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Abstract

This is a study of the applicability of random sets theory to target identification
problems as a technique for fusion of imperfect information. For target identification,
several sources of information (radar, ESM - Electronic Support Measures, SAR -
Synthetic Aperture Radar, IR images) are available. Since the information provided is
always imperfect and several kinds of imperfection may be encountered (imprecision,
uncertainty, incompleteness, vagueness, etc.), several theories were developed to assist
probability theory (long the only tool available to deal with uncertainty) in data fusion
problems. In recent decades fuzzy sets theory was developed to deal with vague
information, possibility theory was developed to deal with incomplete information,
evidence theory was developed to deal with imprecise and uncertain information,
and rough sets theory was developed to deal with vague and uncertain information.
These theories have several points in common; here we study random sets theory,
which is a unifying framework for all the aforementioned theories. In two simple test
scenarios, we demonstrate the effectiveness of this unifying framework for representing
and fusing imperfect information in the target identification application.

Résumeé

Ce travail présente une étude de I’applicabilité de la théorie des ensembles aléatoires
aux problemes d’identification de cibles en tant que technique de fusion des infor-
mations imparfaites. Pour identifier une cible, plusieurs sources d’information (radar,
ESM - Electronic Support Measures, SAR - Synthetic Aperture Radar, images IR)
sont disponibles. Parce que ces informations sont toujours imparfaites et que différents
types d'imperfections peuvent étre répertoriés (incertaines, imprécises, incomplétes,
vagues), plusieurs théories ont été développées pour assister la théorie des probabi-
lités (longtemps le seul outil pour traiter I'incertitude), dans sa tache de combinaison
d’informations imparfaites. Depuis plusieurs décennies ont vu le jour la théorie des
sous-ensembles flous pour traiter les informations vagues, la théorie des possibilités
pour les informations incompletes, la théorie de I’évidence pour les informations incer-
taines, la théorie des ensembles approchés pour les informations vagues et incertaines.
Il apparait que ces différentes théories présentent plusieurs points communs et nous
étudions dans ce travail la théorie des ensembles aléatoires qui s’avere un cadre uni-
ficateur pour la plupart d’entre elles. Sur deux scénarios tests simples, on démontre
I'utilité d’un cadre unificateur pour représenter et fusionner les informations impar-
faites, et ce, dans une application particuliere qu’est 'identification de cibles.
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Executive summary

Fusion of imperfect information in the unified
framework of random sets theory: Application to target
identification

Mihai Cristian Florea, Anne-Laure Jousselme, Eloi Bossé: DRDC
Valcartier TR 2003-319; Defence R&D Canada — Valcartier; November 2007.

Background: For target identification, several sources of information (radar, ESM
- Electronic Support Measures, SAR - Synthetic Aperture Radar, IR images) are
available. Since the information provided is always imperfect and several kinds of im-
perfection may be encountered (imprecision, uncertainty, incompleteness, vagueness,
etc.), several theories were developed to assist probability theory (long the only tool
available to deal with uncertainty) in data fusion problems. In recent decades, fuzzy
sets theory was developed to deal with vague information, possibility theory was de-
veloped to deal with incomplete information, evidence theory was developed to deal
with imprecise and uncertain information, and rough sets theory to deal with vague
and uncertain information. These theories have several points in common; here we
study random sets theory, which is a unifying framework for all the aforementioned
theories.

Principal results: This is a study of the applicability of random sets theory to
target identification problems as a technique for fusing imperfect information. In two
simple test scenarios, we demonstrate the effectiveness of this unifying framework for
representing and fusing imperfect information in the target identification application.

Future work: More complex test scenarios should be analyzed to further investigate
the effectiveness of a unifying framework for data fusion. Performance measurements
could also be introduced to gage the advantages of random sets theory over the
classical theories.
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Sommaire

Fusion of imperfect information in the unified
framework of random sets theory: Application to target
identification

Mihai Cristian Florea, Anne-Laure Jousselme, Eloi Bossé; DRDC
Valcartier TR 2003-319; R & D pour la défense Canada — Valcartier; novembre
2007.

Contexte : Pour identifier une cible, plusieurs sources d’information (radar, ESM
- Electronic Support Measures, SAR - Synthetic Aperture Radar, images IR) sont
disponibles. Parce que ces informations sont toujours imparfaites et que différents
types d’'imperfections peuvent étre répertoriés (incertaines, imprécises, incompleétes,
vagues), plusieurs théories ont été développées pour remplacer la théorie des proba-
bilités (longtemps le seul outil pour le traitement de Uincertitude), dans sa tache
de représentation et de combinaison d’informations imparfaites. Depuis plusieurs
décennies, ont vu le jour la théorie des sous-ensembles flous pour les informations
vagues, la théorie des possibilités pour les informations incompletes, la théorie de
I’évidence pour les informations incertaines, la théorie des ensembles approchés pour
les informations vagues et incertaines. Il apparait que ces différentes théories présentent
plusieurs points communs et nous étudions dans ce travail la théorie des ensembles
aléatoires qui s’avere un cadre unificateur pour la plupart d’entre elles.

Principaux résultats : Ce mémoire est une étude de I’applicabilité de la théorie des
ensembles aléatoires aux problemes d’identification de cibles en tant que technique de
représentation et de fusion des informations imparfaites. Sur deux scénarios tests, on
démontre 1'utilité d’un cadre unificateur pour représenter et fusionner les informations
imparfaites, et ce pour 'application particuliere qu’est 1'identification de cibles.

Travaux futurs : Des scénarios tests plus complexes peuvent étre analysés pour
mieux étudier la pertinence d'un cadre unificateur pour la fusion de données. De plus,
des mesures de performance pourraient étre introduites pour étudier I’amélioration
apportée par la théorie des ensembles aléatoires par rapport aux théories classiques.
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1 Introduction

Animate life forms (both animal and human) have always used their senses (sight,
hearing, touch, taste and smell) to recognize objects and other life forms and make
decisions. Usually a combination of different senses is needed for correct identification,
since only one sense may lack information.

Hence, the data fusion concept is not new. The result of fusion (or combination) is
information that, on the one hand, can be combined with a new piece of information,
and on the other, is usable for decision-making.

Military applications like target tracking and target identification, and non-military
applications like medicine and robotics, have been developed using the mathematics
of data fusion.

The target identification question is particularly complex and difficult. Although the
diversity of sensors can be a great help, it also creates the greatest difficulties. Infor-
mation sources may be human (such as opinions “I believe that...” or descriptions
“the object is long”), electronic (radar or electronic support measures (ESM), etc.),
or even statistical.

The difficulties of target identification indeed result from the variety of sensors, but
another difficulty stems from imperfections in the information collected: imprecision,
uncertainty, fuzziness, incompleteness, inconsistency or randomness.

Many topologies or classifications of imperfect information have been proposed (e.g.,
Klir [1], Krause and Clark [2]). In this study we rely on the classification proposed
by Smets [3]. This classification supposes that imperfections may be characterized
in terms of uncertainty or imprecision. A piece of imperfect information is therefore
uncertain, imprecise or both at the same time.

An information theory that enables the user to reason under uncertainty is required if
problems related to imperfect information are to be resolved. Owing to the diversity
of imperfections, many theories have been developed in recent decades. Each of them
offers alternatives to the use of probability theory, which was the first and only theory
for dealing with uncertain information for many years.

Probability theory is one way to process uncertain information. It is also useful for
processing other kinds of information (imprecise information, for example). Yet it
lacks certain capabilities, which makes it too restrictive. New theories have therefore
been developed to deal with these aspects.

Vague pieces of information, characterized by fuzzy attributes, are modelled using
fuzzy sets theory (Zadeh [4]). For example, the piece of information “John is tall”

DRDC Valcartier TR 2003-319 1



gives information on John’s size, but the classifier tall is ill defined, even unknown.
This kind of information is called fuzzy information, and is well modelled by fuzzy
sets theory.

Dempster-Shafer evidence theory (Dempster [5] followed by Shafer [6]) is well suited
to studying information that is imprecise and uncertain at the same time. It is a
generalization of probability theory.

Possibility theory, the basis of which was proposed by Zadeh [7], is derived from fuzzy
sets theory (developed by the same author) and deals with incomplete and uncertain
information.

All these theories in one way or another characterize uncertainty?the confidence we
have for a particular event. One difficult aspect of modelling information in these
theories is quantifying the confidence levels that someone has for the events consid-
ered. Pawlak [8] developed rough sets theory to deal with imprecise information of
which there is total certainty (be it known or unknown).

Since many different types of imperfection coexist in a data fusion process, different
formalisms may be used at different levels of the process. The main problem of data
fusion is to use these different pieces of information, modelled by different mathemat-
ical formalisms, to arrive at a global decision. This problem may be solved in two
ways:

1. Choose one theory already used to represent all pieces of information, and
transform the pieces of information modeled in other formalisms into this theory.
Many authors have worked on formulas for transforming from one theory to
another. For instance, Smets [9] and Voorbraak [10] developed a transformation
between evidence and probability theories. Klir and Parviz [11] give different
formulas for transforming between probability and possibility theories. Finally,
Skowron [12] developed a link between rough sets and evidence theories.

2. Use a unifying formalism that is able to represent all theories. Random sets
theory seems to be well suited for this application. Indeed, for several years
now, many authors have shown its capacity to represent the different theories
of uncertainty reasoning. For example, the link with evidence theory was mostly
developed by Nguyen [13] and the link with fuzzy sets theory was studied by
several authors (Orlov [14], Goodman [15]).

The main purpose of this study is to demonstrate the effectiveness of random sets
theory in the problem of target identification through the fusion of pieces of infor-
mation of different types with different kinds of imperfection. This will be done by
means of two test scenarios using different sensors observing one target. The target
must be identified from a database of 143 objects.

2 DRDC Valcartier TR 2003-319



The second section is an introduction to the data fusion concept, in particular the
use of data fusion in target identification. We will briefly describe the database and
the two test scenarios used. The first test scenario includes 13 pieces of information,
all of which are consistent with the observed target. In the second test scenario we
introduce a countermeasure to test the fusion system’s ability to eliminate this data.

The third section describes the classification and modelization of imperfect infor-
mation according to Smets’ model. Many examples are given to show clearly the
differences between the various types of imperfect information.

The fourth section presents the common theories of uncertainty reasoning (probabil-
ity, evidence, fuzzy sets, possibility, and rough sets theory. We will show through
examples the mathematical tools used by each theory) representation of information,
combination rules, ignorance representation and decision-making rules. Each of these
theories is then applied to both test scenarios.

In the fifth section, we enumerate several links between the different theories previ-
ously described.

The sixth and final section introduces random sets theory and its link with the classic
theories advanced by various authors. We conclude this section by applying the theory
to both scenarios.

We demonstrate that random sets theory offers an effective unifying framework for
the theories of uncertainty reasoning. We also show how it can be applied to the
target identification problem to great effect.

DRDC Valcartier TR 2003-319 3
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2 Data fusion applied to target identification

2.1 Data fusion

The term data fusion was introduced to denote the combination of pieces of infor-
mation coming from different sensors, databases, expert opinions, etc. The variety
of existing information sources led to the creation of different mathematical models
to represent the information collected. This field has shown considerable develop-
ment since the advent of computers able to store large amounts of information and
to execute calculus fast enough. Data fusion is an important field of study for the
development of expert systems.

In the beginning, data fusion applications were mostly developed for military pur-
poses, e.g., target tracking and identification or threat identification (friend /neutral/foe).
More recently it has been used in non-military applications such as robotics or
medicine. The purpose of this section is to describe the target identification problem

in greater detail.

2.2 Target identification

A target identification problem is illustrated in figure 1. It shows a platform with its
various sensors spotting different moving targets, which are to be identified out of a
database of known targets.

A multiple target identification problem is generally broken down into several sub-
problems as follows:

1. detection of raw information (signals);

2. tracking;

3. association of detected information with targets;
4. modelling of raw data coming from targets;

5. data fusion ;

6. decision-making.

Contacts (positions of possible targets) are detected in the first step. Tracking pro-
vides a prediction of the position of the targets known at the time of acquisition.
Multiple target tracking is realized with the help of a Kalman filter. Then a decision
is made to associate a track with each of the contacts among the previously predicted
tracks. These first three steps are represented in figure 2. In the current study,
these steps are considered to be achieved. Also, we consider the association between

DRDC Valcartier TR 2003-319 5
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Figure 1: Target identification problem

contacts and tracks to be perfect, and therefore that each target can be analyzed
separately, as if we were dealing with one target at a time.

According to Hall and Llinas [16], the three major problems that are still to be solved
in today’s data fusion systems are:

1. the quantification of uncertainty in measurements or observations;
2. the combination of distinct pieces of information;
3. the enormous number of possible alternatives to deal with.

The fusion process reduces to the version represented in figure 3, considering that
detection, tracking and association are already effected.

A target is observed by different sensors, such as radars, electronic support measures
(ESM), imaging infrared (IRR), identification, friend or foe (IFF), etc. Data provided
by these sensors are not necessarily ideal, but rather imperfect (imprecise, uncertain,
vague, incomplete, inconsistent, etc.). The data can be modelled using the different
mathematical theories to be analyzed. For this study, we consider the different sources
to be independent.

With the aid of mathematical formalisms, we fuse imperfect information, to obtain a
final piece of information that, on the one hand, can be combined with a new piece
of information, and on the other, is usable for decision-making.
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Target 1

Target 1
. s Target 2 X /}a/rg: 2
ﬁcantacts
Target 3 Target 3

Instant no.5 : System state Instant no. 5 : New contacts
acquisition
Target 1 Target 1
' /{—a/rg;t/ 2 ' 4/“/Tjget/ 2

tracks contacts
Target 3 Target 3
Instant no. 5 : Tracks prediction Instant no. 5 : Contacts - tracks
association

Figure 2: Contact acquisition, track prediction and association between contacts and
tracks

The decision as to the identity of a target is taken on the final information with
reference to the database of known targets. Using algorithmic and mathematical
methods, we look for the most probable target.

2.3 Uncertainty and imperfect information

Each of the six steps described above is well defined and very important. However,
each one may introduce imperfections into the system (unsuitable or non-optimal
measurements, associations, models, fusions or decision methods).

By uncertainty reasoning we mean working with imperfect information, such as
may be provided by sensors, experts or other sources. Klir [1], Krause and Clark [2]
use the term uncertainty to denote the imperfection of information. Thus, we refer
to one or more of the characteristics imprecise, uncertain, incomplete, inconsistent
and vague when using this term.
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Figure 3: Target identification process (simplified version)

2.4 The Database

Data on the known potential targets are classified in a database accessible to the
fusion system. The data will help the system identify the observed target. For each
target in the database we have the following parameters:

1. identification number (database index)
2. acronym (name)

3. type

4. sub-type

5. offensiveness classification

6. country

minimum and maximum cruise speed

® N

maximum acceleration
9. maximum altitude
10. dimensions (length, height, width)
11. radar cross-section (RCS) (side, front and top)
12. number of engines

13. engine type(s)
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14. number of cylinders in the engines
15. infrared signature

16. blade list

17. number of emitters

18. list of emitters.

An ideal database would contain information on all the parameters of all possible tar-
gets. But in reality the database is never complete, and that makes the identification
process harder. In the identification process, the parameters listed above represent
the information we look for. Knowledge of all the parameters allows accurate target
identification. A second database containing geopolitical information is associated
with the first. With each country are associated an allegiance (friend, neutral or foe)
and the number and names of the languages spoken. A third database, linked to the
first, lists the emitters and their characteristics. The databases used in this study are
described in Appendix D.

2.5 Example of a scenario

An example of a scenario for the situation described in figure 1 can be composed with

the pieces of raw information contained in table 1.

Instant Characteristic Target 1 Target 2 Target 3 | Target 4
1 Type of target ship terrestrial target plane plane
2 | Emitter 44 on board yes no no yes
3 Length small small medium | medium
4 RCSgjqe medium small small medium
5 | Emitter 77 on board yes yes no no
6 Height small small small small
7 | Emitter 47 on board yes no yes no
8 | Emitter 55 on board yes no yes yes
9 Width medium small medium | medium

10 | Emitter 56 on board yes no yes yes
11 | Emitter 103 on board yes yes no yes
12 | Emitter 109 on board yes no no no
13 RCStop small medium small medium
14 RCSfront very small small medium | medium

Table 1: Example scenario

In the following, we use target #1 to test the different theories of uncertainty reason-
ing. Two scenarios are proposed:

DRDC Valcartier TR 2003-319 9



1. Test Scenario 1 is composed of the pieces of information 1 to 4 and 6 to 14,
which are measurements consistent with object #19 in the database;

2. Test Scenario 2 is composed of the pieces of information 1 to 14; the fifth
piece of information is a countermeasure inserted in the middle of the fusion
process to observe how the system reacts.

2.6 Data fusion tools

Many theories have been developed to deal with uncertainty. The following are de-
scribed in this study:

1. probability theory
2. evidence theory

3. fuzzy sets theory

4. possibility theory
5. rough sets theory
6. random sets theory.

Each one proposes a mathematical model for imperfect information and one or more
methods of combination and decision-making.
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3 Uncertainty and imperfect information

3.1 Introduction

Uncertainty is the general term used by several authors (Klir [1], Krause and Clark
[2]) to denote imperfect information. However, this name can create confusion in
Smets’ classification [3], where uncertainty is only one class of information imperfec-
tion. Next, we present the concept of information related to the target identification
problem, we examine the various kinds of imperfect information, and we analyze some
easy examples to facilitate understanding of the new theories. In this study we use
only the classification of imperfect information proposed by Smets [3].

3.2 The Information

In the target identification problem, information can be described by at least the
following three parameters:

1. an object or class of objects that refers to the target of interest;
2. a characteristic (attribute) describing the object or class of objects;

3. a degree of confidence associated with the pair {object(s), attribute(s)}.

Here are some examples of information:

e “The observed target could be the object 8; with a degree of confidence of
0.87;

e “The observed target is large”;
e “The observed target is one of the objects {6, 0, 0c} with a belief of 0.9”.

According to Smets [3], perfect information must be precise and certain. According to
Solaiman [17], perfect information must also be exhaustive. Thus, perfect information
according to the definition and constraints presented earlier must have the following
properties:

1. the referring class of objects must be a singleton (only one object) - precise
information;

2. the confidence degree we associate with a proposition or set of propositions is
equal to 1 (total confidence) - certain information;

3. the proposed object is part of a set of known targets recorded in a database
(closed word hypothesis) - exhaustive information.
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But in the real world, perfect information is almost never obtained. Sensors always
provide imperfect information. We devote the following section to the study and
classification of imperfect information.

3.3 Imperfect information
An initial first classification of information may be made according to its objectivity:
1. We say an information is objective if it is independent of human opinion;

2. We say an information is subjective if it is dependent on human opinion.

Example 1 Saying that when a die is rolled number 4 can come up with a probabil-
ity of 1/6 represents objective information because it is an interpretation in equiprob-
able terms of appearances (traditional interpretation based on the symmetry of the
die). Human opinion is not a factor in this case. On the other hand, the information
“I believe that number 4 can come up with a probability of 0.2” represents subjective
information. The opinion of a person is a factor in the judgment.

In section 3.2 we saw the criteria for describing information as perfect. If one condition
is not met, then the information is imperfect.

In the following sections we will consider the closed word hypothesis to be true (ex-
haustive information). According to Smets’ classification, the only remaining causes
of imperfection are imprecision and uncertainty (figure 4). So imperfect information
may be imprecise, uncertain, or both imprecise and uncertain.

3.3.1 Uncertain information

Uncertain information is information with an associated confidence degree smaller
than 1 (with which total confidence is not associated). This imperfection is mainly
due to an expert’s lack of confidence in the information provided by a sensor.

Here are some examples of uncertain information:
1. “I think that the observed target is object 8; in the database”;

2. “It is probable that the observed target is object 0; in the database and the
confidence degree associated with it is 0.77.
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3.3.2 Imprecise information

Imprecise information is information that refers to not just one object but several
objects in the database. The following are examples of imprecise information:

1. “The observed target is one of the objects {6;,8;,6«}” ;
2. “The length of the target is between 28 and 34 metres”.
Incomplete information

Incomplete information is information that has an unknown degree of confidence
but for which we know the upper limit of confidence. The term “incomplete informa-
tion” comes from the knowledge of this upper limit instead of the confidence degree
(imprecision of the confidence degree). Some examples of incomplete information are
shown below:

1. “It is possible that the target is object 197;

2. “It is possible to detect the target type”.
Vague information

Vague information is information characterized by ill-defined attributes, by some
classes having ill-defined limits. Instead of defining the membership of a known object
in an ill-known class by a strict relation (1 - belongs to, 0 - does not belong to), we
consider that the membership can be fuzzy. So we define a membership measure of
an object in some class (which has ill-defined limits). Vague information is imprecise
information. Here are some examples of vague information:
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1. “The observed target is large”;

2. “The observed target has a very large radar cross section”;

3.3.3 Uncertain and imprecise information

Previously we saw some examples of imprecise information and uncertain information.
These two situations are extreme, since it is supposed that information has only one
imperfection at once. But real situations often involve information exhibiting both
imperfections. For example :

1. “A confidence degree of 0.7 is associated with the fact that the observed
target is one of {0, 0,,03}";

2. “A confidence degree of 0.9 is associated with the fact that the observed
target has a length between 28 and 34 metres”.

3.4 Modelling information

Sensors usually provide information that refers to the known characteristics of the
objects in the database (see section 2.4 for a complete list of the characteristics).
Figure 5 illustrates the process of information modelling.

rawy inforrnation : information modeled
characteristic k according to the data base
data
hase

Figure 5: The process of information modelling

The raw data provided for one characteristic in the database is information like “we
estimate with 80% confidence that the observed object has a length of 15 metres”.
Analyzing the database, we can extract the objects having a length of 15 metres
and associate a degree of confidence of 0.8 with them. We call this set of objects a
proposition.

The raw data may also be vague information. Attributes like “large” or “very big”
introduce sets with ill-defined limits. So attributes must be defined according to their
usage in the database. A target in the database with a length of 180 metres may
be considered a “large target”. But an object measuring 250 metres is considered to
have a higher degree of membership in the “large target” class than the 180 m target.
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Depending on the problem, sometimes we have to deal with imprecise or uncertain
information. The uncertainty of information may be replaced by the imprecision,
and inversely, according to our needs. A relation exists between these two kinds of
imperfection characterizing the same situation:

In a given situation, when uncertainty increases, imprecision
may decrease.

The next example will help clarify the relation between uncertainty and imprecision.
Example 2 Let a sensor provide information on a detected target for the purpose

of identifying it. The sensor measures the length of the target, but the measurement
may not be certain. Now consider these 5 objects from the database:

Os object #1 | object #2 | object #3 | object #4 | object #5
length (metres) 29 31 30 24 34

Table 2: Example of database

Since the measurement is not perfect, the information provided by the sensor can
be modelled as “A degree of confidence of 0.7 is associated with the fact that the
detected target is 30 metres long”. Then we check the database for known targets
with a length of 30 metres. The information now becomes: “Researched target =
object 3 with a degree of confidence of 0.7”. Knowing the external factors that can
affect measurement, we can seek to model the information provided by the sensor
differently: “Total confidence is associated with the fact that the detected target has
a length between 28 and 32 metres”. We observe that the number of targets in the
database having a length between 28 and 32 metres is greater than the number of
targets exactly 30 metres long (object 1, object 2 and object 3). Thus, the information
expressed by the second proposition is imprecise but certain. This information now
becomes “Researched target is one of objects 1, 2 or 37. We can see how the same
situation may be modelled by two different pieces of information: one precise but
uncertain, the other imprecise but certain.

3.5 Conclusion

This section provided an introduction to the concept of imperfect information. After
a short description of different kinds of imperfection, we presented some examples
to facilitate understanding. To summarize, the principal sources of imperfection are
uncertainty and imprecision. Imperfect information is classified as either uncertain
information (objective or subjective) or imprecise information (objective), with two
subcategories: vague information and incomplete information. We may also encounter
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information that exhibits both types of imperfection. Owing to this diversity of states,
both general and particular, processing imperfect data is fraught with difficulties.
The following section presents several theories that have been developed to deal with
imperfect information.
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4 Reasoning under uncertainty

4.1 Introduction

In the last section, we discussed several kinds of imperfect information and showed
some examples to illustrate the differences between them. Several theories have been
developed to deal with this variety of imperfect information. Each theory aims to
model real situations more accurately. In this section, we present the best known and
most frequently used theories and we apply them to a target identification problem.
For each theory we also present the most commonly used combination rules.

Let us first introduce some notations that will be used in this section:
e 0 is the I-th object in the database;
e N represents the number of objects in the database;
e O ={61,0,,...,0xn} represents the set of all objects in the database;

e 29 represents the power set of © (the set of all subsets of ©). Therefore A C ©
is equivalent to A € 2°;

e Capital letters denote the subsets of © (A; C ©);
e A singleton is a subset of © which contains only one element;

e An event is a subset A of ©.

4.2 Probability theory

4.2.1 Introduction

Probability theory is the best known and oldest theory of uncertainty. The objec-
tive view of probability theory was developed in the 17th century to study random
events such as occur in gambling (dice games and card games). Three versions of the
objective view of probability theory can be distinguished:

1. Laplace considered the probability of an event to be equal to the ratio between
the number of realizations producing a given outcome and the total number
of possible realizations. This view requires that the possible realizations be
equiprobable.

Example 3 The probability that tossing a die will produce an even value is
equal to the number of possible even values ({2,4,6}) divided by the total
number of possible outcomes ({1,2,3,4,5,6}). In this case the probability is
0.5.
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2. The frequentist Richard von Mises considered the probability to be equal to the
relative frequency of the realization of this event after repeating the experiment
an infinite number of times. The major drawback of this view is the impossi-
bility of conducting the same experiment an infinite number of times, and it is
possible that it may not be realized more than once.

Example 4 The probability that tossing a die will produce an even value is
obtained by conducting the experiment (tossing a die) an infinite number of
times and counting the occurrences of even values.

3. Bernoulli’s big numbers law supposed that if an outcome is obtained k times
from n identical and independent experiments, then the objective probability
is very close to kK/n when n is very large. This view of objective probability is
akin to the frequentist view of von Mises.

Another interpretation of probability theory is the subjective one, which was formu-
lated during the 20th century. It supposes that there are no random experiments,
only ill-known experiments which cause uncertain results. Here the probability of an
event is interpreted as the degree of belief that a person associates with the result of
the experiment. This is the Bayesian view of probability theory.

Example 5 Tossing a die is considered an ill-known experiment instead of a random
experiment. The outcome of the die tossing experiment can be estimated if we have
enough information, like the speed and height of the toss, the friction coefficient
between the die and the table, the trajectory of the toss, the die position before
the toss, etc. Lack of information and the impossibility for a human to equate and
compute the parameters of the toss make the result hard to predict. But that does
not mean the experiment is a random experiment.

In the next section we will study probability theory without considering how to
interpret objective or subjective probability.

4.2.2 Theory description
Axioms and definitions

A probability measure is a function P : 2° — [0, 1] which satisfies the following
three axioms:

1. the probability of the empty set is null and the probability of the frame of
discernment is equal to unity:
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2. the probability of an event is always positive and equal to or less than unity:

0<P[AJ<1 VACO (3)

3. the probability measure is additive:
PAUB]|=P[A]+P[B]—-P[ANB] VA B CO (4)

If the intersection of two events is empty AN B = [,_the events are said to be
independent and (4) reduces to(5):

PAUB]=P[A]+P[B] VABCO (5)

Consequence 1 The probability not assigned to A is implicitly assigned to A, the
complement of A:

PIA] =1—-PIA] (6)

Consequence 2 The probability of a subset A C © can be expressed by the prob-
abilities of the singletons which form A:

PIAI=) Pl]] VAC®O (7)

B8eA

Example 6 In a target identification problem, an uncertain piece of information
such as “The observed target can be the object #1 with a confidence degree of 70%”
can be modelled in probability theory by:

P8, =0.7
The remaining confidence is automatically assigned to the other objects in the database:

P[0, UB3U... UBN] =P8, +P[B3] +... +P[Bn] =0.3

Ignorance

A situation of partial ignorance arises when no additional knowledge exists about
an element of © belonging to a subset A C © with known probability P [A]. The only
information available is that 8 belongs to A with a probability of P [A]. But the am-
biguity remains if A contains many elements. One way to remedy this situation is to
consider all the singletons of A to be equiprobable. In this manner, both imprecision
and uncertainty can be considered in probability theory. An imprecise information
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(defined by (7)) is thereby transformed into a precise information (modelled only by
its singletons):
PIA]
8] = VoieA 8
] card(A) 1< (®)
A situation of total ignorance arises when there exists no additional knowledge on
the entire frame of discernment and we need to suppose that all the singletons are
equiprobable:

P[ei]:%:w;(@) Vo €O (9)

Example 7 Suppose that a sensor provides the length of a target with great impre-
cision but with strong certainty. The piece of information is then “The length of the
target is between 15 and 40 metres with a confidence degree of 90%”. Of the N = 143
objects in the database, the first 133 match this description and the last 10 have a
length that falls outside the specified range. Considering the partial ignorance, we
can calculate the probability of each proposition:

0.9
P[61] =P8 =... =P[B133] = 133 = 0.0068
0.1
P [9134] =P [9134] =...=P [9143] = 1—0 =0.0100

Here we face a paradox: the propositions derived from the most certain piece of
information have been assigned a lower probability than the propositions derived
from the less certain piece of information. This example shows that the ignorance
definition must be used with caution because it can lead to some erroneous models
of information.

Information combination

Definition 1 The conditional probability of an event A, knowing the event B
has occurred, is given by:

PIAIB] = % (10)
1. Bayes’ rule:
PIAE] = (1)

where the total probability is P [B] = Z P[B|C]P[C], P being a partition of
CeP

.
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2. Consensus rule: Let {Sk}KZK be a partition of O (set of the information
sensors) and A an event of ©. Then the total probability of A is given by:

PIA] =) PIAISP[S] (12)

This is a disjunctive combination rule for two pieces of information in probability
theory.

Example 8 Let Oy be a set of three sources of information. The confidence
associated with the sources and the conditional probabilities provided by the
sources are presented in Table 3. Applying the consensus rule we obtain:

Sensor S Sensor S, Sensor Ss
Confidence associated to | P[S1] = |PI[S;] = |P[Ss] =
the 0.25 0.25 0.5
sensors P[Sy] k=1,2,3
PO.Sd k=1,23 0.4 0 0.6
P6,Sd k=1,23 0.3 05 0
P0:Sy] k=1,2,3 0.2 0.3 0.2
P0.Sy] k=1,2,3 0.1 0.2 0.2

Table 3: Example of pieces of information for the consensus rule of combination.

P [81] =P [81]|S1]P [S1] + P [01]S2]P [S2] + P [61|S3]P [S3] =
=0.4x0.254+0x0.2540.6 x0.5=0.4

P [8,] =P [82]|S1]P [S1] + P [02]S2]P [S2] + P [62|S3]P [S3] =
=0.3 x0.254+0.5x0.25+0x0.5=0.2

P [93] =P [eg‘sl]P [Sl] +P [93’82“3 [Sz] + P [93‘53“3 [53] =
=0.2 x 0.254+ 0.3 x 0.25 4+ 0.2 x 0.5 = 0.225

P [84] =P [84]S1]P [S1] + P [04]S2]P [S2] + P [04|S3] x P [S3] =
=0.1 x 0.254 0.2 x 0.25+ 0.2 x 0.5 =0.175

The final piece of information allows us to conclude that object 8; is the most
probable target.

3. Two events A and B are independent if and only if:
P/ANB|=PI[A]P[B] (13)

Equation (13) can be considered as a third combination rule in probability
theory, specifically, a conjunctive combination rule. Dempster’s rule [5] reduces

to (13) when the belief functions are defined only for the singletons (see Section
4.3).
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Consequence 3 The two events A and B being independent implies (from
equation (13)) that:

PBJA]=P[B] and P[A|B] =P[A] (14)
This means that the knowledge of the occurrence of event A does not influence

the probability of the event B.

Example 9 Suppose two sensors provide information on the length and speed of an
observed object: These two pieces of information being independent, we can combine

Length (m) | 58 | 59 | 60 | 61 | 62 Speed (m/s) | 490 | 500 | 510
Confidence | 0.1 [0.2 {04 0.2 0.1 Confidence | 0.2 | 0.6 | 0.2
Table 4: Example of information on length and speed.

them using Equation (13). The objects having the characteristics from Table 4 are
presented in Table 5.

Propositions | 83 | 67 | 87 | 6, | B9 Propositions | 8; | 04 | B9
Probabilities | 0.1 | 0.2 | 0.4 | 0.2 | 0.1 Probabilities | 0.2 | 0.6 | 0.2
Table 5: Example of propositions derived the information on length and speed.

Applying the combination rule for independent pieces of information yields only ob-
jects 81 and 69, with final probabilities of 0.08 and 0.02, respectively. When these
values are normalized, the final probabilities of the propositions are as given in Table
6.

Final propositions | 8; | 89
Probabilities 0.8 10.2
Table 6: Final propositions.

Decision

In probability theory, the singleton with the highest probability is the chosen single-
ton. If several singletons have the same final probability, they are equiprobable and
no decision can be made.

Oobserved = Arg{rglezgc{P 8]} } (15)
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Instant | Information Modelled information in probability | Associated propositions
theory
1 Target type = ship P[ship] = 0.8 ship = { 61, 02, ..., 670, 671, 673 }
P[ship] = 0.2
2 Emitter 44 on board Plemitter 44] = 0.8 emitter 44 = { 011, bhg, 63 }
Plemitter 44] = 0.2
3 Small length P[small length] = 0.8 small length = { 011, 61g, 019, 023, 062, 072, 073, 075, . . .,
Iength € [0, 100] m P[small Iength] =0.2 0127, 0131, 0135, 0137, ..., O142 }
4 RCSSide medium P[RCSSide medium] =0.8 RCSSide medium = { 05, 03, 05, 0g, Og, O, 011, 013, 014,
RCSgige € [2,15] X | P[RCSgjqe medium] = 0.2 O1g, ..., 02, 028, ..., 031, O34, O36, 039, bas, ..., Oag, Oeo,
10% dm? 062, ..., 071, 073, Ogs, Oge, O125, O131}
5 Emitter 77 on board Plemitter 77] = 0.8 emitter 77 = { 69, 033, 035, 036 }
Plemitter 77] = 0.2
6 Small height P[small height] = 0.8 small height = { 6,, 63, 0g, ..., 611, 013, 014, 013, ...,
height € [0,5] m P[small helght] =0.2 Oo6, Oog, O29, O34, 073, O77,..., 090, 093, Oo4, Oog, 0101,
§115, 0117, 0118, 0120, . ., 0124, 0126, 0127, 0137, 0138, 0140
7 Emitter 47 on board P[emitter 47] =0.8 emitter 47 = { 011, 018, 019, 031, O34, O35, 046, 047, Os3 }
Plemitter 47] = 0.2
8 Emitter 55 on board Plemitter 55] = 0.8 emitter 55 = { 613, 019 }
Plemitter 55] = 0.2
9 Small width P[small width] =0.8 small width = { 63, 05, 06, O, ..., 011, 613, 014, O1s, - ..,
width € [0, 15] m P[small Wldth] =0.2 Oo6, Oog, O29, O34, 070, ..., 073, 076, ..., Ogo, Bo3, Oog,
0101, 0113, ..., b115, 0117, ..., 0124, O126, 0127, O135, 0137,
0138, 0140, 0141 }
10 Emitter 56 on board Plemitter 56] = 0.8 emitter 56 = { 613, 619, 034 }
Plemitter 56] = 0.2
11 Emitter 103 on board P[emitter 103] =0.8 emitter 103 = { 011, O18, - .., 624, O30, 031, O34, O35, 036,
Plemitter 103] = 0.2 Oas, ..., Oag, Os3, 057, Osg }
12 Emitter 109 on board Plemitter 109] = 0.8 emitter 109 = { 013, 01g, 619, 63 }
Plemitter 109] = 0.2
13 RCStOp small P[RCStOp small] =0.8 SERtOp small = { 010, 011, 018, 019, O28, 073, 675, Oa1,
RCStop € [1,10] x P[RCStqp small] = 0.2 092, 097, Og9, 6102, - .., O112, O116, 0131, 0139, O142 }
10* dm?
14 RCS¢ront Very small P[RCSspontVery small] = 0.8 RCS¢ront Very small = { 07, 018, 019, 072, 673, 074, 076,

RCSfront € [0,3000] dm?

P[RCSspontVery small] = 0.2

..., Og0, O3, Ooa, Og7, Oog, 0100, 0101, 0104, O105, 0106,
0113, 0114, 0115, 0117, ..., 0124, O126, 0127, 0135, 0137,
6138, 0140, 0141 }

Table 7: Information used in the test scenarios modelled in probability theory.




4.2.3 Scenarios study

We study two scenarios focussing on target #1 from the example 1. The first one is
a test scenario formed from imperfect but coherent information. In the second test
scenario we simulate a countermeasure. This countermeasure is inserted in the data
fusion process at instant #5, to study how (if) the fusion system is able to overcome
it. We emphasize that a piece of information cannot be inserted just anywhere in
the data fusion system, because not all combination rules satisfy the associativity
propriety.

In Table 7, we present, for each piece of information, a possible model in probability
theory and the set of propositions. The results obtained for scenario 1, applying
the two combination rules-the consensus rule (equation (12)) and Dempster’s rule for
singletons (equation (13))-are presented in Figures 6 and 7.
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Figure 6: Probability theory - Test scenario 1 - Consensus rule

The instants of combination 1 > 5 in the first test scenario correspond to the fusion
of the information i 4 1, since the information #5 is not considered in the fusion
process. This remains valid throughout this study.

The result obtained in the second scenario, applying Dempster’s rule of combination
for singletons, is presented in Figure 8.

The results obtained for the first and second scenarios show that object #19 in the
database has the highest final probability. It is the object actually observed. The
identification is made without ambiguity.
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Figure 7: Probability theory - Test scenario 1 - Dempster’s rule for singletons
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Figure 8: Probability theory - Test scenario 2 - Dempster’s rule for singletons

When Dempster’s rule for singletons is used with the first or second scenario, the
final results are almost the same. In Figure 8 we observe only a small decrease in the
probability of the representative singletons at the instant of combination #5, which
correspond to the instant of fusion of the countermeasure. But after the next two
pieces of information are fused, the countermeasure is completely eliminated.
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Since we consider the different pieces of information to be independent, Bayes’s rule
of combination (conditional probability) cannot be used in this study. To apply
Bayes’s rule of combination, the different pieces of information introduced in the
fusion process must be dependent and we must know their cross-correlation matrix.

4.3 Evidence theory
4.3.1 Introduction

Evidence theory, also known as Dempster-Shafer theory (Dempster [5] and Shafer
[6]), is often presented as a generalization of probability theory, although this inter-
pretation was not originated by the authors of the theory. It is often referred to as
the theory of belief function, since it provides a better representation of subjective
belief than probability does. As such, unlike probability theory, it is able to represent
both imprecision and uncertainty.

4.3.2 Theory description

Axioms and definitions

In probability theory, a probability measure quantifies the confidence associated with
a piece of information. An imprecise information must satisfy condition 3 (equation
(5)), which imposes a dependency between the probability of the set A and the
probabilities of the singletons 8; € A. This constraint does not create the best
conditions for modelling imprecise information in probability theory. Evidence theory
provides an alternative solution.

Definition 2 The basic probability assignment (BPA) of a subset A of © is
the degree of confidence assigned specifically to that subset. The basic probability
function m : 2° — [0, 1] must satisfy three conditions:

1. the BPA of the empty set is zero (hypothesis of a closed world):
m O30 (16)
2. the BPA of any event is always positive and equal to or less than unity:

0<mA]<1 VACO (17)

3. the sum of the BPAs of all events is unity:

> mA) =1 (18)

ACO
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The probability distribution function and the basic probability function are defined on
the set 2©. However, the probability distribution function characterizes entirely only
the set © (because of the additivity axiom, Equation (5)), while the basic probability
function characterizes entirely the set 2°.

Definition 3 The belief of an event A is the total confidence associated with it.
This belief function satisfies the following three axioms:

1. the belief of the empty set is null and the belief of the frame of discernment is
unity:

Bel( = 0 (19)
Bel(0) = 1 (20)

2. the belief of any event is always positive and equal to or less than unity:

0<Bel(A) <1 VAc2° (21)

3. the belief of the union of two events satisfies:

Bel(AUB) > Bel(A) + Bel(B) — Bel(ANB)  VA,B€2°  (22)

The belief function, Bel : 2° — [0, 1], can also be defined from the basic probability
function by:
Bel(A) = > m(B) VACO (23)

BCA

When equality is achieved in (22), the belief function is called Bayesian belief
function. Then, evidence theory reduces to probability theory.

Definition 4 The plausibility function Pl : 2° — [0, 1] is defined as the dual of
the belief function:

Bel(A) = 1 — PI(A) (24)

Plausibility represents the maximum confidence one is willing to assign to A.

Plausibility can also be defined from the BPA:

PI(A)= ) m(B) VACO (25)
Ignorance
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mM(©) represents the confidence assigned to the idea that the search object belongs to
the set ©, and thus m(©) quantifies one’s ignorance. A situation of total ignorance
arises when m(©) = 1, i.e. the only information is that the object belongs to the
database.

Example 10 Let us consider the speed of an observed target that is given in Table
8.

Speed (m/s) | 10 | 11 | 12 | other values
Confidence | 0.1 | 0.7 | 0.1 0.1
Table 8: Example of speed

We then extract from the database all objects with a cruise speed equal to the values
listed in table above, and the pieces of information obtained are presented in Table
9.

Propositions {91, 9, 99} {912, 019, 02, 825, 96} {94, e10} )
BPA 0.1 0.7 0.1 0.1
Table 9: Propositions for speed.

This example illustrates one way to model information using ignorance.
Information combination

Definition 5 Combination rule Let m; and m, be two BPAs defined on ©. The
conjunctive combination of these functions is given by:

(M AM)(C)= > my(A)my(B) VC C O (26)
ANB=C
The disjunctive combination of these functions is defined by:
(Myvmy)(C)= > my(A)my(B) VC C O (27)
AUB=C

The conjunctive combination may require normalization, since the final piece of infor-
mation must also satisfy the closed world hypothesis (m( 0= 0) because the BPA of
the empty set after combination is not necessarily zero. Therefore, the normalized
conjunctive combination, also known as Dempster’s rule of combination, is:

> my(A)my(B)
(m1 S5 mz)(C) = . Z ml(A)mz(B) vYC C O (28)

ANB=g
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Example 11 Let a sensor provide information about the presence of emitters 44
and 55 on board the observed target (Table 10).

Emitter 44 Emitter 55
Detected presence present present
Sensor reliability 80% 80%

Table 10: Presence of emitters 44 and 55 on board the observed target.

We then extract the propositions from the database corresponding to the information
from Table 10, and we model this information in evidence theory (Table 11).

Propositions | {611,019,0863} | © Propositions | {615,010} | ©
Myy 0.8 0.2 Mss 0.8 0.2
Table 11: Propositions for the presence of emitters 44 and 55.

Based on the pieces of information shown in Table 11, the conjunctive and disjunctive
combinations are performed in Tables 12 and 13, respectively.

P {011,010,063} - 0.8 ©-0.2
Mss = i |
{9187919} -0.8 {619} - 0.64 {elg, 619} -0.16
©-0.2 {611, 619, 663} - 0.16 O -0.04
Plausibility

911 918 919 963 Others
02102] 1 02| 0.04
Table 12: Result of the conjunctive combination.

i {611,019,863} - 0.8 ©-0.2
Mss e
{618,019} - 0.8 || {611, 015,019,063} - 0.64 | © - 0.16
©-02 0-0.16 O -0.04
Plausibility

911 618 919 963 Others
1 1 1 1 0.36
Table 13: Results of the disjunctive combination.

We note that the conjunctive combination identifies object #19 as the object most
likely (with a maximum of plausibility) to be the observed target.
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The result of the disjunctive combination is too imprecise and too difficult to interpret,
since several objects in the database have a maximum plausibility, making them all
potential candidates for a decision.

Note also that the more the two pieces of information are in conflict, the higher the

BPA of the empty set.

Definition 6 The degree of conflict between two BPAs m; and m;, denoted by
Con(my, my), is:

Con(ml,mz)——log(l— > ml(A)mz(B)> (29)

ANB=g
The conjunctive rules of combination can be used if the degree of conflict between
the two BPAs is not too high.

Decision

Several decision rules apply to evidence theory:

1. The maximum of plausibility:

Max Pl 8, pgerved = Arg{max[P1(8)]} (30)

8cO

2. The maximum of BetP:

Max BetP: 8 d= Arg{rglagc[BetP(e)]} (31)
€

observe

where the function BetP(8) is the pignistic transformation of a belief function
proposed by Smets [9]:

m(A)
card(A)

BetP(8) = > v € © (32)

B8eA, ACO

3. The maximum of the mean utility interval is another decision rule pro-
posed by Cheaito [18].

Several other decision rules are studied in the literature, but they are not the focus
of this study.
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Instant | Information Modelled information in evidence | Associated propositions
theory
1 Target type = ship m(ship) = 0.8 ship = { 61, 02, ..., 670, 671, 073 }
m(®) =0.2
2 Emitter 44 on board m(emitter 44) = 0.8 emitter 44 = { 011, 619, 063 }
m(0) =0.2
3 Small length m(small length) = 0.8 small length = { 011, 018, 019, 623, 062, 072, 073, 075, - . .,
Iength S [0, 100] m m(O) =0.2 9127, 9131, 9135, 9137, ey 9142 }
4 RCSgjge medium m(RCSgjqe medium) = 0.8 RCSgjge medium = { 05, 03, 0s, 05, 0, 0o, 011, 013, 014,
RCSside S [2, 15] X m(@) =0.2 018, ..., 026, 028, ..., 031, O34, 036, O39, Ous, ..., Oag, Os0,
10% dm? 62, ..., 071, 073, bas, Oo6, 0125, O131}
5 Emitter 77 on board m(emitter 77) = 0.8 emitter 77 = { 09, 033, 035, 036 }
m(0) =0.2
6 Small height m(small height) = 0.8 small height = { 6y, 03, 0g, ..., 611, 013, 014, O13, ...,
height € [0,5] m m(©) =0.2 026, 028, 029, O34, 073, 077,..., Og0, Og3, Oga, Ogg, 0101,
?115, 0117, 0118, 0120,. . ., 0124, 0126, 0127, 0137, 0138, 140
7 Emitter 47 on board m(emitter 47) =0.8 emitter 47 = { 011, 018, 019, 031, O34, O35, Osg, 047, O63 }
m(@) =0.2
8 Emitter 55 on board m(emitter 55) = 0.8 emitter 55 = { 013, 019 }
m(0) =0.2
9 Small width m(small width) = 0.8 small width = { 63, 65, 06, 09, ..., 011, 613, 014, O1s, - ..,
width € [O, 15] m m(@) =0.2 06, Oog, 629, O34, 070, ..., 673, 076, ..., Ogo, O93, Oog,
0101, 0113, - .., O115, 0117, ..., 0124, O126, 0127, O135, 0137,
0138, 0140, 0141 }
10 Emitter 56 on board m(emitter 56) = 0.8 emitter 56 = { 613, 619, 034 }
m(©) =0.2
11 Emitter 103 on board m(emitter 103) =0.8 emitter 103 = { 011, O18, - .., 024, O30, 031, O34, O35, O3,
m(@) =0.2 945, ey 949, 953, 367, 969 }
12 Emitter 109 on board m(emitter 109) = 0.8 emitter 109 = { 011, 01g, 619, 063 }
m(®@) =0.2
13 RCStOp small m(RCStOp small) =0.8 RCStOp small = { 010, 011, 018, 019, 028, 073, 675, Oa1,
RCStOp S [1, 10] X TTL(O) =0.2 092, 997, 999, 9102, ey 0112, 01161 0131, 9139, 9142 }
10* dm?
14 RCS¢ront very small m(RCS¢pontvery small) = 0.8 RCS¢ront Very small = { 07, 018, 019, 072, 673, 074, 076,

RCSfront € [0,3000] dm?

m(®) = 0.2

.., B0, O3, Ooa, Oo7, Oog, 0100, 0101, 0104, O105, O106,
0113, 0114, O115, 117, ..., O124, O106, 0127, 0135, 0137,
6138, 0140, 0141 }

Table 14: Information used in the test scenarios, modelled in evidence theory.




4.3.3 Scenarios study

Table 14 presents the information modelled in evidence theory for the two test sce-
narios.

The main difference between probability theory and evidence theory is that the latter
does not require the use of the additivity axiom found in probability theory, which

imposes that P[A] =1 — P[A]. Indeed, in evidence theory the corresponding weight

of P[A] can be assigned to m(©).
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Figure 9: Evidence theory - Test scenario 1 - Disjunctive rule.

The results of the first scenario using a disjunctive rule of combination and Dempster’s
rule of combination are shown in figures 9 and 10, respectively. We note that with the
disjunctive rule of combination, the BPA associated with ignorance increases after the
fusion of each new piece of information, which makes it impossible for any decision
process to converge toward a singleton. Therefore the disjunctive rule of combination
is not recommended for this type of problem.

The conjunctive rule (Figure 10) is effective in this situation of low conflict. We note
as well that whenever an object does not appear in a proposition to be combined, its
plausibility decreases.

Introducing a countermeasure in the second scenario (Figure 11) shows that the fusion
process provides the same results as in the first scenario, i.e. without the counter-
measure. The plausibilities of the most representative singletons (those with highest
plausibility) decrease after the combination of the countermeasure (instant of combi-
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Figure 10: Evidence theory - Test scenario 1 - Dempster’s rule.
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Figure 11: Evidence theory - Test scenario 2 - Dempster’s rule.

nation #5). On the other hand, the plausibilities of the singletons characterizing the
countermeasure increase.
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4.4 Fuzzy sets theory
4.4.1 Introduction

Fuzzy sets theory was proposed in 1965 by Zadeh [4] to model vague information.
While probability and evidence theories are well suited to modelling uncertain in-
formation, i.e., the uncertainty of membership of a target in a well-defined class of
objects, fuzzy sets theory is well suited to vague information, i.e., the fuzzy member-
ship of a target in an ill-defined class.

4.4.2 Theory description
Axioms and definitions

In the classical set theory, a subset A C © can be represented by a binary membership
function:

Ha(B) = V0 €O (33)

0 otherwise

{1 if 9ecA

An element 8 of © belongs or does not belong to a crisp set (or classical set). Prob-
ability theory and evidence theory rely on this assumption of a two-value logic: A is
either true or false.

Fuzzy sets theory models imprecision and especially vagueness or fuzziness. It relies
on a multi-value logic, where events are allowed to be more true or less true.

Definition 7 A fuzzy set A of O is defined by the gradual membership function
taking its values in the interval [0, 1]:

Ha(B) €[0,1] VB €O (34)

For each 8 of ©, pa(6) denotes the membership degree of 8 to the subset A of ©. The
higher the degree, the more 8 belongs to A.

Example 12 Figure 12 illustrates the difference between the two concepts of crisp
and fuzzy membership of a subset to a subset A (A C O vs. A C O).

In classical set theory, a length of 50 metres belongs to the subset large length.
But in fuzzy sets theory, the same length of 50 m belongs to the same class large
length with a degree of membership of 0.85. Note that fuzzy sets theory allows us to
classify the same length into several classes (with different membership degrees). For
example, the length 50 m can belong to large length with a degree of 0.85, belong
to small length with a degree of 0.2, etc.
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Strict and fuzzy membership - a comparison
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Figure 12: Large length - Di[erknce between the concepts of crisp and fuzzy mem-
bership.

Definition 8 An O-cut of a fuzzy subset A C © is a crisp set of © defined by:

Aq = {8]pa(6) > o} (35)
A fuzzy set A C O can also be defined as the set of its a-cuts.
Information combination

In fuzzy sets theory, several combination rules are defined as being conjunctive or
disjunctive.

1. Conjunctive combinations

Definition 9 The standard intersection of the two fuzzy sets A and B is a new
fuzzy set defined by:

H(8) = min{ua(6), kg (8)} VB € © (36)

Definition 10 The product of the two fuzzy sets A and B is a new fuzzy set
defined by:

H5'(8) = pa(B)up(0) VB €O (37)

Several other conjunctive rules are presented in the following equations:

H5(6) = max{0,Ua + Mg — 1} VB €O (38)
Ay min{pa(8), us(8)}
uj (@) = "R S e e o (39)
M5 (8) = min{pa(8), ue(8)} + 1 —h(pa, ue) VB €O (40)
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where h(Ha, Mg) = max <Iglié1{|.lA(9), Hs (9)}) quantifies the degree of conflict between
A HB utliHa B

the two membership functions.

2. Disjunctive combinations

Definition 11 The standard union of the two fuzzy sets A and B is a new fuzzy
set defined by:

U1 (8) = max{Ua(6),us(8)} VB €O (41)

Definition 12 The algebraic sum of the two fuzzy sets A and B is a new fuzzy
set defined by:

H3(8) = Ha(8) + HB(8) — Ha(B) x UB(0) VB €O (42)

Another disjunctive combination rule is defined by:

W3 (8) = min{ua(6) + ug(6),1} VB €O (43)

3. Adaptive combination

An adaptive combination rule was proposed by Dubois and Prade [19] as a cross
between a conjunctive rule and a disjunctive rule. This rule uses a conjunctive com-
bination rule when the sources are both reliable, and uses a disjunctive combination
rule when one of the sources is unreliable (but we don’t know which one):

Hi'(6)
(Ha(8), 1B(0))

The combination W{'(8) and pj'(6) can be chosen from any of the above conjunctive
and disjunctive combination rules.

uAD<e>—max{h .min{l—h(m(e),uB(e»,uf(e)}} W0eo (44)

Decision

The most likely object is the one with the highest degree of membership in the final
fuzzy set after a sequence of combination steps:

Bobserved = Arg{%‘%{[“é(e)]} (45)

Because of the normalization step required in many of the above combination rules,
the associativity property is not satisfied, and thus the order of combination is im-
portant. Indeed, if the decision is taken after the last combination step, the result
will depend on the order in which the pieces of information have been fused.
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Example 13 Let us consider the two pieces of information presented in figure 13,
characterized by their fuzzy membership functions Py 11 length(e) and Ky edium height (8),
respectively.

Figure 14 shows the results of three different combination rules: one disjunctive
rule (the maximum) yields several objects as solution (objects 3, 5 or 7), and two
conjunctive combinations (the minimum and the normalized minimum), which are
more selective, yield just one solution (object 3).

1 - —
M. tengthl®)

Hinedium helgm( ) ]
0l — S

)]

04 -

02 —

1 2 3 4 5 B 7 8 9 10
Index of objects from the data base

Figure 13: Example of fuzzy membership functions small length and medium
height.
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1 2 3 4 5 g 7 g 9 10
Index of objects from the data base

Figure 14: Example of three combination rules in fuzzy sets theory.

Note that in this example, the normalization of the third combination rule (normal-
ized minimum) is not necessary because it does not influence the decision-making in
this simple case of one step of combination. However, the normalization step can
be useful when more pieces of information are fused. Note finally that 03 has the
maximum membership degree using the three combination rules, and thus will be the
selected object by the decision rule.
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4.4.3 Scenarios study

Some pieces of information in the test scenario, namely the target type and list of
the emitters, are modelled better by crisp sets, which are special cases of fuzzy sets.
Other pieces of information characterizing the physical dimensions of the target are
modelled better by fuzzy sets. Tables 15 and 16 show crisp classifications of attributes,
i.e., how it would have been modelled in classical set theory. The extension to fuzzy
sets theory is illustrated in Figure 15 below.

-
'—I:E%.ass .
Attributs =5 Islmall medium large
length (m) 0 - 100 [ 100 - 200 | 200 - 500
width (m) 0-15 | 15-40 | 40-80
height (m) 0-5 5-15 15-35
Table 15: Classifications in classical sets theory of length, width and height.

==
SER (dm?) ] iV(Iery small small medium large very large
RCSgide 0-4000 [ 0.4-2x10* [2-15x10% [ 1.5-5 x10° [ > 5 x 10°
RCStop 0-10000 | 1-10 x10* | 1-5x10° | 5-10 x10° > 10°
RCStront 0-3000 | 3-7x10° |7-15x10°[15-3 x10* [ >3 x10*
Table 16: Classifications in classical sets theory of the side, top and front radar cross

sections.

These classifications are based on those defined in [20], but without any consideration
of the target type (air, naval, ground targets, etc.).

While a crisp classification is at the basis of probability and in evidence theories,
it cannot be used to model vague information. This previous classification must
then be fuzzified so that different fuzzy classes can be defined. The upper graph in
Figure 15 shows three fuzzy classes for the attribute length (small, medium, large),
while the other three graphs show the fuzzy membership degrees of all the objects
in the database in these three fuzzy classes. Between the upper graph and the three
others there is a change of variable: the first domain is a continuous and ordered
one, characterizing the attribute over real values (i.e., length between 0 and 500 m),
and the second domain is the index of objects in the database, which is a discrete
and non-ordered domain. More details on the domain change and also the complete

models of the fuzzy classes of the pieces of information for the scenario are presented
in Annexes B.1 and B.2.

The other pieces of information not modelled by fuzzy sets are modelled using crisp
sets, as summarized in Table 17.
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Figure 15: Fuzzy length - class small / medium / large. Characterization of the
database by the classes small length, medium length and large length
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Instant | Information Modelled information in fuzzy sets | Associated propositions
theory
1 Target type = uship(e) =1V0 € ship ship = { 01, 02, ..., 070, 071, 073 }
Shlp /‘ship(e) =0V e %
2 Emitter 44 on | uem. 44(0) = 1V0 € emitter 44 emitter 44 = { 011, 619, 63 }
board tem. 44(0) =0 V0 € emitter 44
3 Length small Fig.B.1 (C]
4 RCSgjge medium | Fig.B.4 (C]
5 Emitter 77 on | pgm. 77(0) = 1 V0 € emitter 77 emitter 44 = { 0,9, 033, 035, 036 }
board tem. 77(0) =0V c emitter 77
6 Small height Fig.B.3 (C]
7 Emitter 47 on Hem. 47(9) = 1V0 € emitter 47 emitter 47 = { 011, 618, 019, 031, O34, O35, Oas, 047, O63 }
board tem. 47(0) =0 V0 € emitter 47
8 Emitter 55 on | pem. 55(0) =1 V60 € emitter 55 emitter 55 = { 61g, 019 }
board pem. 55(¢) =0 VO € emitter 55
9 Small width Fig.B.2 (C]
10 Emitter 56 on | puem. 56(0) =1 V0 € emitter 56 emitter 56 = { 01g, 619, 034 }
board tem. 56(0) = 0 VO € emitter 56
11 Emitter 103 on Hem. 103(9) = 1v0 € | emitter 103 = { 011, O1s, ..., 024, O30, 031, O34, O35, O36,
board emitter 103 Oss, ..., Oag, 63, 067, O59 }
pem. 103(0) = 0V0 €
emitter 103
12 Emitter 109 on | pem. 109(9) = 1veo € | emitter 109 = { 611, 018, 019, 063 }
board emitter 109
pem. 1090) = 0VO €
emitter 109
13 RCStop small Fig.B.5 S}
14 RCStront very | Fig.B.6 C]

small

Table 17: Information used

in the test scenarios, modelled in fuzzy sets theory.
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The result of the conjunctive normalized minimum rule (Figure 16) shows that after
the final step of combination, only one element has a membership degree equal to
1, and the decision rule then easily selects it to be the identity of the observed
target, namely object #18. The other elements in the database disappeared from the
propositions list as soon as a new piece of information to be combined does not fit
with them. In the database we considered, all the features of objects #18 and #19
are the same except one. That is why both objects remain possible candidates for
the observed target.

Temporal evolution
T T

0.8 ’ \ Minimum normalized rule 7
\
zo6f | : \ — — 1. Object 11 4
= : \ — - 2. Object 18|
0.4l \ . \ —— 3. Object 19 -
: \ : \ 4. Object 63
0.2 \ \ i
. \
\
o 1 Il Il - Il Il Il
2 4 6 8 10 12

Instants of combination

Final information
T T

Minimum normalized rule

0.8 —

= 0.6 -
=

0.4 —

0.2 -

o L L L L L L L
(o] 20 40 60 80 100 120 140

Index of objects from the data base

Figure 16: Fuzzy sets theory - Test scenario 1 - Normalized minimum rule

In the first test scenario, all pieces of information to be combined are coherent in the
sense that they do not create a total conflict between the sources. However, we are
now interested in situations where a countermeasure is included in the fusion process,
so that the conflict must be managed. This is illustrated in test scenario 2. One the
one hand, it appears that the conjunctive combination rules like the minimum or the
product will eliminate all the propositions, the likely ones included. On the other
hand, the disjunctive combination rules like the maximum or the algebraic sum will
consider all the propositions with indiscernible weights. Hence, neither a disjunctive
rule nor a conjunctive rule yields an effective solution for this kind of problem. Being a
compromise between the conjunctive and disjunctive rules, an adaptive combination
rule like the one proposed by Dubois and Prade (equation (44)) seems to provide
better results for target identification problems using data fusion techniques. Figure
17 shows the results after using the adaptive rule in test scenario 1. Although two
possible matches for the observed target appear at the end of the combination process
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(Objects #18 and #19), Object #19 will be selected by the decision rule because
it has a higher degree of membership than Object #18. Note that the order of

Temporal evolution
T T T T T T

1. Object 11 .
2. Object 18
3. Object 19
4
5

. Object 35
. Object 63

6 8 10 12
Instants of combination

Final information

T T T T T

Adaptive min / max rule

oA II“I"IIIIII"I"IIIIIIIIIIIIIIIII“I"III'IIIII'IILIIIIII“I'IIIIIII

60 80 100 120 140
Index of objects from the data base

Figure 17: Fuzzy sets theory - Test scenario 1 - Adaptive min/max rule.

combination of the pieces of information is important, since the normalization used
in the adaptive combination rule makes it non-associative.

Temporal evolution

Adaptive min / max rule

. Object 11 -
. Object 18
. Object 19 .
. Object 35
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ahWNE
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2 4 6 8 10 12 14
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40 60 80 100 120 140
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Figure 18: Fuzzy sets theory - Test scenario 2 - Adaptive min/max rule.
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Figure 18 shows the result of the adaptive combination rule applied to the second
scenario where a countermeasure has been introduced at step #5 of combination. We
note that the objects belonging to the proposition representing piece of information
#5 are eliminated during the fusion process. However, Object #18 has the same
final fuzzy membership degree as Object #19, so no decision can be made about a
single object. So if the adaptive combination rule eliminates the countermeasure, it
also eliminates the differences between the two most representative elements, and the
identification remains imprecise in this case.

Conjunctive combination rules used with the second test scenario do not produce
any relevant result, since after the countermeasure is combined, all the objects in the
database are assigned a nil fuzzy membership degree.

4.5 Possibility theory
4.5.1 Introduction

Possibility theory was developed also by Zadeh [7] and proposed another alternative in
the representation of uncertainty, i.e., for representing incomplete information. Based
on fuzzy sets theory, possibility theory is however different since it does not address
vague information. Indeed, fuzzy sets theory models fuzzy information (membership
of an object in a ill-defined class) without any consideration for randomness. But
possibility theory models the uncertainty of a well-defined class, in an equivalent spirit
as probability and evidence theories, although uncertainty is quantified differently.

4.5.2 Theory description
Axioms and definitions

According to Dubois and Prade [21], the concept of possibility can be regarded from
several points of view. We can refer to possibility as feasibility, as in the example “It
is possible to solve this problem”. And we can use the possibility concept to express
the idea of plausibility, as in “It is possible that the target is a plane”. Possibility
can also be viewed as consistency to express the compatibility or incompatibility of
two pieces of information, as in the example “It is impossible for the observed target
to be at 3000 metres of altitude, since it is a submarine”. Information expressed in
possibility theory can be either objective or subjective.

Zadeh [7] defined the concept of possibility using the concept of fuzzy restriction. Let
A be a fuzzy set of ©, where Ya(0) represents the membership degree of an element
0 in the fuzzy set A. Considering the fuzzy set A, Zadeh defines the possibility
degree of the event X = 8, noted Tix (0), as the membership degree of 8 in the fuzzy
set A:
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mx(8) = Ha(®) (46)

The possibility distribution function mx (6) € [0, 1] V8 € ©, is the model of uncertain
information in possibility theory. The only restriction of this distribution function is
its normalization, requiring at least one element 8y € © to have a possibility degree
equal to 1.

Equation (46) may create confusion by implying that fuzzy sets theory and possibility
theory are the same. To avoid this ambiguity, Dubois and Prade [22] proposed a new
notation:

e the possibility degree characterizing the uncertain membership of an element 0
in a known class is denoted by T(8|A);

e the membership degree characterizing a fuzzy set, which is ill-defined, is denoted

by H(A[6)

Example 14 Let us consider the piece of information “The observed target has a
large length”. The fuzzy set large length is imperfect information. In fuzzy sets
theory we can quantify the membership degree of any object in the database in the
fuzzy class large length. For example, we can consider that an object with a length
of 100 m can be classified into the large length class with a membership degree of 0.7
(“large length(lo()) = 0.7). Zadeh [7] makes the link between the concepts of fuzzy
set and possibility (equation (46)). He considers that the possibility that the length
of the observed object is 100 m is 0.7 (Ttx (100) = 0.7).

From the possibility distribution function Tx (0) expressing the possibility of X = 8,
where 8 € ©, two other measures are defined: the possibility measure II, where I1(A)
characterizes the possibility of X € A, and the necessity measure N, where N (A)
characterizes the necessity of X € A:

TI(A) = max{nx(8)} VA C O (47)
N(A) = min{l — 1x(6)} VA C© (43)

Between these two measures there is a duality relation (equivalent to that existing in
evidence theory between plausibility and belief - equation (24)):

N(A)=1-TII(A) YVACO (49)

II(A) = 1 corresponds to the situation where at least one singleton 8 € A has a
possibility degree equal to 1 and it is likely to be the element sought. This means that
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the researched element can belong to subset A, without being necessary. N(A) =1

corresponds to the situation where II(A) = 0, meaning that the researched element
certainly does not belong to subset A, so it certainly belongs to subset A C ©.

In possibility theory, knowledge of II(A) does not involve knowledge of TI(A), but

only knowledge of N(A).
Moreover, possibility and necessity degrees satisfy the following axioms:

(AU B) = max{II(A),II(B)} VA,B C© (50)
N(ANB)=min{N(A),N(B)} VA BCO (51)

Information combination

As fuzzy sets, possibility distributions can be combined using conjunctive or disjunc-
tive combination rules, these rules being the same as those introduced for fuzzy sets.
The only difference is that all the combination rules must be normalized so that the
final information is normalized.

Decision

The decision rule in possibility theory is based on the greatest possibility, making the
element with the highest possibility measure the best candidate for the identity of
the observed target:

Bobserved = Arg{réleaéc[ﬂx (9>]} (52)

4.5.3 Scenarios study

Table 18 lists the pieces of information used in the test scenarios modelled in pos-
sibility theory. The result of the combination process using a normalized product
combination rule is shown in Figure 19. Object #19 appears as the sole candidate,
having the highest final possibility.

4.6 Rough sets theory

4.6.1 Introduction

In 1982, Pawlak introduced a new concept to deal with imperfect information: rough
sets. The basic idea of rough sets theory is to replace an imprecise and uncertain
concept by a pair of precise concepts obtained from lower and upper approximations.
Then, classical sets theory is used to deal with the approximated precise concepts.
Rough sets theory deals only with the imprecision of information, ignoring the uncer-
tainty. Usually, the knowledge coming from the new piece of information is modelled
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Instant | Information Modelled information in possibility | Associated propositions
theory
1 Target type = ship m(@) =1 V0 € ship ship = { 61, 02, ..., 670, 071, 073 }
7(#) =0.2 V6 € ship
2 Emitter 44 on board (@) =1 V6O € emitter 44 emitter 44 = { 011, 619, 063 }
m(0) = 0.2 VO € emitter 44
3 Small length w(0) =1 VO € small length small length = { 611, 013, 019, 028, 062, 072, 073, O75, ...,
Iength S [0, 100] m 7T(9) =0.2 VO e small Iength 0127, 0131, 0135, 0137, ..., O142 }
4 RCSSide medium 7T(9) =1 Vhe RCSSide RCSside medium = { 05, 03, Os, Og, Og, Og, 011, 013, 014,
RCSgige € [2,15] x | m(9) =0.2 V6 € RCSjge b1, ..., 026, O2s, ..., 031, O34, O36, O30, Oas, ..., Oa9, Oeo,
10% dm? 062, ..., 071, 073, bas, Oos, 0125, O131}
5 Emitter 77 on board m(0) =1 VO € emitter 77 emitter 77 = { 09, 033, 035, 036 }
m(0) = 0.2 VO € emitter 77
6 Small height w(#) =1 V6O € small height small height = { 05, 03, 0, ..., 011, 013, 014, b13, ..., O,
hEight S [0,5] m 7T(9) =0.2 VO e small hE‘Ith Oog, 029, O34, 073, 077,..., 90, 093, Oo4, Bog, 0101, 0115, 0117,
6118, 0120,. . ., 0124, O126, 0127, 0137, 138, O140 }
7 Emitter 47 on board 7T(9) =1 V6 c emitter 47 emitter 47 = { 011, 018, 019, 031, O34, O35, Oag, 047, O53 }
w(0) = 0.2 VO € emitter 47
8 Emitter 55 on board m(#) =1 V0 € emitter 55 emitter 55 = { 613, 019 }
m(#) = 0.2 VO € emitter 55
9 Small width m(@) =1 VO € small width small width = { 63, 05, 0s, 09, ..., 011, 013, 614, O3, ..,
width e [0,15] m 7T(9) =0.2 V0 e small width 056, Oog, 29, 034, 070, ..., 073, 076, ..., Ogo, O93, Oag, 0101,
0113, ..., 0115, 0117, ..., 0124, O106, 0127, 0135, 0137, O13s,
0140, 0141 }
10 Emitter 56 on board m(0) =1 V6 € emitter 56 emitter 56 = { 63, 019, 034 }
m(0) = 0.2 VO € emitter 56
11 Emitter 103 on board 7T(9) =1 V60 e emitter 103 emitter 103 = { 011, O18, ..., O24, O30, 031, O34, O35, O36, 45,
m(0) = 0.2 VO € emitter 103 ..., Oa9, 063, O67, Os9 }
12 Emitter 109 on board w(0) =1 VO € emitter 109 emitter 109 = { 011, 61g, 619, 063 }
w(0) = 0.2 V6 € emitter 109
13 RCStOp small 7T(9) =1 Vhe RCStop RCStOp small = { 010, 011, 018, 019, O2g, 073, 075, O91, O92,
RCStop € [1,10] x | 7(d) =0.2 V0 € RCStqp 097, 99, 102, - - ., b112, 0116, 0131, U130, O142 }
10* dm?
14 RCS¢ront very small m(0) =1 V0 € RCS¢ront RCS¢ront Very small = { 07, 018, 019, 672, 073, 074, 076, - . .,
RCSfront € | (/) =0.2 VO € RCSfront 090, 093, Og4, 097, Oog, B100, 0101, 0104, O105, 0106, 0113, 114,

[0, 3000] dm?

6115, 0117, ..., 0124, O126, 0127, 0135, O137, O138, 6140, O141 }

Table 18: Information used in the test scenarios, modelled in possibility theory.
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Figure 19: Possibility theory - Test scenario 1 - Normalized product rule.

as an equivalence relation on the objects in the data base, i.e., building classes in
which some objects are indiscernible.
4.6.2 Theory description

Axioms and definitions
Definition 13 A concept of © a subset A C ©.

Definition 14 A set of subsets of © generates knowledge of ©. We denote items
of knowledge by R (R C 2°).

Knowledge of © is often defined as a partition of the frame of discernment, according
to a given attribute. This is a restriction of the general case of rough sets theory,
since a partition is a special subset of the power set 2°. This knowledge is a priori
knowledge of the studied system, and it does not represent known information already
integrated into the fusion process.

In an ideal situation, an item of knowledge R is formed by a set of singleton concepts
of ©, such knowledge being called fine knowledge.

Let A C © be a concept of © and let R be an item of knowledge of ©. If A € R,
the concept A is certain according to knowledge R. Otherwise it is uncertain. If the
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concept A is uncertain, the question is how to approximate this concept according to
knowledge R.

Definition 15 The lower approximation of A according to R, noted RA, is the
set of elements [8]g € R included in A.

RA = {[8]r/[8]r C A} (53)

The lower approximation is obtained from all the concepts of © which are certain
according to knowledge R.

Definition 16 The upper approximation of A according to R, noted RA, is the
set of elements [8]g of R whose intersection with A is not empty.

RA = {[B]r|[6]r N A # 01 (54)
The upper approximation is obtained by subtracting from all the concepts of © those
concepts which are certainly not included in the knowledge R.

The terms lower and upper approximations were proposed by Pawlak [8]. Other
designations are core and envelop, respectively (Parsons [23]).

Example 15 Let us consider a frame of discernment 19 with 10 objects:

©10 = {00,01,...,69}

and a knowledge R of ©19 given by:

R = {{80,04}, {8}, {821, {83}, {85.06,80}, {871, {8s} |

This knowledge means that we are not able to distinguish between objects 8, 84 nor
between 05, 65, 0.

An information can be represented by any subset of ©1q:
A= {901 el; 941 95}

This rough set model of the information takes into account only the imprecision of
the information; its certainty degree is not considered.
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We can determine lower and upper approximations from knowledge R and information
A, respectively:

RA = {{80,8:}, {8:} } (55)
RA = { {8084}, {81}, {85, 0,60} } (56)

These approximations describe on the one hand the set of objects to which we grant
our complete confidence (RA), and on the other hand the set of all possible objects
(RA).

Information combination

Definition 17 (Concepts combination) Let © be the frame of discernment and
let R be a knowledge of ©. Let A and B be two concepts of © approximated accord-
ing to the knowledge R by the couple of sets (RA, RA) and (RB, RB), respectively.
Imperfect pieces of information A N B and A U B are characterized by their approx-

imations (R(ANB), R(ANB)) and (R(AUB), R(AUB)), respectively. These

combined approximations are defined as follows:

1. conjunctive combination: R(ANB)=RANRB (57)
R(ANB) CRANRB (58)
2. disjunctive combination: R(AUB) D RAURB (59)
R(AUB)=RAURB (60)

Definition 18 (Knowledge combination) Let R be a knowledge family of ©.
An equivalent knowledge of this family is given by the intersection of all the pieces
of knowledge of this family:

INDR) = ) R (61)

RieR

IND(R) is the set of all classes of objects which are indiscernible.

Ignorance

Definition 19 Let © be a frame of discernment and let R be a knowledge of ©.

A complete lack of knowledge on the concept A is modelled by lower and upper
approximations such that RA = [Lald RA = ©.

Independence
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Definition 20 Let F = {Ay, Ay, ....,An} be a family of concepts of ©. We say that
the concept Aj is dispensable for F if

j=n j=n
N A=A (62)
i=1 j#i j=1

If not, we say that the concept A; is indispensable for F.

Definition 21 A family of concepts F is said to be independent if all its concepts
are indispensable for F'; if not the family is called dependent.

When a family of concepts or pieces of knowledge is dependent, there are several ways
to transform it into an equivalent independent family (see Pawlak [8] fro details).

Decision

After the combination of rough pieces of information, using the equations (57) to
(60), the following conclusion can be drawn: the researched object is probably in
RA¢ina but it also could be in RA¢inal-

1. If the knowledge R is not fine enough, the lower approximation of any informa-
tion can be empty; this is a situation we must avoid as much as possible.

2. If the knowledge R is totally rough, rough sets theory reduces in this special
case to classical sets theory.

So, to successfully apply rough sets theory, a priori knowledge of the database must
be neither too fine nor too rough. In the previous extreme conditions, rough sets
theory should not be used to combine pieces of information, since the results could
be irrelevant.

4.6.3 Scenarios study

The database can be modelled by a very fine knowledge

Ro = {{el}, 8}, ..., {9143}}

This model expresses the fact that all objects are distinct, none of them having the
same features as another. We will, however, consider that our a priori knowledge of
the database is not complete and we know only a partition of the database according
to, for example:

1. type and sub-type;
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2. offensive classification.

In practice, these partitions are defined from the information provided by the sensors
in use. Pieces of knowledge R; and Rj, defining the partitions of the database by
object type and sub-type and by offensive classification, respectively, are presented
in Annex C.1. The equivalent knowledge R is given by:

R: { {el} 9 {627 997 926 ) 629 ) e73} ) {937 e10 ) ell ) 618 ) elg} ) {947 977 e17 3 e31 3
e37 ) e45 ) e46 ) e47} ) {657 667 e20 PRI e24 ) e70 ) e71} ) {98; e39 ) e60 ) e64 ) 966 ) e67 )
669} ) {612 ) e15 ) 616} ) {613 ) 614} ) {925} ) {627} y {928} ) {630 ) 638 ) 648 ) 649} )
{932} ) {633 3 e42 y 943 ) e44 ) 961} ) {934 ) 665 ) 668} ) {935 } ) {936} ) {940 ) 953 PRI
e59} ) {641 ) e50 ) e51 ) e52 ; 663} ) {962} ) {974} ) {975 ) e99 ; e116} ) {672 ) e76 ; 693

) e94 ) e113 s e114 5 6115 ) e117 s e:I.Zl 5 9122} ) {977 PRI e82 ) e84 ) e85 ) 986 ) e88 5 e89}
3 {983 ) e87} ) {990 ) 6137 y 9138 ) e141} ) {991} ) {992 ) e101 ) e140} ) {995 ) 996 ) 9102
) e103 ) 6125 y 9139} ) {997 ) e110 ) e131} ) {998} ) {6100 ’ elll} 9 {9104 9 ey e109 ) e112

ael42} ) {6118} ) {9120 ) e124} ) {6119 ’ e123 ’ 9127} ) {6126} ) {9135} ) {9128 ) 9129,
e130 ) e132 ) e133 ) e134 ) 6136 ) 6143}

Then, each piece of information considered in the test scenarios is modelled by a
concept (a subset of ©) using rough sets theory:

AL = {91, 92, ey 970, 971, 973}

A, ? {611,019, 663} As = {011, 618, 619, 028, 862, 872,873,075, . . ., 8127, 8131, O135, 8137, . . .,
0142

Ay = {0,63,05,06,0g,09,011,013,014,015,..., 026,628, ...,031,034, 036, 039, Bus, ..., 040,
860, 062, - . ., 871, 873, B9s, B, B125, 8131 }

As = {029, 833,035, 036 }

As = {0,,03,0g,...,011,013,014,618,...,02, 028,029, 034,073,677, ...,090, Boz, Bgs, Ogg,
0101, B115, 6117, 8118, 0120, . . ., 8124, 8126, 0127, 8137, B138, G140 }

A7 = {011,013, 019, 031, B34, 635, 046, 047, B63 }

Ag = {013,010}

Ag = {03,65,06,00,...,011,013,014,013,..., 02, 628, 629,034,070, ...,073, 876, ..., B0, B3,
B9g, 0101, 0113, . . ., 8115, B117,...,0124, B126, 8127, O135, O137, B138, B140, 8141}

A1o = {018, 610,034}

A11 = {611,618, ...,024,030, 031, 034, 035, 036, 645, . . ., Bag, B63, B67, B690 }

A1z = {011, 018, 019, 863}

A1z = {610, 611, 018, 819, 828, 873, 875, 891, B2, 697, 899, B102, ..., 0112, B116, B131, O139, 142}
A = {87,618, 019,072,073,074,07, . .., 690, B9z, Bo4, B97, Bag, 8100, G101, B104, B10s, B106,
0113, 0114, B115, 8117, ..., B124, B126, 8127, B13s, O137, O138, B140, 8141}

The complete models for the test scenarios are presented in Annex C.3. Some exam-
ples for the lower and upper approximations of pieces of information A, and Ag are
given below:
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-
RAz = { {05,010,013, 015,610} , {811,850, 051, 02, 83} |
RAs = {{92,99,926,929,973}, {63, 010, 011,018,010}, {013,614}, {625} , {B2s}, {Bos} ,

{677,...,0s2, 084, Bgs5, Bg, Ogs, B0} , {Os3, 087}, {6120, 0124} , {B118}, {9126}}

ﬁ'A\G - { {921 691 626! 629! 973} ’ {631 e10) ell! 918, 919} ’ {651 66! e201 ey e247 e707 e71} ) {613’

e14} ) {981 6391 960! 664, 966! 967! 969} ) {925} ) {628} ) {6341 6651 668} ) {990) e1371 e1381 9141}
, {072, 676, B3, Bga, B113, 0114, B115, 6117, B121, 8122} , {B77,..., 082, Bgs, Ogs, g6, Oss,
B39} , {Bs3, Bs7} . {B92,0101,0140} , {Bos} , {0120,0124} , {O110,0123, 0127} , {B118} .

{6126} }

Let us denote by A™ and A" the final information obtained using the intersection and
the union of information in the first scenario:

A=A N...A;NAsN---NALY (63)
A=A U...AjUAsU---UAp, (64)

The results of this first scenario are given by the lower and upper approximations:

= { o}

RA" C { {03,610, 611, 615, 010} }
and

BAU 2 { {el} ) {927 697 6267 6297 e73} ) {637 e107 ell; 918, 919} ) {947 677 e177 9317 9377

045, 846, 847} , {65, B6, B20, ..., 624, B70, B71} , {Bs, B39, B60, O6a, Bg6, B67, B0} , {012,
015, 016} , {013, O1a} , {625} , {827} , {028} , {30, B3s, Bag, Bao} , {032} , {Os3, a2,
043, 044, B2} , {B34, Bgs, Bes} , {Oas} , {636} , {Ba0, Bs3, ..., B0} , {Ba1, Bs0, Os1,
052, B3} , {662} , {672, B76, Bos, Bos, B113, O114, B115, B117, B121, B120} , {674} , {B7s,
B99, 8116} {077, ..., Bs2, Oga, Ogs, Ogs, Ogs, Os0} , {Bss3, Bs7} , {Bo0, 8137, O138, B1a1} ,
{801} , {892, B101, 8140} , {Bos, Bo6, B102, B103, B125, B139} , {B97, B110, B131} , {Bes} ,
{68100, 0111} , {104, ..., B100, B112, B142} , {B118} , {B120, O12a} , {B110, B123, B127}

{Bu26} + {0135} |

ﬁAU = { {el} ) {927 697 e267 e297 673} ) {637 e107 e117 e187 e19} b {947 677 e177 e317 e377

Os5, 046, 047} , {05, O6, O20, ..., 024, B70, B71} , {0, B39, B0, B6s, Bes, B67, B0} , {612,
015, B16} , {013, 614} , {B25} , {627} , {B28} , {30, O3s, Oas, Bao} , {632} , {03, baz,
043, 644, B61} , {034, Oes, Oes} , {05} , {036} , {040, Os3, ..., Os0} , {0a1, Bs0, Bs1,
B2, O63} , {062} , {072, B76, Bos, Boa, B113, B114, B115, B117, B121, B122} , {674} , {675,
B99, B116} {077, ..., Bg2, B4, Bgs, Bge, Bgs, Bso} , {Os3, Oa7} , {000, O137, O1zs, B1a1} ,
{891} , {892, B101, B120} , {005, Bgs, B102, B103, B125, B130} , {07, B110, 131} , {Bos} ,
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{91007 e1]_1} ) {91047 ey 9109, 91127 9142} ) {6118} ) {91207 e124} ) {ellga 61237 9127} ;
{6126} , {B135} }

Since VA C ©, RA C RA and considering the results obtained previously, we obtain
RAY = RA".

The result of the first scenario can be summarized as follows:

1. Using a conjunctive combination rule (the intersection), the identity of the
observed object is probably one of the objects of the class {03,819, 011, 018,010}
which belongs to RA™. No object can be identified since the subset RA" is

empty.

2. Using a disjunctive combination rule (the union), the identity of the observed
object is certainly one of the objects of the class RAY = RAY. Like all other dis-
junctive combination rules, this one provides an imprecise result, which makes
identification impossible.

The particular feature of the second scenario where a countermeasure is introduced
at step #5 is that RA" = RA™ = { [J1This allows us to conclude that the con-
junctive combination rule is unable to eliminate the countermeasure from the fusion
process, and invalidates any decision. So, rough sets theory does not seem to be
useful in this special example of target identification, since it is unable to eliminate
the countermeasure.

4.7 Conclusion

Probability theory is able to deal effectively with uncertainty problems like gambling
situations. However, in problems where imprecision is involved, the modelization pro-
vided by the probability theory is inadequate. A consensus combination rule considers
known a priori reliability degrees that one can assign to different sensors. Where re-
liability degrees are unavailable, the better method of modelling for combining pieces
of information is to consider them as equally reliable.

Evidence theory models uncertain and imprecise information. The conjunctive com-
bination rule used to combine different pieces of information produces more realistic
results, compared to probability theory, as it offers a way to manage the conflict
between two sources of information. The disjunctive combination rule avoids ex-
cessively drastic conclusions where sources are unreliable, but on the other hand it
cannot converge towards a singleton, which means it cannot be used alone on target
identification problems.

Vague information cannot be modelled in probability theory or evidence theory. Fuzzy
sets theory is the appropriate framework for this kind of information. Fuzzy sets
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theory is particularly effective for modelling information supplied by human sources
in natural language (small length, high speed, etc). As probability requires prior
probability distributions, fuzzy sets theory requires prior membership functions for
the different fuzzy classes.

Possibility theory was developed to deal with incompleteness, which is a particular
case of uncertainty not addressed by probability theory. Incomplete pieces of informa-
tion are fused in possibility theory using the same combination rules as in fuzzy sets
theory. The combination rules need to be normalized, making them non-associative,
which requires that the order of combination of the pieces of information must be
considered.

Imprecise information having an unknown or unquantifiable uncertainty degree can
be modelled in rough sets theory. In this theory, knowledge is represented by classes
of indiscernible objects. A piece of information is then projeted on this partition,
leading to the definition of lower and upper bounds, in the case where it does not
fit perfectly into a cell of the partition. The test scenario with a countermeasure
provides an irrelevant result.
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5 Links between the different theories

5.1 Introduction

In the previous sections we considered raw information, and we were able to model it
into the appropriate theory considering the information content itself or the situation
we were dealing with. However, when different modules of a data fusion process need
to be connected, the information is already modelled in a given theory such as those
presented in Section 4. In this case, different theories may come into play, since the
different modules do not necessarily have to deal with the same kind of information.
In this section we present the most significant transformations between the theo-
ries under study so that users can build bridges between the different mathematical
models. Another approach consists in defining a framework that is general enough
to allow the different theories to be described within it. This will be discussed in
Section 6.

Figure 20 presents the links between the different theories for representing and com-
bining imperfect information. These links are examined beginning with probability
theory and following the arrows in the order indicated.

Probability |

theony J

[1]
Ewvidence [9]
L

theory

Fough sets
theony

] (=]

Fossibility
theary

Fuzzy set
L theary

Figure 20: Links between the di[erknt theories
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5.2 Probability theory/Evidence theory

Evidence theory can be seen as an extension of probability theory, since the latter
does not consider the imprecision of imperfect information. While a probability dis-
tribution function characterizes only the set © (because of the additivity axiom), the
BPA in evidence theory characterizes the entire power set 2©. Because probability
theory is a special case of evidence theory, no one-to-one correspondence exists be-
tween them and many transformations can therefore be defined. A transformation
from evidence theory to probability theory necessarily involves a loss of information
and, consequently, a loss of uncertainty.

56

1. Pignistic transformation (Smets [9]) is the most commonly used transforma-

tion from evidence theory to probability theory. This transformation distributes
the BPAbpa of the imprecise subsets equally among the singletons composing
the specified subset:

BetPg] = 3 Cgéﬁz) ¥8 €O (65)
6cA, ACO

Example 16 Let a piece of information be modelled in evidence theory by
the BPA defined on the frame of discernment ©19 = {8, 81,02, ...,00}:

m({6o, 61,0,}) = 0.6
{m(@lo) =04 (66)

Applying the pignistic transformation (equation (65)) leads to:
0.6 0.4

BetP[d] = BetP[8y] = BetP[6;] = = + o = 0.24 (67)
BetP[0s] — BetP[ds] = ... — BetP[dg] — 01—51 ~ 0.04

. Voorbraak transformation (Voorbraak [10]) proposes to normalize the plau-

sibility of singletons:

% m(A)
P[6] = S B V8 € O (68)

BCoO

Example 17 Let us consider the basic probability assignment (equation (66))
from the previous example. Applying Voorbraak’s transformation leads to:

1
PV[eo] - Pv[el] - Pv[ez] = 3x117x04 =0.172 (69)
0.4
Pu[Bs] = Pulf] = ... = PyfBs] = —— "~ = 0.069
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Transformations from evidence theory to probability theory make several BPAs cor-
responding to one probability distribution function. If we perform the reverse trans-
formation from probability theory to evidence theory, we get an infinite number of
possible solutions. A Bayesian belief function Bel(8;) = m(8;) = P [6;] can be used as
a transformation from probability theory to evidence theory.

Sudano [24] proposes a way to construct a consonant BPA m (with the focal elements
being nested sets) from a probability distribution function P defined on the set ©.
Let 0 be the permutation of {1,2,...,N} (N = card(©)) defined by:

PBsw)] = PlBo] > -+ = PBoqny)]
The BPA mg proposed by Sudano is given by:

Ms({8o)}) = 1 % (P[8o1)] — P [Bo(2)])
Ms({85(), Bo2)}) = 2 X (P [Bs(2)] — P [Boca)))

Ms({Bs(1): 85(2): - - -+ Bon—1y}) = (N — 1) x (P [Bon—1)] — P [Bony])
Ms({0s(1), Bo(2)s - - - Bon—-1), Bony }) = N X P [Bgn))]

5.3 Evidence theory/Possibility theory

Let m be a BPA and let m be a possibility distribution defined on the frame of
discernment ©. We consider {Ag, Az, ...,An} to be a subset of the power set 20,
such as A CA, C ... C AN

A1 = {85}
Az = {8501y, 852}

AN = {08511), 85¢2), - - -+ Ba(ny }
where 01, 0,, ...,8y are the singletons of © and 0 is a permutation of {1,2,...,N}.

If the BPA is consonant, the plausibility of singletons is then:

Pl({@c(l)}) = m(A1> + m(Az) + m(A3> + m(AN) =1
P1({85¢2}) = m(Az) + m(A3)... + m(An)

Pl({8onvy }) = M(An)

So, we can find an order relation between these values:

1 = Pl(B52)) = Pl(8o(2)) = ... = Pl(Bs(n))
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When the BPA is consonant, the plausibility becomes:
PI(A) = max{P1(6;) }

Let 1(8) be a possibility distribution taking values in the interval [0,1], let 61, 62, . . ., By
be the singletons of O, and let @ be a permutation of {1,2,...,N} such that:

1 =1(06q)) > M(0s) > - > M(Bo(n))

Comparing the couples of equations defining the two theories, Dubois and Prade
[25, 21] conclude that possibility theory can be included in evidence theory, since the
possibility and necessity degrees are the same as the plausibility and belief, defined
for nested subsets. This is consistent with the frequentist interpretation of possibility
theory [21] when the possibility measure is defined as an upper bound of the frequency
of the probability.

Considering equality 1(8;) = P1(6;), it seems that the two couples of measures are
equivalent. However, the two couples define the same characteristics for two different
kinds of imperfection and they are not equivalent. The two theories deal with dif-
ferent aspects of imperfection, and the two mathematical models of plausibility and
possibility do not deal with the same kinds of information, as argued by Smets [26]
and Sudkamp [27].

However, even if the two theories are not equivalent, several transformations from
one theory to the other are possible, as indicated below.

1. From evidence theory to possibility theory:
m(8i) = P1(6;) (70)

This transformation is valid only if the BPA is consonant. If not, the constraint
imposed on the possibility distribution is not respected (30 € O such that
m(8) = 1). If the BPA is not consonant, we can use this transformation, which
requires a normalization to obtain the final possibility distribution.

2. From possibility theory to evidence theory:

By if i=N
mmw”‘{m%mm—mwwﬁ if T#N i

Example 18 Let us consider a piece of information modelled in evidence theory by

the BPA:
m({6,0,,03}) =04
m({6y, 05, 03,84,65,05}) = 0.2 (72)
m({6,, 62, 03, 84, 65, 86, 07,65}) = 0.3
(

m(©) =0.1
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We calculate the plausibility value for each singleton of © using the transformation
(70), and we obtain the following possibility distribution:

T[(el) = T[(ez) = T[(93) =1
T[(64) = 1'[(95) = T[(ee) = 0.6
T[(eg) = T[(elo) =0.1

Conversely, if we want to model the information from possibility theory into evidence
theory, we can use the transformation (71), and we obtain the following BPA:

¢

m({81, 65, 63, 64, 65, 66, 67, 05,00,010}) = M(619) = 0.1

m({81, 82, 83, 64, 65, 6, 67, 05,09 }) =T(8g) — (B10) =0
m({01, 62, 63, 64, 65, 86, 07,05}) = T(Bg) — m(Bg) = 0.3
m({61, 62, 63, 64, 05, 86,07}) =(8;) —m(Bg) =0
m({61, 6,, 63, 64,65,66}) =1(8s) — m(67) = 0.2
mM({01, 62, 63, 04,05}) =T(05) —1(Bs) =0
m({61,6,,03,04}) =T1(8;) —1(05) =0
m({61,6,,03}) =T1(83) —1m(04) = 0.4
m({61,6}) =1(02) —m(6;) =0
m({6:}) =m(8) —m(62) =0

If the frame of discernment has a very large number of objects, the transformation of
a possibility distribution can produce a BPA with a large number of focal elements,
which makes it very difficult to manipulate. There is a way to limit the number of
nested sets according to our needs. Let a € [0, 1] be a constant. We can construct
the nested sets according to the constant a. Consider:

M = H (74)

a

where [X] is the approximation of X by the nearest upper integer.

The number of nested sets is then lower than or equal to the maximum M. Then the
BPA is given by:

m(A;) = a A ={8|n(6) >1—a}

m(A;) =a A, ={0|n(6) > 1 —2a}

- e (75)
M(Au-1) =d Am-1={6n(0) >1— (M —1)a}
(MAm)=1-(M-1)a Aw =6
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In this manner, the complexity of the mathematical model has been reduced with a
controlled loss of information.

Example 19 Let O be a frame of discernment with card(©) = 1000, and let 1
be a possibility distribution on ©. Instead of using the classical transformation to
calculate the equivalent information in evidence theory (equation (71)), we use the
aforementioned approximation calculus using o = 0.15. The final piece of information
has only 7 nested sets:

(m(A;) =0.15  A; = {8|m(8) > 0.85}

M(A) =015 Ag= {8T(0) > 0.1)
Km(A7) = 0.1 A7:@

5.4 Possibility theory/Probability theory

Evidence theory can be seen as a generalization of both probability theory and possi-
bility theory. However, because these theories represent different kinds of information,
it is sometimes useful to combine pieces of information that have been modelled in
these two theories. Before defining transformations, we must find the permutation o
of {1,2,...,N}, such that:

1. to pass from possibility theory to probability theory:

M(Bogiy) > M(Oogen) Vi, 1<i<N -1 ()

2. to pass from probability theory to possibility theory:
P(eﬁ(i)> > P(eo(i+1)) Vi, 1<i<N-1 (78)

Several transformations have been proposed to achieve the link between these two
theories:

1. The transformations put forward by Dubois and Prade are the most common
in the literature:

(Osciy) me{P o) P (8ai)) } (79)

N

Z M(05()) — M(Bo(j+1))
0'(|) o o (80)
j=i
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2. We can also recall the transformation of Klir and Parviz [11], which preserves
the imperfection measure. For a probability distribution function, the entropy
is considered to be the measure of imperfection:

H(P) =~ P(8)log,(P(®)) (81)

For a possibility distribution, several measures have been proposed (Klir [1]) to
quantify the imperfection. The non-specificity measure is defined as:

i2

NS(m) = Z (T[(eo(i)) - T[(eo(i+1))>10g2 -5 (82)
= > m(8eg))

j=1

Considering this, Klir and Parviz proposed the following transformation:

P (8o)™ ™)
M(8o)) = P (Boy)H® (83)
(B0 YI/NS()
P (8s6)) = o) (84)
Z (B0 NS™
k=1

3. The most common transformations, based on proportionality, are special cases
of the equations (83) and (84):

P (6s(iy)

P (6sq1)) (85)

M(0sai)) =

M (8s(iy)
T[(eg(l)) + T[(GG(Z)) + o+ T[(eg(N))

P (Bsqy) = (86)

Besides all these transformations, Klir and Parviz [11] conclude that one theory is
more robust (more refined) than the other. This seems to be a contradiction, and
the authors conclude that while both theories deal with uncertainty, they analyze
different aspects of uncertainty. The same idea holds in Zadeh’s paper [7], where he
defined possibility theory from fuzzy sets theory.

Example 20 Let us consider a frame of discernment of 10 objects ©19 = {81, 62, ..., 010},
and the probability and possibility distributions shown in Figure 21. We notice that
the two distributions are not at all correlated, hence no ideal transformation can be
performed between them. Therefore, if one of the distributions is unavailable, we can-
not recover it from the other distribution using one of the transformations discussed
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Figure 21: Example of complementary probability and possibility distributions.

above. Considering only one of the two distributions will result in a significant loss
of information. Thus, we must consider the two pieces of information simultaneously
if they are available, since they are complementary and non-redundant. Because the
transformation between the two theories involves a loss of information, it must be
considered only as a last resort.

5.5 Possibility theory/Fuzzy sets theory

Fuzzy sets theory and possibility theory are strongly related, since possibility theory
was developed by Zadeh [7] on the basis of fuzzy sets theory, as indicated above in
Section 4. If A is a fuzzy subset of O, and T is a possibility distribution over ©, then
we have:

m(8) = ua(8) (87)
So if a piece of information is modelled by a fuzzy set A, the same piece of information
can also be modelled by a possibility distribution m(6) = pa(8). Conversely, if a piece
of information is modelled by a distribution possibility, 1(8), it can also be modelled
by a fuzzy set A, such that pa(8) = m(8).

5.6 Fuzzy sets theory/Evidence theory

1. To find a link between fuzzy sets theory and evidence theory, we can design a
composed transformation: first, we perform a transformation from fuzzy sets theory
to possibility theory, and second, from possibility theory to evidence theory. So we
have:

HO) =m0 VBeO (88)

ne)=PLB) VB ecO (89)
implying that

p(e)=P1(0) V6O (90)
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2. A more complex transformation was proposed by Kampé de Fériet [28] in the
early 1980s. He considered that the membership function can be seen either as a be-
lief function or as a plausibility function, and he proposed a method for distinguishing
between the two. He defined the restricted framework O4 as the set of 8 such that
H(8) > 0. If O, is not countable, the membership function p(8) is interpreted as
a plausibility function. If ©4 is countable, the membership function is interpreted
according to the quantity » 4 o H(B). If this quantity is greater than 1, the mem-
bership function p(8) is considered as a plausibility function. If not, it is considered
as a belief function.

3. Another link between the two theories is made from the Q-cuts representation of
the membership function of a fuzzy set. Let {0 =M be a set of ordered values from
the interval [0,1], 1 = dp > 01 > ... = 0y = 0, and let Ay, C © be subsets of ©
such that A, = {0]8 € ©, u(8) > ai}. We can define a BPA from the a; values,
given by:

m(Aqi) = Uj_1 — d; Vi, 1<i<N (91)

5.7 Fuzzy sets theory/Probability theory

Fuzzy sets theory and probability theory do not deal with the same kind of imper-
fection. Probability theory deals with the membership of an uncertain element in a
certain subset, while fuzzy sets theory deals with the membership of a certain ele-
ment in an uncertain subset (ill-defined) subset. A transformation between the two
theories can be performed using the following equation:

Ha(8) = PAl6] (92)

where P [A|8] is the conditional probability of A knowing 8 (Dubois and Prade [22]).
The same authors considered that probability theory and fuzzy sets theory have
several common traits but also some distinguishing traits, possibility theory being
placed between them (a view shared by Klir and Parviz [11]).

5.8 Fuzzy sets theory/Rough sets theory

Pawlak [29] compared rough sets and fuzzy sets. He showed that the standard union
and the intersection defined for the membership function in Zadeh’s fuzzy sets theory
[4], have no equivalent operations in rough sets theory. He concluded that rough sets
is a more general concept than fuzzy sets. According to Pawlak, if the couple of
equations (58) and (59):

R(XNY)CRXNRY

R(XUY) 2 RX URY

yield equality, rough sets theory is reduced to fuzzy sets theory.
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5.9 Rough sets theory/Possibility theory

Dubois and Prade [30, 31] consider that Pawlak’s view [29] is incorrect and that
rough sets and fuzzy sets must not be regarded as rival theories, since they deal
with different kinds of imperfection. Rough sets theory deals with the indiscernible
character of information, while fuzzy sets theory deals with vague information. But
it is possible to encounter both imperfections in the same situation. A hybrid of the
two theories could deal with more complex imperfect information situations. So the
concepts of fuzzy rough set and rough fuzzy set were introduced.

Definition 22 Let © be a frame of discernment and let R be a knowledge of ©.

Instead of a crisp concept of ©, we consider a fuzzy concept A. A fuzzy rough set
is the couple (RA, RA) given by:

Hra(8i) = inf{W(8)[[0]r} (93)
Hra(8i) = sup{u(8)[[B]r } (94)

It has been shown [30, 31] that equations (93) and (94) are the same equations
describing the degree of possibility and the degree of necessity, respectively,
of a fuzzy event. However, these equations are the basis for the C-calculi where the
concept of C-set is the same as that of a fuzzy rough set. It appears, therefore, that
the concept of rough sets was introduced before Pawlak but under different forms.

5.10 Rough sets theory/Evidence theory

An important link between rough sets theory and evidence theory was described by
Skowron [12] and Skowron and Grzymala-Busse [32]. They demonstrated that any
problem modelled in rough sets theory can also be modelled in evidence theory, and
they defined a transformation between the two theories.

Definition 23 Consider a frame of discernment ©, a knowledge R and a concept A,
with its lower (RA) and upper bounds (RA). The belief and the plausibility functions
are defined by:

Bel(A) = %((B@A)) =k(A) (95)
PI(A) = %%A)) —Kk(A) (96)

Definition 24 In rough sets theory, the functions k(A) and k(A) are called the the
lower quality function and the upper quality function, respectively.

Note that this transformation is not reversible.
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5.11 Conclusion

The classical theories for representing uncertainty deal with different aspects of the
imperfection of information. Rather than being rivals, they should be considered as
complementary and used to model information better. In this section we presented
some transformations between these theories, although almost all of them resulted
in a loss of information. Consequently, while these transformations are sometimes
necessary, they should be performed with care to minimize information loss.
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6 Random sets theory: a unifying framework
for fusing imperfect information

6.1 Introduction

Each of the theories presented in section 4 are well suited to one particular kind
of imperfect information. In practice, complex situations involve the processing of
several pieces of information, each exhibiting one or more types of imperfection.
Therefore, no single theory can deal alone with these complex situations. Rather
than performing transformations between these theories, an alternative solution is to
employ a unifying framework in which each theory is a special case. In this section,
we study random sets theory and its capabilities as a unifying framework.

The bases of random sets theory were set down by Mathéron [33] and Kendall [34] in
the mid-1970s to study integral geometry. Since then, several authors have tried to
demonstrate the unifying capability of random sets theory in data fusion problems
(Kreinovich [35], Mori [36], Goodman et al. [37], Quinio etand Matsuyama [38]).
Most of the classical theories for reasoning under uncertainty can be considered as
particular cases of random sets theory, which is able to model all types of imperfect
information. The statistical framework of random sets theory can model and has
efficient tools for combining different pieces of information, and can even be used to
solve other steps in data fusion problems (Goodman et al. [37]):

1. target detection;

2. target identification;

target tracking and locating;

modelling of a priori information for detection, classification and tracking tasks;

modelling of perfect and imperfect information;

A

definition of combination rules;
7. sensor management.

In this section, random sets theory is briefly presented. The links between random
sets theory and the theories discussed in Section 4 are also shown, and an example
of an application to the target identification problem is studied.

6.2 Theory description

The concept of random set can be seen as a generalization of the concepts of random
variable and random vector A probability distribution is defined on the power set
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29 instead of the set © as in probability theory. The following study is limited to a
discrete and finite frame of discernment.

Definition 25 Let O be a discrete and finite frame of discernment. Let also (Q,A,
P) be a probabilistic space and let (B,0(B)) be a measurable space, where BC 2°
and 0(B) is a 0-algebra over B. A mapping X : 2 — B, beingA-0(B) measurable,
is called a random set.

A random set on O is therefore characterized by a probability distribution defined on
(B,0(B)).

For example, for a discrete and finite frame of discernment O, if B = 2° and if
o(B) is the power set of 22 (22°), any probability measure defined by a probability
distribution f : 2° — [0, 1] with f(A) = P[X = A] VA C © defines a random set X
on O.

This probability distribution entirely characterizes the random set. Moreover, it has
the same properties as any probability distribution defined for a random variable:

PlxX=A]€[0,1] (97)
P[O=0 (98)
Y PX=A=1 (99)

ACO

Three other functions, namely hitting capacity Ty (A), implying functional Ry (A),
and inclusion capacity Px(A), also entirely characterize a random set X

Tx(A)=P[XNA# 1 (100)
Ry(A) = P[A C A] (101)
Px(A) =P[X CA] (102)

In a simplified version (a Dempster-Shafer version), a random set X is represented
as a set of couples:

X ={A,m} Vi, 1<i<2N (103)
2N 2N
such as such that Aj C © and Z m; = Z P[X = Ai] = 1, where N = card(©).
i=1 i=1

6.3 Representation of classical theories in the random
sets formalism

In the following paragraphs, we show how information represented in the classical
theories discussed in Section 4 can be expressed in random sets theory.
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6.3.1 Evidence theory

Quinio and Matsuyama [38] showed that the plausibility function Pl defined on a
finite frame of discernment is exactly the hitting capacity Ty. Moreover, the belief
function Bel corresponds to the inclusion capacity Py and the commonality function
Q corresponds to the implying functional Ry.

Let us consider two random sets X; and X5, and assume that the event {XlﬂXz = E}:I
has a nil probability (closed-world hypothesis). We consider that the event {Xlﬂ/\f'z =
A} is replaced by {Xl NX, =A|lX1NAX, # E}:_Ito normalize the final probability
distribution. So the intersection of the hitting capacity of the two random sets is
given by:

Taunwvmneze(D) =P[(XAiNA)ND # OXNA, # 0
_ P[(XinA)nD # O
Pl nix,# O
Y PN =A

- AQD;![zxmxﬁé 01
S < Y P -=B, X2:C]>

AND#@ BNC=A
= (104)
1- ) PX=B,x=C|

BNC=o

Dempster’s rule of combination is a particular case of the intersection in random sets
theory when the two random sets X; and &), are statistically independent. Equation

(104) in this case becomes:
> (Y Pa=BPI=C))

ANK#Z BNC=A
T K)= 105

BNC=go

which is Dempster’s rule of combination defined in evidence theory.

Evidence theory has an identical information representation as the simplified random
sets representation (Nguyen [13], Nguyen and Wang [39]) given by the equation (103).
So, the transformation between the two theories is immediate:

m; = m(A,) = P[X = Ai] VA; C O

6.3.2 Probability theory

If random sets are a generalization of random variables and random vectors, then in
probability theory random sets are reduced to singletons (sets with only one element).
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A piece of information modelled in probability theory by a probability distribution
function P[6i], V8 € O, is modelled in random sets theory by the set of couples
{(Aj, m;)}, given by:

Ai =08;, card(Aj) =1 (106)
m; = P [9,] (107)

6.3.3 Possibility theory

Let us consider a piece of information modelled in possibility theory by a discrete
possibility distribution m(8;j) € [0,1], V8 € ©, and let 0 < 0; < 0O < < O3 <

. < dom = 1 be the values of that possibility distribution in the interval [0, 1]
(M <N = card(0)). We recall that a possibility distribution is defined such that at
least one element of the frame of discernment has a unity possibility degree (36 €
©|n(8k) = 1). The number of realizations of the random set X is also equal to M. We
can now construct the equations defining the optimal transformation (i.e., without
any approximation) of a piece of information modelled in possibility theory to an
information modelled in random sets theory (Dubois and Prade [40]):

Ai = {GJ\H(GJ) > Gi} Vi, 1<i<M (108)
i — QO i <i<
aq =1

If the number M of nested sets is too large, we can reduce it according to some Q;
values. With the new a; values, Equation (108) is still valid for computing the A;
sets; however, the values m; given by Equation (109) must be replaced by:

(110)

{ai—ai_l VI,QSISM
m; = .
a; =1

where

v =1 (111)
aj = maX{l,l(ej)’ej € @\A,} Vi,Ll1<i<M-1

When no approximation is required, we let aj; = o; Vi.

When the chosen values of aj are such that there are Kk levels having no 6; € © with
m(0i) € [ak_1, Ok], we eliminate the corresponding 0Ok value from the {a;} set and we
apply Equations (108) and (110) to the reduced set of {ai;}.

6.3.4 Fuzzy sets theory

Let 0<0a; <0y <03 <... <0y <1 be the different values of the membership
function pag) in the interval [0,1] (M < card(©)). The transformation of a piece of
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information modelled in fuzzy sets theory into a piece of information modelled in the
random sets formalism (Goodman [15], Orlov [14]) is equivalent to the transformation
of a possibility distribution into the random sets formalism. The only difference is
that the set of values {m;} must be normalized (according to the 0y value). So we
have:

Ai = {6 u(8;) > oi} Vi, 1<i<M (112)
i — dj_1 . .
—_— Vi,2<i<M

mi:{&a'\/‘ i1 (113)
Am -

As in the previous section, if we choose a set of ordered values {0} from the interval
[0, 1], we can still use Equation (112) to find the nested sets Aj. However, the values
of m; defined by Equation (113) must be replaced by:

a
a 1 (114)

{M Vi,2<i<M
m; =
am

where

(115)

am = max{p(8;)[6; € O}
aj = maX{I,l(ej)|ej € @\A,} Vi,Ll1<i<M-1

When no approximation is required, we let a; = a; Vi.

6.3.5 Rough sets theory

To the best of our knowledge, the only link to date between random sets theory and
rough sets theory was made by means of evidence theory. Other avenues remain an
open field of research.

Table 19 recapitulates the transformations from classical theories of uncertainty to
random sets theory.

6.4 Scenarios study

Table 20 shows the random sets modelization of the pieces of information used with
the two test scenarios. The third column, headed “Theory”, indicates the classical
theory that is best suited to the imperfect information involved.

Information modelled from fuzzy sets theory and from possibility theory are not pre-
sented in this document, since their mathematical representation is highly complex.
Those pieces of information are obtained using an optimal transformation from their
initial models.
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Classical theory

Information model

Transformation to random sets theory

Probability the-

P[6i] € [0,1] VB € ©

Ai = ei Card(Ai) =1

ory o P8 =1 me = P[o;
Evidence theory | m(Aj) € [0,1] VA; C | Ai=A
© m; = m(A,)

> acoMAI) =1

Possibility  the-
ory

n(6i) €[0,1] VB €O
46k € © such that
T[(ek) =1

A.I{GJ’T[(GJ)ZG.} VI, ISISM
Ideal transformation:
a; — dj_1 VI,2§I§M
m; = .
aq =1

Approximated transformation using a fixed {a;} set:

aj — aj_ L2<i<
m; = {' -1 \_VII’2_I_M with
a 1=1
am =1
i = max{(6)16; € ©\ A}
Fuzzy sets the- u(G.) € [O, 1] VG. €O Ai = {GJ]u(GJ) > Gi} Vi , 1< i <M
ory Ideal transformation:
% Vi,2<i<M
m; = M
! ay P
O 1=1
M
Approximated transformation using a fixed {Q;} set:
mi — aM Wlth

dp _
am =1

am = max{H(6;)[8; € O}
ai = max{J(6;)|6; € ©\ Ai}

{M Vi,2<i<M

Table 19: Random sets model of information transformed from the classical theories.
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6TE€-€00C dLliaegeA 0add

€L

Instant | Information Theory Random sets model
1 Target type = | probability | m; =0.011111 A; =0, Vie {1,2,3,...,70,71,73}
ship m; = 0.002857 A; =6, Vie{72,74,75,...,141 142}
2 Emitter 44 on | evidence mq = 0.800000 A; = {911, 019, 963}
board my = 0.200000 A, =0O
3 Small length fuzzy sets ideal transformation of pgma length (figure B.1)
4 RCSgjge medium | fuzzy sets Ideal transformation of upcs-side medium (figure B.5)
5 Emitter 77 on | evidence my = 0.800000 A; = {629, 033,035,036}
board my = 0.200000 A, =0©
6 Small height fuzzy sets Ideal transformation of jigmq height (figure B.3)
7 Emitter 47 on | evidence mq = 0.800000 A; = {911, 018, 019,031, 034, 035, 46, 047, 963}
board my = 0.200000 A, =0©
8 Emitter 55 on | evidence my = 0.800000 A; = {b1s, 0610}
board my = 0.200000 A, =0
9 Small width fuzzy sets Ideal transformation of jigma widtn (figure B.2)
10 Emitter 56 on | evidence my = 0.800000 A; = {f1g, 019,034}
board my = 0.200000 A, =0©
11 Emitter 103 on | evidence mq = 0.800000 A; = {911, 913, RN 924, 930, 031, 934, 935, 036,045, . .. , 049, 063,
board my = 0.200000 A, =0
12 Emitter 109 on | evidence mq = 0.800000 A; = {911, 018, 019, 963}
board my = 0.200000 A, =0©
13 RCStop small fuzzy sets Ideal transformation of MRCS-top small (figure B.6)
14 RCSfront  Very | fuzzy sets Ideal transformation of uRcs front very small (figure B.8)

small

Table 20: Information used in the test scenarios modelled in random sets theory.
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Figures 22, 23 and 24 show the results of the fusion process, first using an optimal
transformation of the information coming from fuzzy sets theory, and second using

two different approximations (with 10 and 5 O-cuts, respectively):

1. o; =0.1 o, = 0.2 o3 = 0.3 o, =04 o = 0.5
Og = 0.6 o; =0.7 og = 0.8 0y = 0.9 Opp=1
2. o, =0.1 o, =04 oz = 0.6 o, =0.8 s =1
Temporal evolution
T T T T T T
0.8 Dempster’s rule —
=
(=]
§0.6 - _
‘; — — 1. Object 11|
S 04l 2. Object 18| B
0 _ =K —— 3. Object 19|
_= N N — 4. Object 63
o2 == ~_ -
o T e [ | ) S T — = — = = — = — _ _
2 4 6 8 10 12
Instants of combination
Final information
T T T T T T T
1+ .
Dempster’s rule
% o8l B
&
© 0.6 —
£
T 0.4 «
0.2 —
o Il Il Il Il Il Il Il
(o] 20 40 60 80 100 120 140

Index of objects from the data base

Figure 22: Random sets theory - Test scenario 1 - Transformation without approxi-

mation.

o oo
~ o W0

Hitting capacity

oo s oo o
= M W = Mm@

o

Temnporal evolution

Dempster's rule

Instants of combination

— 1. Object 11
---- 2. Dbject 18 7
—— 3. Object 19 |
— - 4. Dbject B3

\————-g;""' 77777777777777777777777777 |

e
| e
2 4 5 i) 10 12

Figure 23: Random sets theory - Test scenario 1 - Transformation with
tion: 10 a-cuts.

approxima-

These three figures show similar results (Figure 25), but the test scenario used was
probably not complex enough to challenge the comparison task. We note, however,
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Temporal evolution

0.9 - Dempster's rule

— 1 Object 11
---- 2. Ohject 18
— 3. Ohject 19
— - 4 Ohject 63

Instants of combination

Figure 24: Random sets theory - Test scenario 1 - Transformation with approxima-

tion: 5 a-cuts.

that using a transformation without approximation leads to more precise results. As
expected, using an approximate transformation with 10 d-cuts yields closer results
than those obtained using a transformation without approximation. Still, with an
optimal transformation, the algorithm is very costly in computing time, and there-
fore a balance must be struck between quality of approximation and computational

burden.

Temporal evolution

= o =
b o =
T T

Hitting capacity

=
o

— Transformation without approximation
---- Transfarmation with 10 o - cuts
— - Transformation with 5 o - cuts

Instants of combination

Figure 25: Random sets theory - Test scenario 1 - Comparison of results for database

object #19

Table 21 compares computing times for the data fusion process using the first test
scenario, between a transformation without approximation and two transformations

with approximation (one 10 a-cuts, the other 5 a-cuts).

Transformation Flops Reduction to (in %)
without approximation 575 678 261 100 %
with approximation : 10 d-cuts | 15 776 204 2.7 %
with approximation : 5 0-cuts | 5 824 933 1%

Table 21: Comparison of computing times (in flops)
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Figure 26: Random sets theory - Test scenario 2 - Transformation without approxi-
mation

The second scenario (includuing a countermeasure in the fusion process) produces
results similar to those of the first scenario (Figure 26). The confidence level assigned
to Object #19 is only barely reduced and a precise decision can be made.

6.5 Conclusion

Random sets theory allows several kinds of imperfect information to be modelled in
a unified framework. Random sets theory is very similar to evidence theory, and
in problems of modelling and combining information it can be reduced to evidence
theory. Moreover, random sets theory can be used to tackle several problems in
the data fusion process (like target detection, target locating, target tracking, sensor
management, etc.) for multi-sensor, multi-target applications. This makes it a good
candidate to unify not only the theories for representing and combining imperfect
information, but also the theories of finite set statistics, which deal with the problem
of target identification, including tracking and association (Goodman et al. [37]).
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7 Conclusions

In this study we examined different modelling methods for imperfect information.
Each of the classical theories, namely probability, evidence, fuzzy sets, possibility
and rough sets theory, can model different aspects of information imperfection - un-
certainty, imprecision, incompleteness, fuzziness. In a general manner, an information
fusion system receives pieces of information from different types of sources such as
electronic devices (radars, ESM, IFF, etc.), as well as expert opinions expressed in
natural language, resulting in a wide variety of imperfections in the pieces of infor-
mation to be fused (uncertainty, vagueness, incompleteness). Each classical theory
is well suited to particular types of imperfection, but none of them is able to model
all types of uncertainty. Probability theory can model uncertainty well but cannot
model imprecision. Evidence theory can model imprecise and uncertain information.
Fuzziness is only represented correctly by fuzzy sets theory; neither probability nor
evidence theory can do this. Possibility theory provides a good means of modelling
incompleteness. Vagueness and indistinguishability are modelled by rough sets the-
ory. Fach of these theories offers a mathematical formalism to model ignorance, as
well as several combination rules and decision rules.

Combination rules can be segregated into two categories: conjunctive and disjunctive
rules. Conjunctive rules produce good results if the pieces of information to be fused
are not in conflict. Moreover, an associative conjunctive rule like Dempster’s rule has
the ability to eliminate some countermeasures. In the case of fuzzy sets, possibility
theory and rough sets theory, it was not possible to eliminate the countermeasure.
Disjunctive rules are usually used when the pieces of information to be fused are
contradictory (because some sensors are not reliable). The disjunctive rules used in
the test scenarios yielded several alternatives for best candidate for the observed tar-
get, hence allowing a decision to be made on a single object. In this sense, it is not
recommended that disjunctive rules be used alone in target identification systems.
However, disjunctive rules display an interesting behaviour in adaptive rules. They
act as a conjunctive rule when the pieces of information are not in conflict (assuming
that both are reliable) and as a disjunctive rule when they are in conflict (assuming at
least one of them is unreliable). The second test scenario showed that this combina-
tion method can eliminate the countermeasure, but unfortunately it also eliminates
the difference between degrees of confidence (membership or possibility) assigned to
the most representative objects, thereby precluding a decision.

In some data fusion applications, when different modules of processing need to be
connected, some transformations between theories are required. If each module is
designed separately to handle a specific type of imperfect information better, then
to build a whole system we need to transform some pieces of information from one
theory to another. Most of these transformations are not one-to-one correspondences,
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and they often result in a loss of information. In this study, no effort was made to
quantify the loss induced by each transformation, but that could be undertaken in
future work.

An alternative to transformations between theories is a unifying framework in which
each kind of imperfect information can be modelled. The framework would then
be used to design the different modules of a fusion system, and no transformation
is required to make connections between the modules. In this study we assessed
the ability of random sets theory to perform this task in the target identification
application. Imperfect information, be it imprecise, uncertain, fuzzy, incomplete or
inconsistent, can be represented in random sets theory.

Moreover, random sets theory can also be used to build models in multi-target, multi-
sensors applications, including sensor management, detection, tracking, etc. All these
considerations make random sets theory a promising candidate for data fusion prob-
lems, particularly multiple target identification problems.

The material presented in this document is mainly academic, since it shows through
examples how the different theories of uncertain reasoning can be applied to target
identification problems. However, the examples and the test scenarios used were too
simple to permit any conclusions as to the performance of modelization in one theory
compared to another. In this sense, it was mainly a theoretical study of the capability
of random sets theory in information fusion applications.

Future study should be concerned with the quantification of information, in particular
the loss of information resulting from the different transformations.
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Annex A: Notations used

Symbol Meaning

) The frame of discernment (the set of all known tar-
gets from the data base). Also known as the universe
or sample space.

N The number of objects in the data base.

2° The power set of O (the set of all sub-sets of ©).

B Vi,1<i<N

The i-th object of the data base.

A Vi,1<i<2N

A sub-set of the set ©.

S

The set of the information sensors.

Sk Vk,1<k<K

The k-th information sensor.

X

Random variable

X

Random set

X =0 orXecA

The event 6; or A respectively (8; represent the real-
ization of a random variable).

Table A.1: Notations used in target identification problems
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Annex B: Modeling vague information using
fuzzy sets theory

B.1 Changing the definition domain
Let © be the set of all objects from the data base :

© =1{6:,6,...,0n}

Each object 0; from the data base is characterized by a set of parameters :
8 = [X, X5, ..., Xb]

where X} is the parameter #] of the object #i (see the list of all parameters in section
2.4).

The parameter X; has a domain of definition D; which may be discrete or continuous,
ordered or not (Xj € Dj).

We define a fuzzy set A, € Dj by the membership function pa, (X). Ay may cor-
respond for example to the class small length and the parameter X may correspond
then to the values of the domain Dj where the length of an object may be defined (0
- 500 meters).

We are now looking for a fuzzy set B, C © defined by a membership function pg, (8;)
which must be equivalent to the fuzzy set A,. Obviously the new fuzzy set will be
defined on a discretized domain. And its membership function pg, (8;) is defined in
function of pa, (X) by : _

W, (8i) = Ha, (X}) (B.1)

B.2 Modeling vague information using fuzzy sets
theory - modeling information in classes

The following figures present the partition in classes of the parameters defining the
objects from the data base :

1. length (figure B.1);
2. width (figure B.2);
3. height (figure B.3);

4. side radar cross section (figures B.4 and B.5);
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5. top radar cross section (figures B.6 and B.7);

6. front radar cross section (figures B.8 and B.9).
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Fuzzy length
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Figure B.1: Fuzzy length - class small / medium / large. Characterization of the
data base by the classes small length, medium length and large length
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Fuzzy wiclth
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Figure B.2: Fuzzy width - class small / medium / large. Characterization of the data

base by the classes small width, medium width and large width
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Fuzzy height
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Figure B.3: Fuzzy height - class small / medium / large. Characterization of the data

base by the classes small height, medium height and large height
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Fuzzy RGS side
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Figure B.4: Fuzzy side radar cross section - class very small / small / medium / large
/ very large. Characterization of the data base by the classes RCSgjqe Very small
and RCSgjqe small
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Fuzzy RCS side (... continued)
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Figure B.5: Fuzzy side radar cross section - Characterization of the data base by the

classes RCSgjqe medium, RCSgjqe large and RCSgjqe Very large
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Fuzzy RCS top
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Figure B.6: Fuzzy top radar cross section - class very small / small / medium / large
/ very large. Characterization of the data base by the classes RCStOp very small and
RCStop Sma”
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Fuzzy RCS top (...continued)

=
fa )

H RCS-top medium
= =
(S

a 20 40 ] a0 100
Index of objects fraom the data base ()

120

1 T |

= o ]
T T T

Hros- top large {8}
_
[
T

E

20 0 B0 80 100
Index of objects from the data base { g}

]

120

—_—

e
o oo

=
=

"I'HCE— top wvery I.':xrg-a":'a':I

=
(o T

20 40 B0 B0 100
Index of objects fram the data base (§)

=

120

140

Figure B.7: Fuzzy top radar cross section - Characterization of the data base by the

classes RCStgp medium, RCSyqp large and RCSyqp very large
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Fuzzy RCS front
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Figure B.8: Fuzzy front radar cross section - class very small / small / medium /
large / very large. Characterization of the data base by the classes RCS¢ ot Very
small and RCS¢ 4 small
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Fuzzy RCS front (...continued)
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Figure B.9: Fuzzy front radar cross section - Characterization of the data base by

the classes RCSsrgpt medium, RCSspgpt large and RCS¢ ot Very large
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Annex C: Modeling information using rough
sets theory

C.1 The knowledge R; (the type and the sub-type), R,
(the offensiveness classification) and the final
knowledge R

Rl :{{el}l {921 93) 651 661 69; 910, elly e131 e141 e181 ey 624, 926; 629; e701 e711 973}1 {928}1

{84, 687,017, 631, B33, B35, 036, 037, 642, . . ., 847,061}, {Bs, 025, B34, B39, B60, B64, - . ., B69},
{027, 041, 850, B51, 652, 863}, {012, 615, B16, 032, 040, O3, . . ., Bs9}, {030, B33, B4g, B0},
{072, 676, 890, Bo3, 694, 0113, 8114, 8115, 8117, B119, B49, 0121, 0122, 6123, 6127, 6137, 6138, 6141},
{874}, {875, 699, 8104, - . . , 6100, 6112, 6116, 6142}, {677, ..., 082, Bg4, Bgs, Bge, Ogs, Bea }
{862}, {083, 087}, {001, 0100, 0111}, {002, 6101, 0140}, {Bgs, Bos, B102, 6103, B125, 6139},

{612& 9129, 9130, e132a e1331 e134s e1361 e143} }
RZ :{ {elu e281 6621 992, 695, e96’ 997, 9101, 6102, 6103, e11()| 6125, 9131, 9139, 9140} '

{62! 991 6121 e]_51 616’ 626’ 629! 934, 636! 9651 9681 6731 e901 61201 61241 91371 6138, 9141} y
{631 910, 911, 618, e191 e251 e301 635, 9381 e401 94].’ e481 reey e591 6631 e981 6100, 6111},
{64 !!!! 681 6171 e20 """ 9241 9311 9321 6371 6391 945, 6461 647! 660! e64l 9661 9671 669 !!!! 6721

974, e76; 993, 694, 6104, ] 9109) 6112, ey e1181 9121, 6122, 9142},

{6131 e141 927, 991, el35}a {61281 e1291 e1301 9132, el33a 6134, 6136a 9143},
{6331 642, e43! 944, eﬁla 975, 677! ey e891 699, 6116! 9119, e1231 91261 e127} }

R :{{el}l {62199) 926) 929) 973}) {931 610! el:l.! e18) 819}) {941 671917193116371945! 946! 647}1

{85,686, 620, . .., 024,670,071}, {08, B39, 660, B64, B66, B67, 869}, {012, 015,016}, {613, 014},
{025}, {027}, {628}, {030, 038, 048, 049}, {632}, {033, 042, 043, 044, 661}, {034, B65, O6s } ,
{035}, {036}, {640,053, . . -, O50}, {041,650, 651, 052, 063}, {062}, {674}, {675, 690, 0116},
{872, 676, 893, 894, 6113, 6114, B115, 6117, 8121, 8122}, {677, ..., B2, Bga, Bgs, Bgs, Ogs, Oea }
{883, 087}, {690, B137, B138, B141}, {01}, {602, 6101, 0140}, {Bos, Bos, B102, 6103, 6125, 6130},
{897, 0110, 0131}, {Bog}, {6100, 6111}, {6104, ..., 0100, 0112, 0142}, {118}, {120, 0124},

{61191 6123, e127} ) {6126}1 {6135}1 {61281 6129, 6130, 9132, 6133, 9134, e136’ e143} }
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C.2 Modeling information using classic set theory

Ar = {01,02,...,07,671,073}

Az = {011,619, 063}

Az = {011, 013, 819, B28, B2, 672, 673,075, .. ., 0127, 0131, 0135, 0137, .. ., O142}

A, = {02,03, 05, 66,03, 89, 011, 813, 614, 018, .. ., 26,028, . . ., 31, B34, B36, B39, Bas, . . ., D49, Beo,
B62, . .., 071, 673, Bg5, B, B125, 0131 }

As = {029, 033, 035, 636 }

Ag = {02,03,0,...,011,013,014,01s, ..., 026,028, 629, 034, 873, 077, . . ., B9, Be3, Boa, Bgg, B101,
0115, 0117, 0118, 6120, . . ., 0124, 0126, 0127, B137, B138, B140 }

A7 = {011, 618, 819, 031, B34, B35, 646, 847, B3}

Ag = {015,010}

Ag = {03,05, 66,09, .. ., 011,013, 014,018, ..., 026, 028, 029, 034, 070, . . ., 073,67, .. ., 890, Oos,
Bog, 6101, 6113, . .., 8115, 0117, . . ., B124, B126, B127, B135, B137, B138, B140, 0141}

Ao = {018,019, 634}

A = {011,018, ..., 024, 030, 031, 034, B35, 836, O4s, - - -, 049, 063, 067, B0 }

A = {611,018, 619, 063}

A1z = {010, 011, 618, 819, 028, 673, 875, 61, B92, B97, B9, B102, . . . , B112, O116, 131, O139, B142}

Aiy = {67, 015,019,072, 073,074,087, . . ., 890, 93, 894, 897, B9s, 100, 8101, 8104, 8105, B106, O113,

6114, e1151 e117| ey 9124, e126; 6127, 6135, 9137, e1381 e1401 e141}
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C.3 Modeling information using rough sets theory

BAl :{{el}l {62199! 926! 929!973}! {931 elO! ell’ 6181 619}1 {64! 671917163116371645! 946! 647}!

{65! 661 6201 ey 6241 670, 671}! {981 9391 6601 6641 6661 967! 669}! {612! e15! 616}1 {6131 614}1
{925}1 {627}1 {628}1 {9301 e381 e481 e49}1 {932}1 {6331 e421 e431 944, 961}1 {9341 6651 668}1

{635}1 {636}1 {6401 6531 ey 659}1 {6411 6501 e511 9521 963} }

ﬁ'A\l :{ {el}l {621 99! 926! 929! 973}! {931 elO! ell’ e181 elg}) {64! 671 e171 6311 6371 645, 946! 647}!

{65! 861 6201 rey 6241 670, 671}! {681 9391 9601 6641 6661 667! 669}! {912! 915, 616}1 {6131 614}1
{625}1 {627}1 {628}1 {9301 6381 e481 e49}1 {932}1 {6331 e421 e431 944, 961}1 {9341 9651 668}1

{635}1 {936}1 {9401 6531 ey 659}’ {641’ 650, e511 9521 963}1 {962}}

- { o

RA; ={ {83, 810, 811, 815, B10}, {041, Bs0, Bs1, B2, B } |

BA3 :{ {928}1 {962}1 {972a e761 993, 994, 9113, 9114, e1151 9117, e1211 6122}, {9751 e99a 9115},

{9771 ey 982) 984) 985! 9861 e881 989}1 {9831 987}1 {9901 9137, 6138) 9141}! {691}!
{6921 6101, 6140}, {9951 e961 elOZa 91031 e125! 6139}! {997! 9110, e:I.?:l} y {998} y {9100’ elll} ’

{6104! reey 6109! 9112, 6142}, {9118}! {91191 6123’ 9127}’ {91201 6124}! {9126}’ {9135} }
ﬁ'0\3 :{ {92! e91 9261 929, e73} ’ {931 610, e111 e181 e19} y {628} ’ {662} ’ {9751 e991 9116} y

{9721 976! e93| e94| 6113, 9114, 9115, 91171 9121, 6122}) {977) ey e82| 684, 685, 986! 688) 989})
{6837 687} ’ {6907 6137, 6138, 6141} ’ {991} y {692! e101’ 6140} ’ {6971 e:I.:I.O! 9131}’
{805, B96, 0102, 6103, 8125, 0130}, {80}, {6100, B111}, {B104, ..., B100, 6112, 0142}, {B118},

{61191 6123, e127} ) {6120’ 6124}, {9126} ) {9135} }
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BA4 :{ {92’ e91 9261 929, 673}1 {951 66! 620! ey e241 970, 671}1 {681 e391 e601 e641 9661 6671 669}1
{6131 614}1 {625}1 {928}1 {9341 9651 968}1 {936}1 {962}}

RA, :{{92, B9, 826, 629, 873}, {03, 010, 811, 818, 019}, {04, 87, 817,831, 037, 845, B4, 647},

{65! 961 920 llll 624, 670, 671}! {681 6391 6601 6641 6661 6671 669}1 {6131 614}1 {625}1 {628}1
{630, Bag, Bag, 049}, {834, B65, 63}, {836}, {6a1, Bs0, O51, 052, 863}, {662}

{6951 e961 9102, 6103, 6125, 6139}; {997; 9110, e131} }

RAs :{ {635}, {936}}
RAs ={{82,80, 826, 829, 873} , {835, 0z, Bas, Bas, 81}, {Bss}, {035} |

BAG :{ {621 691 6261 629, e73} ) {631 e101 e111 e181 e19} y {9131 e14} y {925} ) {928}1
{677 1111 9821 9841 685! 9861 9881 689}1 {9831 987}1 {998}1 {61201 6124}! {6118}1 {9126} }

ﬁAG :{ {62! e91 6261 e29! 973}! {631 e101 e111 e181 e19}1 {65’ 661 920, reey e24-1 e701 671}1 {613, 614}!

{981 e391 e601 664, 9661 e671 e69} y {625} ’ {628} ’ {9341 e651 968} ’ {6901 9137’ 61381 6141} ’
{6721 6761 693! 694, e113! 6114, 6115, 9117, 6121, 9122}! {977 !!!! 6821 9841 9851 6861 9881 989}1

{6831 687} y {6921 e101! 9140}1 {998}1 {9120! 6124}! {61191 6123! 6127}! {9118}1 {6126} }

RA; ={ {85} }
RA; :{{93, 010, 011,018, 610}, {04, 07, 617, 031, 037, 645, B46, 047}, {034, B65, O6s }, {035},
{Bat, 850,851, Bc2, 65} |
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mre-{ o

RAg :{ {83, 810, 611, D1, 919}}

BAQ :{ {93! 910! ell! e181 919}1 {65! 661 6201 reey e241 e701 971}, {9131 914}1 {925}1 {928}1
{6771 ey 9821 684, 685, 6861 6881 689}1 {6831 687}1 {6901 6137! 9138! 6141}1 {698}1 {6118}!
{6119’ 6123, 6127}! {61201 9124} ) {6126}! {6135} }

RAg :{{92, B9, 826, 629,873}, {03, 010, 811, 818, 819}, {05, 86, 620, - . -, 024,670,071}, {625},

{9131 914}1 {928}1 {6341 9651 968}1 {9721 9761 6931 9941 61131 6114, 9115, 6117, 6121! 9122}1
{677,..., 682,084, Og5, Bg6, Bsg, B9}, {Os3, Bs7}, {600, O137, B138, 0141},

{6921 6101, 9140}, {698}1 {6118}1 {61191 9123, 9127}, {61201 e124}| {6126}: {6135} }

mao |

RAg :{ {03, 010,011, 018,019}, {034, B6s, 968}}

RAy; :{ {6ss}, {936}}

RA.; :{{63, 010, 011, 018, 819}, {64, 87, 817, 631, 837, B45, O46, 847},
{65, 66, 620, - . ., B24, 870, 671 }, {Bs, B39, B60, 64, B6, B67, O69 } , {030, B38, Bag, B9},
{04, O, 50} , {835}, {895}, {01, 850, 851, B2, Bes} |

mas={

RAw ={ {05, 010,011,015, 61} , {821, 050, 051, B2, B} }
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RA; :{ {826}, {801}, {807, 8110, 8131}, {Ba0a, - - -, 810, B1a2, 9142}}

RA :{{ez, 8o, 826, 829, 873}, {83, B10, 011, Brg, B1o )}, {Bag}, {B7s, Boo, Bu16 ), {Bo1 ),
{6921 6101, e140} ’ {6951 e961 6102, 9103, 91251 6139}1 {6971 e110| 6131}, {61001 e111} )
{8104, - - -, B109, 8112, 9142}}

RA14 :{{972, 0876, 093, 094, 0113, 8114, 0115, 0117, 8121, 0122}, {077, . . ., Og2, B4, Ogs, Oge, Ogs, Oso },
{674}, {683, 67}, {600, 0137, 6133, 0141}, {B9s }, {0118}, {B119, B123, 0127},
{0120, 124}, {B126 {9135}}

RA14 :{{92, B9, 026, 029, 873}, {03, 810, 011, 018, 810}, {04, 87, 017, 831, 037, 045, B46, 847}, {074},

{672! 976! 993’ 994, 61131 6114, 9115, 9117’ 6121’ 8122}’ {677! ey 6821 e847 685, 686’ 688’ 689}!
{6831 687}’ {990! 6137, 61381 6141}1 {692! elOl! 6140}! {6971 ellO; 6131}! {698}1 {61001 elll}l

{6104; vy e1091 9112, 6142}, {9118}| {61197 e123| 6127}, {91201 6124}, {9126}1 {6135}}
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Annex D: A priori data bases

Country| Allegiance Country name Number of | O cial languages
code o cial
languages

USAM | FRIENDL | UNITED STATES | 1 ENGLISH

UKRA | NOTFRIE | UKRAINE 2 UKRANIAN, RUSSIAN

TAIW | FRIENDL | TAIWAN 1 CANTONESE

SWED | FRIENDL | SWEDEN 1 SWEDISH

RUSS | NOTFRIE | RUSSIA 1 RUSSIAN

PAKI NOTFRIE | PAKISTAN 2 OURDOU, ENGLISH

MEXI FRIENDL MEXICO 1 SPANISH

LITH NOTFRIE | LITHUANIA 1 LITHUANIAN

LIBY NOTFRIE LIBYA 1 ARAB

KAZA | NEUTRAL | KAZAKHSTAN 2 KAZAKH, RUSSIAN

ISRA NEUTRAL | ISRAEL 5 HEBREW, ENGLISH,
YIDDISH, RUSSIAN, ARAB

IRAQ | NOTFRIE | IRAQ 1 ARAB

INDI NEUTRAL | INDIA 5 ENGLISH, INDI,
GUJRATI, BENGHALLI,
PUNJABI

GREE | FRIENDL GREECE 1 GREEK

GERM | FRIENDL | GERMANY 1 GERMAN

FRAN | FRIENDL FRANCE 1 FRENCH

EGYP | NOTFRIE | EGYPT 1 ARAB

DANM | FRIENDL | DENMARK 1 DANISH

CHIN | NEUTRAL | CHINA 2 MANDARIN, CANTONESE

CANA | FRIENDL | CANADA 2 FRENCH, ENGLISH

BRIT | FRIENDL | UNITED KING- |1 ENGLISH

DOM

AUST | FRIENDL | AUSTRALIA 1 ENGLISH

POLA | NOTFRIE POLAND 1 POLISH

SYRI NOTFRIE | SYRIA 1 ARAB

PERU | UNKNOWN| UNKNOWN 1 UNKNOWN

N/A- UNKNOWN| UNKNOWN 1 UNKNOWN

VAR- UNKNOWN| UNKNOWN 1 UNKNOWN

Table D.1: Geopolitical data base
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No. [ Emitter id. | Function [ No. | Emitter id. [ Function

6 NAVNAVI FURUNO 53 NAV2DSU SPS-55

7 NAVNAVI URN-25 54 NAVNAVI SPS-64(V)9

8 IFFINRE MK-XII 55 NAV2DSU SLIM-NET

9 NAV2DSU TYPE-992R 56 NAVFICO HAWK-SCREECH
10 NAV2DSU SIGNAAL-DA-08 57 NAV2DSU SPS-49(V)5

11 NAVFICO SELENIA-912 58 NAV2DSU ERICSSON-SG-HC-150
12 NAVNAVI TYPE-1006 59 NAVFICO SIGNAAL-VM-25-STIR
13 NAVECMS SLQ-32(V)3-4 60 NAVECMS SLQ-503

14 NAVECMS SLQ-32(V)SIDEKICK 61 NAVNAVI SPERRY-MK-340
15 | NAVFICO SPG-51D 62 NAV3DSU HEAD-NET-C

16 NAV3DSU SPS-48E 63 NAV3DSU TOP-PLATE

17 NAV2DSU SPS-67 64 NAVNAVI DON-KAY

18 | NAVNAVI MARCONI-LN-66 65 NAVNAVI PALM-FROND
19 NAVFICO SPG-53F 66 NAV2DSU PEEL-CONE

20 | NAVFICO SPG-55D 67 NAVFICO EYE-BOWL

21 NAVECMS TST-FL-1800 68 NAVFICO OWL-SCREECH
22 NAVFICO SIGNAAL-WM-25 69 NAVECMS BELL-SQUAT

23 NAV2DSU SIGNAAL-DA-08 70 NAV2DSU SPIN-TROUGH
24 | NAVNAVI SMA-3-RM-20 71 NAVFICO KITE-SCREECH
25 NAVECMS TYPE-670 72 NAV2DSU SIGNAAL-LWO08
26 NAV2DSU TYPE-967 73 NAVECMS ELBIT-EA-2118
27 NAVNAVI TYPE-1007 74 NAVFICO SPERRY-MK-92
28 | NAVFICO TYPE-911 75 NAVNAVI RACAL-DECCA-TM-969
29 NAVFICO TYPE-910 76 NAV2DSU SPS-502

30 | NAvV2DSU TYPE-968 77 NAVNAVI SRN-15

31 NAVFICO SPG-60D 78 NAVECMS SIDE-GLOBE

32 NAVFICO SPQ-9 79 NAVNAVI KELVINHUGUES-NUC-2
33 NAV2DSU SPS-10 80 NAV2DSU BIG-NET

34 | NAVFICO SPG-53A 81 NAVFICO SCOOP-PAIR

35 NAVFICO SPG-55B 82 NAVFICO PEEL-GROUP

36 NAVECMS ULQ-6 83 NAVFICO MUFF-CUB

37 NAV2DSU SPS-503 84 NAV3DSU TOP-SAIL

38 | NAVNAVI SPERRY-127E 85 NAVFICO HEAD-LIGHT

39 NAVFICO SPG-48 86 NAV2DSU LOW-TROUGH
40 | NAvV2DSU SPS-12 87 NAVFICO DRUM-TILT

41 NAVFICO SPG-34 88 NAVECMS FOOT-BALL

42 NAVNAVI SPERRY-MK-II 89 NAVNAVI ROUND-HOUSE
43 NAVNAVI URN-20 90 NAV2DSU TOP-STEER

44 NAV2DSU STRUT-CURVE 91 NAVFICO CROSS-WORD
45 | NAVFICO POP-GROUP 92 NAVFICO TOP-DOME

46 NAVFICO BASS-TILT 93 ATCGCCA FLY-SCREEN

47 NAVNAVI DON-2 94 NAVECMS CAGE-POT

48 NAVECMS TYPE-675 95 NAV3DSU SKY-WATCH

49 NAVFICO TYPE-909 96 NAV3DSU PLATE-STEER
50 NAV2DSU TYPE-1022 97 NAV2DSU STRUT-PAIR

51 NAV2DSU TYPE-996(2) 98 NAVFICO TRAP-DOOR

52 NAVFICO TYPE-909(1) 99 ATCGCCA FLY-TRAP

104

Table D.2: Sensors data base (1)

DRDC VakarterTR 2003-319




No. [ Emitter id. | Function [ No. | Emitter id. | Function

100 | ATCGCCA CAKE-STAND 145 MISHORA SUPER-ADAC

101 | IFFINRE SALT-POT-B 146 AIRECMS ALQ-126B

102 | IFFINRE LONG-HEAD 147 AIRECMS ALQ-162

103 | IFFINRE HIGH-POLE-B 148 AIRMULT APG-65

104 | IFFINRE HIGH-POLE-A 149 AIRMULT APS-134

105 | NAV3DSU HALF-PLATE 150 AIRMULT APN-510

106 | IFFINRE SALT-POT-A 151 AIRMULT APS-116-506

107 | IFFINRE UPX-12 152 AIRECMS SPS-3000

109 | IFFINRE SQUARE-HEAD 153 AIRMULT APG-68

110 | NAV3DSU SPY-1A 154 AIRFICO AWG-9

111 | NAV3DSU SPY-1B 155 AIRECMS ALQ-165

112 | NAVFICO SPG-62 156 AIRMULT APS-128D

113 | NAV2DSU SPS-52C 157 AIRWEAT PRIMUS-800

114 | NAV2DSU SPS-40 158 AIRMULT BLUE-KESTREL

115 | NAV2DSU HUGUES-MK-23-TAS 159 AIRECMS ALQ-155

116 | ATCGCCA | SPN-35 160 AIRECMS ALQ-172

117 | ATCGCCA | SPN-43 161 AIRMULT B-52-AIRBORNE-
RADAR

118 | IFFINRE MK-XV 162 AIRMULT APS-137

119 | NAVNAVI SPS-53 163 AIRFICO SKIP-SPIN

121 | NAVFICO RAYTHEON-MK-95 164 AIRFICO FAN-TAIL

122 | NAVECMS SLQ-29 165 AIRMULT ORB37-HL

123 | NAVECMS SLQ-17 166 AIRFICO BOX-TAIL

124 | ATCGCCA | SPN-41 167 AIRNAVI CLAM-PIPE

125 | ATCGCCA SPN-44 168 AIRECMS GROUND-BOUNCER

126 | ATCGCCA | SPN-46 169 AIRMULT APG-70

127 | NAVNAVI FURUNO-900 170 AIRECMS ALQ-135

128 | NAVFICO BAND-STAND 171 AIRECMS ELISRA-SPJ-20

129 | NAVFICO FRONT-DOME 172 AIRMULT THOMPSON-RDM-
RADAR

130 | NAV2DSU SPS-58A 173 AIRMULT GROUPE-IE-RBE2

131 | UNDETER LIGHT-BULB 174 AIRECMS THOMPSON-CSF-
BAREM

132 | NAV2DSU UNKNOWN-RUSS- 175 AIRECMS THOMPSON-CSF-

NO-1 CAIMAN

133 | AIRFICO FLASH-DANSE 176 AIRECMS DASSAULT-
CAMELEON

134 | NAV3DSU TST-TRS 177 AIRMULT SLOT-BACK

135 | NAV2DSU PHILIPS-9GR-600 178 AIRMULT SHORT-HORN

136 | NAVFICO PHILIPS-9VL-200 179 AIRMULT APS-133

137 | NAVNAVI BURMEIS-WES-MIL- 180 AIRFICO BLUE-FOX-MK?2

900

138 | SUBSUSU SNOOP-PAIR 181 AIRWEAT RACAL-DOPPLER-72

139 | AIRMULT DOWN-BEAT 99951 | AIRECMS DOWNBEAT

140 | MISHORA TEXAS-INST-DSQ-28 99952 | AIRNAVI COMMERCIAL

141 | AIRNAVI APN-194 99953 | AIRECMS NO-93

142 | MISHORA MS-2-SEEKER 99954 | AIRNAVI APQ-55

143 | MISHORA KING-FISH-SEEKER 99999 | UNKNOWN | UNKNOWN

144 | MISHORA ADAC

Table D.3: Sensors data base (2)
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ID | Target name Type Sub-type O ensive Country| Viin | Vinee | ACC | ALT | Len. | Hei. | Wid.
degree code max
1 JAHRE VICKING SURNOMI | TANKERV | HARMLE DANM | 0 35 999 0 460 33 51
2 HALIFAX CPF SURMILI FRIGATE MEDIOF CANA | 0 35 999 0 130 51 16
3 TARIQ AMAZON SURMILI FRIGATE WEAKOF PAKI 0 30 999 0 110 4 13
4 BELKNAP SURMILI CRUISER STROOF USAM | 0 38 999 0 167 9 17
5 BREMEN SURMILI FRIGATE STROOF GERM | O 30 999 0 130 7 15
6 BROADSWORD BATCH | SURMILI FRIGATE STROOF BRIT 0 30 999 0 131 6 15
1
7 CALIFORNIA SURMILI CRUISER STROOF USAM | 0 35 999 0 182 10 19
8 COONTZ SURMILI DESTROY | STROOF USAM | 0 35 999 0 156 5 16
9 IMPROVED RES- | SURMILI FRIGATE MEDIOF CANA | 0 28 999 0 113 4 13
TIGOUCHE
10 MACKENZIE SURMILI FRIGATE WEAKOF CANA | 0 28 999 0 112 4 12
11 GRISHA 111 (ALBA- | SURMILI FRIGATE WEAKOF LITH 0 30 999 0 71 4 10
TROS)
12 INVINCIBLE SURMILI CARRIER MEDIOF BRIT 0 28 999 0 209 8 36
13 ST LAURENT SURMILI FRIGATE VEWEOF CANA | 0 27 999 0 112 5 13
14 ST CROIX SURMILI FRIGATE VEWEOF CANA | 0 25 999 0 111 4 13
15 INVINCIBLE ILLUS- | SURMILI CARRIER MEDIOF BRIT 0 28 999 0 209 8 36
TRIO
16 INVINCIBLE ARK | SURMILI CARRIER MEDIOF BRIT 0 28 999 0 209 8 36
ROYAL
17 VIRGINIA SURMILI CRUISER STROOF USAM | 0 35 999 0 178 10 19
18 MIRKA | SURMILI FRIGATE WEAKOF RUSS 0 32 999 0 82 3 9
19 MIRKA 11 SURMILI FRIGATE WEAKOF RUSS 0 32 999 0 82 3 9
20 KRIVAK IA SURMILI FRIGATE STROOF RUSS 0 32 999 0 124 5 14
21 KRIVAK IB SURMILI FRIGATE STROOF RUSS 0 32 999 0 124 5 14
22 KRIVAK 11 SURMILI FRIGATE STROOF RUSS 0 32 999 0 124 5 14
23 KRIVAK I11A SURMILI FRIGATE STROOF RUSS 0 32 999 0 124 5 14
24 KRIVAK 111B SURMILI FRIGATE STROOF RUSS 0 32 999 0 124 5 14
25 IROQUOIS SURMILI DESTROY | WEAKOF CANA | 0 30 999 0 130 5 15
26 ADELAIDE SURMILI FRIGATE MEDIOF AUST |0 30 999 0 138 5 14
27 IMPROVED PROVIDER | SURMILI SUPPORT | VEWEOF CANA | 0 21 999 0 172 9 23
28 QUEST SURMILI MISCELL HARMLE CANA | 0 11 999 0 72 5 13
29 KNOX SURMILI FRIGATE MEDIOF EGYP | 0 27 999 0 134 5 14
30 IVAN ROGOV SURMILI ASSAMPH | WEAKOF RUSS 0 25 999 0 158 8 25
31 KARA KERCH SURMILI CRUISER STROOF RUSS 0 35 999 0 173 7 19

Table D.4: Targets data base : 1 - 31
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ID | Type | Nb. RCS RCS RCS IR | RP | Blades | Em. | Emitters list
eng. cyl. side front top nb.
1 2 99 1518000 | 168300 | 2346000 | 1 9 99
2 3 20 65000 8000 208000 1 2 44 8 57 ,58,59,60,61,6,7,8
3 1 0 44000 4200 143000 1 2 9999 |3 10,11, 12
4 4 0 150300 15300 | 284000 1 2 9999 |9 13,16,17,18,19,20,57,7,8
5 2 99 91000 10500 | 195000 1 2 9999 |5 59,21,22,23,24
6 1 99 84000 9600 196500 1 2 9999 |4 25,30, 27,28
7 4 99 182000 190 346000 1 2 9999 |9 57,7,13,16,17,18,15,31, 32
8 4 99 72000 8000 250000 1 2 9999 |9 57,7,13,16,18,33,34,35,8
9 4 99 44200 5600 147000 1 2 9999 |7 7,58,36,37,33,38, 39
10 | 4 99 450 5000 13500 1 2 9999 |4 33,39,40, 41
11 | 3 99 28400 4000 71000 1 3 9999 | 99 7,44 ,45 46,47 ,103, 101, 109
12 |1 99 167200 | 28800 | 752400 1 2 9999 |5 48 ,50,51,12, 49
13 | 4 99 60000 7500 146000 1 2 9999 |5 33,39, 40, 42, 43
14 | 4 99 44400 4200 144000 1 2 9999 |3 40,33, 39
15 |1 99 167200 | 28800 | 752400 1 2 9999 |6 48 ,50,51,27,49,52
16 |1 99 167200 | 28800 | 752400 1 2 9999 |5 48 ,50,9,12,49
17 | 4 99 178000 19000 | 338200 1 2 9999 | 10 13,16 ,57,53,54,15,31,32,7,8
18 | 3 99 24600 2700 73800 1 2 9999 |5 55, 47,56, 103, 109
19 |3 99 24600 2700 73800 1 2 9999 |6 44 /55, 47,56, 103, 109
20 | 3 99 62000 7000 173600 1 2 9999 |6 62,69, 67,45, 68, 103
21 | 3 99 62000 7000 173600 1 2 9999 |6 63,69, 67,45, 68, 103
22 |3 99 62000 7000 173600 1 2 9999 |5 62,69, 67,45, 103
23 | 3 99 62000 7000 173600 1 2 9999 |8 62,69,66,45,71,46,103, 101
24 | 3 99 62000 7000 173600 1 2 9999 |8 63,69,66,45,71,46,103, 101
25 |1 99 65000 7500 195000 1 2 9999 |6 36,72,23,59,7,8
26 |1 99 69000 7000 193200 1 2 9999 |8 7,13,73,57,53,31,74,8
27 | 4 99 154800 | 20700 | 395600 1 2 9999 |5 43,42 ,75,76,8
28 | 2 99 36000 6500 93600 1 2 9999 |1 79
29 | 4 99 67000 7000 187600 1 2 9999 |6 77,19,18,17, 14, 107
30 |1 99 126400 | 20000 | 395000 1 2 9999 |9 93,89, 103, 101,68, 46,65, 64, 62
31 |1 99 121100 13300 | 328700 1 2 9999 | 12 78,84 ,62,64,47 ,85,45,68, 46, 93,

104 , 103

Table D.5: Targets data base : 1 - 31 (continuation)




ID | Target name Type Sub-type O ensive Country| Viin | Vinae | ACC | ALT | Len. | Hei. | Wid.
degree code max

32 MODIFIED KIEV SURMILI | CARRIER| STROOF RUSS 0 32 999 0 274 10 51

33 KIROV ADM USHAKOQOV | SURMILI | CRUISER | VESTOF RUSS 0 35 999 0 252 9 29

34 SAM KOTLIN SURMILI | DESTROY| MEDIOF RUSS 0 36 999 0 127 5 13

35 MOSKVA SURMILI | CRUISER | WEAKOF | RUSS 0 31 999 0 191 9 34

36 KRESTA | SURMILI | CRUISER | MEDIOF RUSS 0 35 999 0 156 6 17

37 TICONDEGORA SURMILI | CRUISER | STROOF USAM | 0 35 999 0 173 10 17

38 TARAWA SURMILI | ASSAMPH| WEAKOF | USAM | 0 24 999 0 254 8 40

39 SPRUANCE SURMILI | DESTROY| STROOF USAM | 0 33 999 0 172 6 17

40 NIMITZ SURMILI | CARRIER| WEAKOF | USAM | 0 35 999 0 333 11 41

41 SACRAMENTO SURMILI | SUPPORT| WEAKOF | USAM | 0 26 999 0 242 12 33

42 KIROV ADM NAKHI- | SURMILI | CRUISER | VESTOF RUSS 0 35 999 0 252 9 29
MOV

43 KIROV ADM LAZAREV | SURMILI | CRUISER | VESTOF RUSS 0 35 999 0 252 9 29

44 KIROV PYOTR VE- | SURMILI | CRUISER | VESTOF RUSS 0 35 999 0 252 9 29
LIKIY

45 KARA AZOV SURMILI | CRUISER | STROOF RUSS 0 35 999 0 173 7 19

46 KARA SURMILI | CRUISER | STROOF RUSS 0 35 999 0 173 7 19
PETROPAVLOVSK

47 KARA VLADIVOSTOK | SURMILI | CRUISER | STROOF RUSS 0 35 999 0 173 7 19

48 IVAN ROGOV ALEK- | SURMILI | ASSAMPH| WEAKOF | RUSS 0 25 999 0 158 8 25
SANDR

49 IVAN ROGOV MITRO- | SURMILI | ASSAMPH| WEAKOF | RUSS 0 25 999 0 158 8 25
FAN

50 CAMDEN SACRA- | SURMILI | SUPPORT| WEAKOF | USAM | 0 26 999 0 242 12 33
MENTO

51 SEATLE SACRA- | SURMILI | SUPPORT| WEAKOF | USAM | 0 26 999 0 242 12 33
MENTO

52 DETROIT SACRA- | SURMILI | SUPPORT| WEAKOF | USAM | 0 26 999 0 242 12 33
MENTO

53 NIMITZ DWIGHT | SURMILI | CARRIER| WEAKOF | USAM | 0 35 999 0 333 11 41
EISENH

54 NIMITZ CARL VINSON | SURMILI | CARRIER| WEAKOF | USAM | 0 35 999 0 333 11 41

55 NIMITZ THEODORE | SURMILI | CARRIER| WEAKOF | USAM | 0 35 999 0 333 12 41
ROOS

56 NIMITZ ABRAHAM | SURMILI | CARRIER| WEAKOF | USAM | 0 35 999 0 333 12 41
LINCO

57 NIMITZ GEORGE | SURMILI | CARRIER| WEAKOF | USAM | 0 35 999 0 333 12 41
WASHIN

58 NIMITZ JOHN C | SURMILI | CARRIER| WEAKOF | USAM | 0 35 999 0 333 12 41
STENNI

59 NIMITZ HARRY S | SURMILI | CARRIER| WEAKOF | USAM | 0 35 999 0 333 12 41
TRUMA

Table D.6: Targets data base : 32 - 59
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ID | Type | Nb. | RCS RCS RCS IR | RP | Blades | Em. | Emitters list
eng. cyl. | side front | top nb.

32 | 4 99 274000 | 51000 | 1397400 | 1 4 9999 | 15 88,94,95,96,97,65,98,71,46,91,99, 100, 101,
102 , 106

33 | 4 99 226800 | 26100 | 730800 1 2 99 99 14 77,89,90,65,67,92,84,80,45,71,46,93, 101,
106

34 | 4 99 63500 6500 165100 1 2 99 99 7 62,47 ,86,82,56,87, 103

35 | 4 99 171900 | 30600 | 649400 1 2 99 99 8 77,84 ,62,47,85,83, 103, 104

36 | 4 99 93600 10200 | 265200 1 2 99 99 9 77,80,62,65,81,82,83,46, 103

37 |1 99 173000 | 17000 | 294100 1 2 9999 |9 13,110,57,53,54,32,112,7,8

38 | 4 99 203200 | 32000 | 1016000 | 1 2 99 99 13 13, 16, 113, 114, 115, 17,54, 116, 117,31 ,32, 7,
118

39 |1 99 103200 | 10200 | 292400 2 9999 | 12 14,114 , 115,53 ,18,119,57,31,32, 121,43, 8

40 | 4 99 366300 | 45100 | 1365300 4 99 99 14 122 , 16,57, 115, 17, 124 , 117, 125, 126, 127 , 54 ,
121,7,8

41 | 4 99 290400 | 39600 | 798600 1 2 99 99 6 13,130,33,18,121,7

42 | 4 99 226800 | 26100 | 730800 1 2 9999 | 12 88,89,63,65,91,92,84,80,45,71, 101, 106

43 | 4 99 226800 | 26100 | 730800 1 2 99 99 12 88,89,90,65,91,92,84,80,45, 71,101, 106

44 | 4 99 226800 | 26100 | 730800 1 2 9999 | 12 88,89,63,65,91,92,84,80,45,71, 101, 106

45 |1 99 121100 | 13300 | 328700 1 2 99 99 12 78,84 ,62,64,85,45,92,68, 46,93, 104, 103

46 |1 99 121100 | 13300 | 328700 1 2 9999 | 12 78,84 ,62,64 ,47 ,85,45,68, 46,89, 104, 103

47 |1 99 121100 | 13300 | 328700 1 2 99 99 12 78,84 ,62,64,47,85,45,68, 46,93, 104, 103

48 |1 99 126400 | 20000 | 395000 1 2 9999 | 10 93,89, 103, 101,68 ,46,45,65, 64, 62

49 |1 99 126400 | 20000 | 395000 1 2 99 99 10 93,89,103,101,68,46,45,65, 64, 105

50 | 4 99 290400 | 39600 | 798600 1 2 9999 |6 13,130,33,18,121,7

51 | 4 99 290400 | 39600 | 798600 1 2 99 99 5 115,33,18,121,7

52 | 4 99 290400 | 39600 | 798600 1 2 9999 |5 130,33,18,121,7

53 | 4 99 366300 | 45100 | 1365300 | 1 4 99 99 14 122 , 16,57, 115, 17, 124 , 117, 125, 126, 127 , 54 ,
121,7,8

54 | 4 99 366300 | 45100 | 1365300 | 1 4 99 99 14 122 , 16, 57, 115, 17, 124 , 117, 125, 126, 127 , 54 ,
121,7,8

5 | 4 99 399600 | 49200 | 1365300 | 1 4 99 99 14 122 , 16, 57, 115, 17, 124 , 117, 125, 126, 127 , 54 ,
121,7,8

56 | 4 99 399600 | 49200 | 1365300 | 1 4 99 99 14 122 , 16,57, 115, 17, 124 , 117, 125, 126, 127 , 54 ,
121,7,8

57 | 4 99 399600 | 49200 | 1365300 | 1 4 99 99 14 13,16,57,115,17, 124, 117, 125, 126, 127,54 , 121
, 7,8

58 | 4 99 399600 | 49200 | 1365300 | 1 4 99 99 14 13,16,57,115,17, 124, 117, 125, 126, 127,54 , 121
, 7,8

59 | 4 99 399600 | 49200 | 1365300 | 1 4 99 99 14 13,16,57, 115,17, 124, 117, 125, 126, 127,54 , 121
, 7,8

Table D.7: Targets data base : 32 - 59 (continuation)




ID | Target name Type Sub-type O ensive Country| Vinin | Vinae | ACC | ALT Len. | Hei. | Wid.
degree code max

60 | SPRUANCE SURMILI | DESTROY | STROOF USAM | 0 33 999 0 172 6 17
HAYLER

61 | TICONDEGORA SURMILI | CRUISER | VESTOF USAM | 0 35 999 0 173 10 17
PRINCETO

62 SIR WILLIAM | SURNOMI | ICEBREA | HARMLE CANA | 0 16 999 0 83 6 16
ALEXANDE

63 UGRA II SURMILI | SUPPORT | WEAKOF | RUSS |0 17 999 0 141 7 18

64 UDALOY I SURMILI | DESTROY | STROOF RUSS 0 30 999 0 164 8 19

65 UDALOY AND SURMILI | DESTROY | MEDIOF RUSS |0 30 999 0 164 8 19
KULAKOV

66 | SOVREMENNY Il | SURMILI | DESTROY | STROOF RUSS |0 32 999 0 156 7 17

67 SOVREMENNY SURMILI | DESTROY | STROOF RUSS 0 32 999 0 156 7 17
OSMOTRITE

68 UDALOY SURMILI | DESTROY | MEDIOF RUSS |0 30 999 0 164 8 19
SPIRIDONOV

69 | SOVREMENNY SURMILI | DESTROY | STROOF RUSS |0 32 999 0 156 7 17
BOYEVOY

70 BROADSWORD SURMILI | FRIGATE | STROOF BRIT 0 30 999 0 148 6 15
BATCH 2

71 BROADSWORD SURMILI | FRIGATE | STROOF BRIT 0 30 999 0 148 6 15
BATCH 3

72 MIG31 FOX- | AIRMILI | FIGHTIN | STROOF RUSS | 200 1525 | 60 20600 23 6 13
HOUND
RUSSI

73 NIELS JUEL SURMILI | FRIGATE | MEDIOF DANM | 0 28 999 0 84 3 10

74 | TYPHOON SUBSURF | NUCPSTR | STROOF RUSS |0 26 999 900000300 | 165 13 25

75 | TU22M2 AIRMILI | BOMBERS | VESTOF RUSS | 200 1080 | 30 13300 43 11 23
BACKFIRE B

76 MIG31 FOX- | AIRMILI FIGHTIN STROOF CHIN 550 1525 | 60 20600 23 6 13
HOUND
CHINA

77 TOMAHAWK AIRMILI SSMISSI VESTOF N/A 450 500 999 1000 6 1 1
109A/C/D

78 | TOMAHAWK AIRMILI | SSMISSI VESTOF N/A 450 500 999 1000 6 1 1
109B

79 HARPOON AIRMILI | SSMISSI VESTOF N/A 500 550 999 1000 4 0 0

80 HARPOON 1D AIRMILI | SSMISSI VESTOF N/A 500 550 999 1000 5 0 0

81 HARPOON SLAM | AIRMILI | SSMISSI VESTOF N/A 500 550 999 1000 4 0 0

82 SEA SPARROW AIRMILI SAMISSI VESTOF N/A 600 650 999 10000 4 0 0

83 | AS 6 KINGFISH AIRMILI | ASMISSI VESTOF N/A 500 2000 | 999 18000 10 1 1

Table D.8: Targets data base : 60 - 83
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ID | Type | Nb. | RCS RCS RCS IR | RP | Blades Em. | Emitters list
eng. | cyl. | side front | top nb.

60 | 1 99 | 103200 | 10200 | 292400 |1 2 99 99 12 14,57 ,115,53,18,119,54,31,32,121,43,7

61 | 1 99 | 173000 | 17000 | 294100 |1 2 99 99 9 13,111,57,53,54,32,112,7,8

62 | 2 99 | 49800 | 9600 | 132800 |1 2 99 99 99 unknown

63 | 2 99 | 98700 12600 | 253800 | 1 2 99 99 5 44 , 47,83, 109, 103

64 | 1 99 | 131200 | 15200 | 311600 |1 2 99 99 9 69,97,63,65,128,91,71,93, 131

65 | 1 99 | 131200 | 15200 | 311600 |1 2 99 99 11 69,97,65,67,91,46,71,101, 106, 89, 93

66 | 4 99 | 109200 | 11900 | 265200 |1 2 99 99 6 63,132,129, 46,128, 71

67 | 4 99 | 109200 | 11900 | 265200 |1 2 99 99 13 69,96,65,128,129,71,46,101, 106, 103, 104, 102
, 131

68 | 1 99 | 131200 | 15200 | 311600 2 99 99 12 69,97,63,65,67,91,46,71,101, 106, 89, 93

69 | 4 99 | 109200 | 11900 | 265200 2 99 99 13 69,63,65,128,129,71,46, 101, 106, 103, 104, 102
, 133

70 |1 99 | 94800 | 9600 | 222000 |1 2 99 99 4 25,30, 27,28

71 |1 99 | 94800 | 9600 | 222000 |1 2 99 99 4 25,30, 27,28

72 19 99 | 3500 1000 | 7500 2 2 26 26 1 133

73 |3 20 | 24900 | 3000 | 84000 1 2 99 99 4 135, 136, 121, 137

74 | 4 99 | 2500 250 412500 |1 2 99 99 1 138

75 |9 99 | 11800 | 3200 | 24600 1 2 99 99 2 139, 166

7% |9 99 | 3500 1000 | 7500 2 2 26 26 1 133

7 19 99 | 300 25 300 3 0 nothing | O nothing

78 |9 99 | 300 25 300 3 0 nothing | 2 140 , 141

79 |9 99 | 135 10 135 3 0 nothing | 2 140, 141

80 | 9 99 170 10 170 3 0 nothing | O nothing

81 | 9 99 | 135 10 135 3 0 nothing | O nothing

82 | 9 99 70 5 70 3 0 nothing | O nothing

83 |9 99 | 1000 100 1000 3 0 nothing | 1 143

Table D.9: Targets data base : 60 - 83 (continuation)




ID | Target name Type Sub-type O ensive Country| Viin Vinaz | ACC | ALT Len. | Hei. | Wid.
degree code max
84 | SSN2STYX AIRMILI | SSMISSI VESTOF N/A 500 600 | 999 | 350 6 1 1
85 | EXOCET MM38 AIRMILI | SSMISSI VESTOF N/A 500 600 | 999 | 500 5 0 0
86 | EXOCET SM39 AIRMILI | SSMISSI VESTOF N/A 500 600 | 999 | 500 5 0 0
87 | EXOCET AM39 AIRMILI | ASMISSI | VESTOF N/A 500 600 | 999 | 2000 5 0 0
88 | EXOCET MM40 AIRMILI | SSMISSI VESTOF N/A 500 600 | 999 | 500 6 0 0
BLOCK1
89 | EXOCET MM40 AIRMILI | SSMISSI VESTOF N/A 500 600 | 999 | 500 6 0 0
BLOCK?2
90 | CF18A/B HOR- | AIRMILI | FIGHTIN | MEDIOF CANA | 200 1150 | 75 15000 17 5 8
NET
91 | CP140 AURORA | AIRMILI | PATRSUR| VEWEOF CANA | 120 400 |5 25000 35 10 30
92 | CP140A ARC- | AIRMILI | RECONNA HARMLE CANA | 120 400 |5 25000 35 10 30
TURUS
93 | F16 FALCON AIRMILI | FIGHTIN | STROOF ISRA 999999 | 1300 | 90 15000 9 5 15
94 F14A TOMCAT AIRMILI FIGHTIN | STROOF USAM | 200 1350 | 999 999999999 | 19 5 20
95 | BOING 747 400 A | AIRCOMM JETPROP| HARMLE VAR 150 550 | 2 12000 69 19 64
96 BOING 747 400 B | AIRCOMM JETPROP| HARMLE VAR 150 550 2 12000 69 19 64
97 | CT142 DASH 8 AIRMILI | SUPPORT| HARMLE CANA | 100 300 | 999 | 5000 22 7 26
98 EH 101 MERLIN AIRMILI MHELICO| WEAKOF BRIT 0 160 2 999999999 | 16 5 5
99 | B52H AIRMILI | BOMBERS VESTOF USAM | 200 525 | 2 18000 49 12 56
STATOFORTRESS
100 | S3B VIKING AIRMILI | PATRSUR| WEAKOF | USAM | 100 450 | 999 | 11000 16 7 21
101 | SR71A BLACK- | AIRMILI | RECONNA HARMLE USAM | 250 2000 | 999 | 30000 33 5 11
BIRD
102 | CONCORDE AIRCOMM JETPROP| HARMLE FRAN | 225 1400 | 999 | 19000 62 11 26
103 | CONCORDE AIRCOMM JETPROP| HARMLE BRIT 225 1400 | 999 19000 62 11 26
104 | TU22K BLINDER | AIRMILI | BOMBERS STROOF RUSS | 200 900 | 999 | 14000 42 10 23
105 | TU22K BLINDER | AIRMILI BOMBERS STROOF LIBY 200 900 999 14000 42 10 23
106 | TU22K BLINDER | AIRMILI | BOMBERS STROOF IRAQ | 200 900 | 999 | 14000 42 10 23
107 | TU9SMS BEAR H | AIRMILI BOMBERS STROOF RUSS 175 500 999 12000 50 12 51
108 | TU9SMS BEAR H | AIRMILI | BOMBERS STROOF UKRA | 175 500 | 999 | 12000 50 12 51
109 | TU9SMS BEAR H | AIRMILI | BOMBERS STROOF KAZA | 175 500 | 999 | 12000 50 12 51
110 | TU16N BADGER | AIRMILI | SUPPORT| HARMLE RUSS | 200 600 | 999 | 15000 35 10 33
111 | TU16PP BAD- | AIRMILI | PATRSUR| WEAKOF | RUSS | 200 600 | 999 | 15000 35 10 33
GER
112 | TU16K 26 BAD- | AIRMILI BOMBERS STROOF RUSS 200 600 999 15000 35 10 33

GER

Table D.10: Targets data base : 84 - 112
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g ID | Type | Nb. | RCS RCS RCS IR | RP | Blades Em. | Emitters list
2 eng. | cyl. | side front | top nb.
) 84 |9 99 | 600 60 600 3 |0 nothing 1 142
g 8 |9 99 | 200 15 200 3 [0 |nothing |1 | 144
%- 86 |9 99 | 200 15 200 3 |0 nothing 1 144
3 87 |9 99 | 150 15 150 3 |0 | nothing |1 144
3 8 |9 99 | 200 15 200 3 |0 nothing 1 144
S 89 |9 99 | 200 15 200 3 |0 nothing 1 145
@ 90 |9 99 | 2100 500 3400 2 |2 18 18 4 8,146 , 147 , 148
% 91 |9 99 | 8800 3700 | 26200 1 |4 4444 2 8,151
92 |9 99 | 8800 3700 | 26200 1 |4 4444 3 141 , 149 , 150
93 |9 99 | 1900 550 3400 2 |1 13 2 153, 152
94 |9 99 | 2400 1250 | 9500 2 |2 1313 2 154 , 155
95 |9 99 | 33000 | 15000 | 110000 |1 | 4 38 38 1 99999
9% |9 99 | 33000 | 15000 | 110000 |1 | 4 24 24 1 99999
97 |9 99 | 3850 2300 | 14300 1 |2 44 2 156 , 157
98 |9 99 | 2000 1250 | 2000 1 |2 54 1 158
9 |9 99 | 14700 | 8400 | 68600 1 |1 23 3 159, 160 , 161
100 | 9 99 | 2800 1850 | 8400 1 12 99 99 1 162
101 | 9 99 | 4000 700 9000 2 |8 unknown | 99 unknown
102 | 9 99 17000 3600 | 40000 2 8 unknown | 99 unknown
103 | 9 99 | 17000 | 3600 | 40000 2 |8 unknown | 99 unknown
104 | 9 99 | 10500 | 3000 | 24000 2 |2 99 99 2 164 , 139
105 | 9 99 | 10500 | 3000 | 24000 2 |2 99 99 2 164 , 139
106 | 9 99 | 10500 | 3000 | 24000 2 |2 99 99 2 164 , 139
107 | 9 99 | 15300 | 7600 | 64000 1 |4 8888 3 166 , 167 , 168
108 | 9 99 | 15300 | 7600 | 64000 1 |4 8888 3 166 , 167 , 168
109 | 9 99 | 15300 | 7600 | 64000 1 |4 8888 3 166 , 167 , 168
110 | 9 99 | 8800 4000 | 29000 1 ]2 99 99 99 unknown
111 | 9 99 | 8800 4000 | 29000 1 |2 99 99 99 unknown
112 | 9 99 | 8800 4000 | 29000 1 |2 99 99 99 unknown

€Tl

Table D.11: Targets data base

: 84 - 112 (continuation)




ID | Target name Type Sub-type O ensive Country Viin | Vinaz | ACC | ALT | Len. | Hei. | Wid.
degree code max

113 | F15E EAGLE AIRMILI FIGHTIN | STROOF USAM | 200 | 1600 | 90 20000 | 19 6 13

114 | F151 EAGLE AIRMILI FIGHTIN STROOF ISRA 200 1600 | 90 20000 | 19 6 13

115 | YAK38 FORGER A AIRMILI FIGHTIN | STROOF RUSS |0 550 | 999 12000 | 15 5 7

116 | TU160 BLACKJACK AIRMILI BOMBERS| VESTOF RUSS 200 1300 | 20 15000 | 54 13 51

117 | MIG29 FULCRUM A AIRMILI FIGHTIN | STROOF SYRI 200 | 1400 | 90 20000 | 15 5 11

118 | MI28 HAVOC AIRMILI MHELICO | STROOF RUSS 0 170 30 6000 | 17 4 2

119 | SU27K FLANKER D AIRMILI FIGHTIN | VESTOF RUSS | 150 | 1240 | 80 11000 | 19 6 15

120 | MI35P HIND F AIRMILI MHELICO | MEDIOF PERU | 0 180 5 4500 | 17 4 2

121 | MIG29 FULCRUM A AIRMILI FIGHTIN | STROOF INDI 200 | 1400 | 90 20000 | 15 5 11

122 | MIG29 FULCRUM A AIRMILI FIGHTIN STROOF POLA | 200 1400 | 90 20000 | 15 5 11

123 | MIG29K FULCRUM D | AIRMILI FIGHTIN | VESTOF RUSS | 200 | 1400 | 90 20000 | 15 5 11

124 | KA 25PL HORMONE AIRMILI MHELICO | MEDIOF RUSS | 0 120 | 2 3400 | 10 5 3

125 | ANTONOV 124 AIRCOMM| JETPROP | HARMLE BRIT | 150 | 470 |1 12000 | 69 20 73

126 | KA 50 HOKUM AIRMILI MHELICO | VESTOF RUSS |0 190 | 30 4500 | 16 2 3
WEREWOLF

127 | SEA HARRIER FRS AIRMILI FIGHTIN | VESTOF BRIT 150 800 80 10000 | 13 4 8

128

129

130

131 | C 17A GLOBEMAS- | AIRMILI SUPPORT | HARMLE USAM | 115 500 1 9000 | 48 17 50
TER

132

133

134

135 | CH 47 CHINOOK AIRMILI MHELICO | VEWEOF USAM | 0 155 | 2 3200 | 16 6 4

136

137 | DASSAULT RAFALE | AIRMILI FIGHTIN | MEDIOF FRAN | 150 | 1300 | 95 20000 | 15 5 11
B

138 | DASSAULT MIRAGE | AIRMILI FIGHTIN MEDIOF GREE | 150 1400 | 135 17000 | 14 5 9
2000

139 | CONCORDE AF | AIRCOMM| JETPROP | HARMLE FRAN | 225 | 1400 | 999 19000 | 62 11 26
FAKE

140 | SR71A BLACKBIRD | AIRMILI RECONNA| HARMLE USAM | 250 | 2000 | 999 30000 | 33 5 11
FAKE

141 | MIG31 FOXHOUND | AIRMILI FIGHTIN | MEDIOF RUSS | 200 | 1525 | 60 20600 | 23 6 13
FAKE

142 | TU22M2 BACKFIRE | AIRMILI BOMBERS| STROFF RUSS 200 1080 | 30 13300 | 43 11 23
FAKE

143 | UNKNOWN UNKNOWN UNKNOWN UNKNOWN| UNKN | 0 0 0 0 0 0 0

Table D.12: Targets data base : 113 - 143
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;UU ID | Type | Nb. | RCS RCS RCS IR | RP | Blades Em. | Emitters list
o eng. | cyl. | side front | top nb.
2 113 | 9 99 | 2800 1000 | 6200 2 2 22 22 2 169, 170
o 114 | 9 99 | 2800 1000 | 6200 2 2 22 22 2 169, 171
8. 115 | 9 99 1900 400 2600 1 8 unknown | 1 163
@‘- 116 | 9 99 | 17500 | 8300 | 69000 2 |4 99 99 2 99999 , 99999
3 117 | 9 99 | 1900 700 4100 2 2 32 32 1 177
3 118 | 9 99 | 1700 400 850 1 2 54 0 nothing
S 119 | 9 99 | 2800 1100 | 7100 2 2 24 24 2 99999 , 99999
@ 120 | 9 99 | 1700 400 850 1 2 53 0 nothing
2 121 | 9 99 | 1900 700 4100 2 2 3232 1 177
© 122 | 9 99 | 1900 700 4100 2 2 32 32 1 177
123 | 9 99 | 1900 700 4100 2 2 3232 1 177
124 | 9 99 | 1300 700 400 1 2 33 1 178
125 | 9 99 | 34500 18000 | 126000 |1 | 4 3333 2 99999 , 99999
126 | 9 99 | 800 300 1200 1 2 33 0 nothing
127 | 9 99 | 1300 400 2600 2 1 23 2 180, 181
128
129
130
131 | 9 99 | 20000 10600 | 60000 1 14 36 36 1 179
132
133
134
135 | 9 99 | 2400 1200 | 1600 1 2 33 99 unknown
136
137 | 9 99 | 1900 700 4000 2 2 1515 2 173 , 174
138 | 9 99 | 1700 550 3200 2 2 23 23 3 172,175, 176
139 | 9 99 | 17000 | 3600 | 40000 2 8 unknown | 3 165, 99952 , 161
140 | 9 99 | 4000 700 9000 2 8 unknown | 2 99954 , 157
141 | 9 99 | 3500 1000 | 7500 2 2 26 26 1 99953
142 | 9 99 | 11800 | 3200 | 24600 1 2 99 99 2 99951 , 163
143 | 0 0 0 0 0 0 0 00 0 0

STT

Table D.13: Targets data base : 113 - 143 (continuation)
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