre utilisfés pour fabriquer des supercondensateurs. Nous
avons donc dleidJd[Mtudier 17ajout de polymltes conjuguls [la surface des nanotubes. On a
utilis(]le protocole de couplage de Suzuki, dlerit dans un rapport antlTieur, pour priparer une
s(rie de nanotubes fonctionnalis(s formant des liaisons covalentes avec des polym(ies conjuguls.
Nous avons aussi amorc[ldes travaux de priparation de nanotubes fonctionnalis’s [11T¢chelle
supramolltulaire qui permettent de priserver la structure initiale du nanotube. Ces mat[Tiaux ont
servi [Iproduire des couches minces qui ont fait 1[ébjet d[Ttudes de la conductibilit[’]
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Executive summary

TIF Progress Report: Functionalized Carbon Nanotubes as Novel
Supercapacitor Electrode Materials

A. Adronov; DRDC Atlantic CR 2007-272; Defence R&D Canada — Atlantic;
December 2007.

Introduction: The military has a requirement for high pulse power, which is not met by
conventional energy storage devices. Supercapacitors are energy storage devices that exhibit
higher power density than batteries and fuel cells, and higher energy density than conventional
capacitors. These characteristics make supercapacitors promising as high pulse power sources.
The goal of the Supercapacitor TIF, under which this contract falls, is to develop a supercapacitor
device to be used in conjunction with a high energy density source, such as a battery or fuel cell.
The resulting hybrid configuration is a relatively lightweight source of power, in which the
supercapacitor component may be quickly discharged, delivering the transient power required,
then quickly recharged by the high energy density component. Materials which are especially
suited as electrodes in supercapacitors are those that exhibit high electrical conductivity and high
surface area. Another critical characteristic for such materials is a favourable porosity
distribution that maximizes surface area and allows for electrolyte ion mobility. The
development of polymer [lcarbon nanotube composites that possess these properties is the focus
of this contract. This contract report summarizes progress at McMaster University in the first
year of the Supercapacitor TIF project.

Results: First generation materials, prepared with non-conjugated polymers, resulted in films
that were poorly conducting, thus attention was turned to the introduction of conjugated
polymers. A series of nanotubes covalently functionalized with conjugated polymers was
prepared and investigated. In addition, the preparation of supramolecularly-functionalized
nanotubes was achieved, and allowed the production of thin films with interesting conductivity
properties.

Significance: The electrical conductivity of some of the materials made is surprisingly high and
may indicate significant charge transfer between the polymer and the nanotubes. Maximizing the
conductivity and microstructure, as a function of polymer packing, may result in the development
of lightweight materials that function well as supercapacitor electrodes, for high pulse power
applications.

Future plans: The capacitance of the films will be determined, as well as more accurate

conductivity determination using thicker films. In addition, the films will be characterized more
extensively, especially with respect to microstructure and surface area.
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Introduction ou contexte: Les dispositifs classiques de stockage dThergie ne rlpondent pas aux
besoins du secteur militaire en matilte de sources d[Thergie [J impulsions [levlies. Les
supercondensateurs sont des dispositifs de stockage dlTnergie qui offrent une puissance
volumique sup(tieure [ celle des accumulateurs et des piles [J combustibles et une densit[]
dThergie suplrieure [] celle des condensateurs classiques. Les caractltistiques des
supercondensateurs sont dfun grand int(t[t, car ceux-ci pourraient constituer des sources
dMnergie Cimpulsions [levles. Le projet du FIT portant sur les supercondensateurs, dans le cadre
duquel les prisents travaux sont rlalis[8, a pour but de mettre au point un dispositif de ce type
pouvant [tre combin[][June source [Jforte densitId[Thergie, par exemple un accumulateur ou une
pile DJcombustible. Llensemble hybride constitue une source dlalimentation relativement 17g[Te;
dans un tel assemblage, le supercondensateur peut [ire rapidement d[tharg[]pour fournir la
puissance transitoire requise, puis [fre rapidement recharg(]au moyen du composant [ forte
densit[] d[Thergie. Les mat(tiaux qui pourraient [tre utilis(s pour fabriquer des [lectrodes de
supercondensateurs sont ceux qui possCdent une conductivit[]ectrique et une surface efficace
[evles. Parmi leurs autres caractl(tistiques cruciales, on compte la ripartition favorable de la
porosit[] qui optimise la surface efficace du matlriau et favorise la mobilit’] ionique de
1Mectrolyte. Les travaux ex[¢utls dans le cadre du pr(Sent contrat portent principalement sur
|Maboration de composites de polym[ies et de nanotubes de carbone qui possCdent les propriltls
susmentionnles. Le prisent rapport contient un risum{Ides progr(s rlalis[$ dans les installations
de 1Mniversitl] McMaster au cours de la premilte annle du projet du FIT sur les
supercondensateurs.

RlSultats: Les mat[tiaux de premilte glhlration pripar($ avec des polymltes non-conjuguls ont
permis de produire des pellicules ayant une piltre conductibilit(j notre attention s(ést donc portle
sur 1[ajout de polymltes conjugul$ dans les composites. On a priparJet [tudilune s(iie de
nanotubes fonctionnalis[$ formant des liaisons covalentes avec des polymltes conjuguls. De
plus, nous avons pripar(] des nanotubes fonctionnalis[s [ 1[T¢chelle supramollculaire qui
permettent de produire des couches minces possidant des proprilt’s de conductibilitl]dun grand
int[T[t.

Importance: La conductivit[] [lectrique de certains des mat(tiaux obtenus est [tonnamment
(evle, ce qui pourrait indiquer qulil se produit un important transfert de charges entre le
polym[te et les nanotubes. En maximisant la conductibilit[Jet la microstructure en fonction de la
densit[] de 1lfarrangement des chafmes de polymlte, on pourrait obtenir des mattiaux 1[gers
pouvant servir [Ifabriquer des [lectrodes de supercondensateurs utilis[$ comme sources d[Thergie
Cimpulsions [levles.

Perspectives: Les travaux porteront sur la dfermination de la capacitl]des pellicules, ainsi que
sur la mesure plus exacte de la conductibilitllde pellicules plus [paisses. On entreprendra aussi
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une caract[tisation plus poussle des pellicules, notamment au chapitre de leur microstructure et
de leur surface efficace.
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1 Results

1.1 Preparation of films from nanotubes functionalized with
poly(styrene sulfonate) (PSS)

Using previously reported methodology,' we prepared PSS-SWNTs, which are soluble in water.
An aqueous solution of the PSS-SWNTs was used to prepare thin films by the vacuum filtration
method. Briefly, this involves filtration of a solution containing SWNTs through a porous
membrane (Figure 1).>° A nanotube film is formed upon the surface of the membrane, and can
be dried and transferred to a suitable substrate or, if mechanical strength allows, removed as a
freestanding film. The filtration process favours the formation of homogeneous films as
nanotubes deposited upon the filtration membrane impede the flow of solvent through that region
encouraging deposition of nanotubes upon uncovered areas of the membrane. Since nanotubes
have a high aspect ratio, the filtration process generally causes them to orient themselves flat
against the surface of the membrane. This ensures a high degree of connectivity contributing to
both the mechanical strength and conductivity of the resulting film. Using the vacuum filtration
procedure nanotube density and film thickness can also be controlled easily by altering the
concentration or volume of solution used.

Figure 1. Schematic representation of nanotube thin film formation by filtration of a dilute nanotube
solution through a porous membrane, with an AFM image of the resulting film at right.

This method was employed to prepare films of the PSS-SWNT material, which was compared to
unfunctionalized nanotubes. It was found that the polymer-functionalized nanotube films are
significantly more robust than films made from pristine nanotubes. The polymer-functionalized
materials were highly flexible, while the ones from pristine nanotubes were brittle and would
break if bent. To determine electrical conductivity properties, crude resistivity measurements
were made using a multimeter. Unfortunately, the polymer-functionalized films exhibited high
resistivity values, in the range of ~10° Q. Compared to pristine nanotubes, for which the
resistivities were measured to be in the range of 10 Q, the conductivity of the polymer-
functionalized materials is quite poor. This result indicates that either the nanotubes become
insulating due to their covalent functionalization (i.e., introduction of defects along the nanotube
wall decreases conductivity significantly), or the insulating polymer that coats the nanotubes
prevents electrons from hopping from one nanotube to the next, thereby diminishing conductivity.

DRDC Atlantic CR 2007-272 1



These observations prompted us to investigate the use of conjugated polymers to functionalize the
carbon nanotubes.

1.2  Preparation of SWNTs functionalized with conjugated
polymers.

Using the Suzuki coupling protocol that we recently published,” we were able to covalently
couple conjugated polymers to the nanotube surface via a conjugated linker, as depicted in Figure
2. This involved the initial use of the diazonium salt decomposition reaction to introduce
iodopheny] functionalities onto the nanotube surface. The iodophenyl functionalities are highly
reactive toward boronic esters, and initiate the polymerization from the nanotube surface. It
should be noted that the aryl bromide monomers can also act react with the boronates, leading to
the formation of free polymer in solution. However, the aryl iodides are much more reactive,
leading to a significant degree of coupling to nanotubes. Any free polymer produced in solution
as a result of this chemistry is easily removed by filtration through a 200 nm pore diameter Teflon
membrane. The resulting materials (4 and 5) exhibited solubility in tetrahydrofuran (THF) of 100
and 350 mg/L, respectively.

c3 SSRGS

R] =CSH1? F{2=c12H25

1,2
p-iodoaniline Pd(PPh3),
isoamyl Cs,C04

nitrite:
2,3

Figure 2. Suzuki polycondensation for the preparation of carbon nanotubes functionalized with
conjugated polymers.
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Films of these materials were also prepared by the filtration method and found to have similar
mechanical properties (flexibility) to the PSS-SWNT sample (Figure 3). Similar conductivity
measurements were made for these materials, and it was found that they also exhibit resistivities
that are significantly higher than pristine nanotubes. Considering that the attached polymers in
this case are conjugated, electron mobility between nanotubes through these polymers should not
be impeded. It therefore seems that covalent functionalization of SWNTs leads to significantly
diminished conductivity, and this is the main problem that must be overcome in achieving
conductive materials.

Figure 3. Photograph of nanotube film on membrane from sample 4.

1.3  Supramolecular functionalization of SWNTs with
conjugated polymers.

To overcome the poor conductivity of covalently functionalized nanotubes, we have begun to
prepare supramolecular assemblies of nanotubes with conjugated polymers (Figure 4). This has
been found to result in irreversible binding of polymers to the nanotube surface, and produces
highly soluble complexes. Thus far, four different conjugated polymers have been prepared and
complexed to the nanotube surface. These include poly(fluorene) (6), poly(fluorene-co-
thiophene) (7), poly(thiophene) (8), and a poly(porphyrin-diacetylene) (9). Polymers 6-8 were
prepared by Suzuki coupling, while polymer 9 was prepared by the Glaser-Hay coupling of the
alkyne-functionalized porphyrin. Using solutions of these compounds, we have prepared films by
the filtration method and again found that they retain the flexibility properties of the previously
mentioned polymer-functionalized materials. However, in this case, the conductivity of the films
is practically identical to that of pristine nanotube films. These films will be used for
supercapacitor applications in the coming months.

DRDC Atlantic CR 2007-272 3
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Figure 4. Supramolecular assembly of conjugated polymers onto the surface of SWNTs.

1.4 Conductivity measurements.

Samples of both covalent and non-covalent composites of polymers and nanotubes have been sent
to Trish Huber for conductivity measurements. It was found that the conductivities of the
supramolecular complexes was very good, as predicted by the crude measurements in our lab, but
due to the extremely small thicknesses of these films, precise conductivity values could not be
obtained (these require accurate thickness measurements that have not been accomplished yet).
The measured values are provided below, along with the chemical structures of the compounds
that correspond with each compound number (Figure 5).
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Table 1. Conductivity data for nanotube thin films

Sample Sheet Resistance Thickness Conductivity
(9} (mm)" (S/cm)
SWNT 0.70 0.09 160
Pt42-p 3.1 0.05 64
Pt42-s 6.5
Pt40-s 1.4
Fc22-s 40 0.04 6.2
P22 1.1x10°
Pt42 (glass slide) 1.4x10°
Pt40 (glass slide) 1.8x 10’
Pt41 (glass slide) 37
Pt41-s 3.9
" technically the units are ohms per square
'(+0.02 mm)

The results are reported in terms of sheet resistance because many of the films are so thin that the
uncertainty is relatively very large, which can dramatically skew resistivity or conductivity values
(which take thickness into account). In many cases, the thickness of the films is on the order of
the uncertainty of the micrometer used, and varies across the sample. Thicker, more uniform
films will be prepared in the near future so that more accurate conductivity measurements can be
made.

For reference: the relationship between the sheet resistance (R;) and conductivity (o) is:

1
o=——
R -t

where t is the thickness in cm, thus ¢ has units of (Q'cm)'l, thus S/cm,

and R = %(size and shape correction factors)

where V is the voltage drop between the inner two pins, and I is the current flowing between the
outer two pins.

Therefore, a variation in thickness of £ 0.02 mm in sample Pt42-p can translate to a conductivity
that ranges from 46 to 110 S/cm. Again, the small thickness introduces a large uncertainty, and
this will need to be addressed in the near future.

DRDC Atlantic CR 2007-272 5



Supramolecularly Functionalized: Covalently Functionalized:

ptaz-s

pt42-P :>

pt42-glass slide

pt40-glass slide

ptd1-S
ptd41-glass slide

i =

Fc22-5
§ = soluble fraction; P = insoluble (precipitate) fraction

glass slide = sample transferred to a glass slide (very thin)

Figure 5. Compounds on which conductivity measurements were performed.

1.5 Future Work

Capacitance measurements will be performed on the films to assess the best candidates for further
study. Either thicker films will be prepared, or more accurate means of measuring the thickness
of the thin films will be investigated, in order to more accurately determine the electrical
conductivity. Further characterization of the films is planned, including assessing the
microstructure and surface area.
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