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F. Rhéaume & A. Benaskeur

Approved by
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Abstract

In target tracking applications, there may be situations where measurements from a given
target arrive out of sequence at the processing center. This problem is commonly referred to
as Out-of-Sequence Measurements (OOSMs). So far, most of the existing solutions to this
problem are based on retrodiction, where backward prediction of the current estimated state
is used to incorporate the OOSMs at appropriate time instants. This document suggests
a new method for tackling the OOSMs problem without backward prediction. Based on a
forward prediction and decorrelation approach, the method has proved to compare favorably
to the best retrodiction-based methods, while requiring less data storage in most cases.

Résumé

Dans le domaine du pistage de cibles, des situations peuvent se produire où les mesures
sur une cible particulière arrivent hors séquence au centre de traitement. Ce problème
est désigné sous le nom de Mesures Hors Séquence (MHS), tiré de l’anglais “Out-Of-
Sequence Measurements” (OOSMs). Jusqu’ici, la plupart des solutions à ce problème sont
basées sur le concept de rétrodiction. Cette méthode utilise la projection dans le passé
(ou rétroprojection) de l’état courant estimé afin d’incorporer les MHS. Une nouvelle
méthode pour résoudre le problème des MHS est suggérée, laquelle n’utilise pas de la
de rétroprojection. Elle se base, plutôt, sur la prédiction directe (vers l’avant) et la dé-
corrélation de l’information, et se compare favorablement aux meilleures méthodes utilisant
la rétrodiction, tout en exigeant la même capacité de mémoire, et dans la plupart des cas,
une quantité moindre.
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Executive summary

Out-of-sequence measurements filtering using forward prediction

F. Rhéaume , A. Benaskeur ; DRDC Valcartier TR 2005-485; Defence R&D Canada –

Valcartier; August 2007.

The tracking of dynamic targets involves a measurement process that collects and processes
data provided by one or more sources. Because of the temporal aspect of the tracking
operation, the chronological appearance of the measurements is of prime importance. It
is looked at and usually considered by using a time stamp related to each measurement.
This time stamp indicates the time at which the measurement was collected. In many
applications, where most are concerned with multiple-sensor tracking, there is a time delay
between the instant at which the measurement is collected from the environment and the
instant at which it is received and processed by the tracking system. It may happen that
the delay is large enough so that a measurement at a given time arrives at the tracking
system after the target track has already been updated with one, or more, more recently
collected measurements. Such a delayed measurement is referred to as an Out-Of-Sequence
Measurement (OOSM).

So far, most of the existing solutions to this problem are based on retrodiction. The
latter uses backward prediction of the current estimated state in order to incorporate the
OOSMs at appropriate time instants. A new method to tackle the OOSMs problem is
suggested, without the need of backward prediction. It is based on forward prediction
and decorrelation, and it has proved to compare favorably to the best retrodiction-based
algorithms, while requiring, in most cases, less data storage. A pseudo-track (or a tracklet) is
created using the OOSM and track value at a time prior to the OOSM date. Before being
fused with the actual track, the created tracklet is predicted forward and de-correlated
from the actual track using a track decorrelation method similar to the information filter
approach. This new proposed method does not require the state transition matrix to be
invertible and provides optimal performance whether the measurements are regularly or
asynchronously spaced in time, and no matter if delays are anticipated or not.

Finally, in order to decide whether an OOSM should be processed or discarded, the impact
of missing measurements on the track accuracy should be evaluated. In short, the impact
depends on the process noise, the measurement noise, the state error covariance prior to
the OOSM, the sampling interval and the age of the missing measurement (the number of
measurement processed since the OOSM time). It is shown that there is a complex relation
between age of the missing measurement, process noise, measurement noise and impact of
a missing measurement on track accuracy.
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Sommaire

Out-of-sequence measurements filtering using forward prediction

F. Rhéaume , A. Benaskeur ; DRDC Valcartier TR 2005-485; Recherche et

Développement pour la Défence Canada – Valcartier; août 2007.

Le pistage de cibles dynamiques comporte une étape de traitement des mesures qui ras-
semble et traite les données fournies par une ou plusieurs sources. En raison de l’aspect
temporel de l’opération de pistage, l’ordre chronologique des mesures prend toute son im-
portance. Dans plusieurs applications, où la plupart sont à sources multiples, il peut y avoir
des délais entre l’instant où la mesure est effectuée dans l’environnement et l’instant où elle
est reçue et traitée par le système de pistage. Il se peut que le retard soit assez grand pour
qu’une mesure effectuée à un temps donné arrive au système de pistage après que la piste
d’une cible ait déjà été mise à jour avec une ou plusieurs mesures plus récentes. Une mesure
ainsi retardée est désignée sous le nom de Mesure Hors Séquence (MSH), tiré de l’anglais
“Out-Of-Sequence Measurements” (OOSM).

Jusqu’ici, la plupart des solutions à ce problème sont basées sur le concept de rétrodiction.
Cette méthode utilise la projection vers l’arrière de l’état courant estimé afin d’incorporer
les MHS. Une nouvelle méthode pour résoudre le problème des MHS est suggérée, laquelle
n’utilise pas de projection vers l’arrière dans le temps. Elle se base plutôt sur la prévision
vers l’avant et la dé-corrélation de l’information, et se compare favorablement aux meilleures
méthodes utilisant la rétrodiction, tout en exigeant la même capacité de mémoire, et dans
la plupart des cas, une capacité moindre. Une pseudo-piste (ou “tracklet”) est créée à partir
de la MHS et de l’estimation dans la piste à un temps précédant celui de la MHS. Avant
d’être fusionné avec la plus récente estimation dans la piste, la pseudo-piste créée est prédite
dans le temps et decorrélée de la plus récente estimation dans la piste par une méthode
de décorrélation similaire à celle par le filtre d’information (“information filter”). Aussi,
la méthode proposée n’exige pas que la matrice de transition d’état soit inversible et elle
fournit des résultats optimaux que les mesures soit synchrones ou asynchrones, et peut
fonctionner que les mesures hors séquences soient prévues ou non.

En conclusion, afin de déterminer si une MHS devrait être traitée ou simplement laissée de
côté, l’impact des mesures sur la qualité d’une piste devrait être évalué. En bref, l’impact
d’une mesure dépend du bruit de processus, du bruit dans les mesures, de la covariance de
l’erreur sur l’état estimé avant le temps du MHS, de l’intervalle de prélèvement de mesures
et de l’âge de la mesure hors séquence, qui est représenté par le nombre de mesures traitées
depuis le temps de la MHS.
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1 Introduction

The tracking of dynamic targets involves a measurement process that collects and pro-
cesses data provided by one or more sources. This tracking process aims at producing a
mathematical model of the time history for the target kinematics [22]. It uses the past
measurements to estimate the temporal equations of the observed state (track update) and
also to predict, in time, the state expected to be observed (track prediction). Because of the
temporal aspect of tracking operation, the chronological appearance of the measurements
is of prime importance to the estimation process. The measurements are usually considered
by using a time stamp related to each measurement. This time stamp indicates the time
at which the measurement was collected.

In many applications, where most are concerned with multiple-sensor tracking, there is a
time delay between the instant at which the measurement is collected from the environment
and the instant at which it is received and processed by the tracking system. Such a delay,
that may arise from many factors, such as the sensor diversity, communication delays and
unsteady pre-processing times of the observed data, depending on the system load, can
vary from one measurement to another. It may happen that the delay is large enough so
that a measurement taken at a time tτ arrives at the tracking system at a time td > tk,
that is after the target track has already been updated with one, or more, more recently
collected measurements. Such a delayed measurement is referred to as an Out-Of-Sequence
Measurement (OOSM) [2]. The problem of the OOSM comes to update the track corre-
sponding to the given target, at the current time td, using the older measurement from
time tτ , given that the track has already been updated by measurements collected after
time tτ . This problem is also referred to as the problem of tracking with random sampling
and delays [15] or negative-time measurement update [2].

A direct solution to the OOSM problem is simply to ignore and discard the OOSM in the
tracking process. This solution leads obviously to a loss of the information contained in the
discarded OOSM. To avoid such a drawback, a simple alternative consists in reprocessing,
in chronological order, all measurements that are collected from the OOSM time tτ to the
time td [7]. This solution yields optimal track quality. Nevertheless, it is inefficient because
of its high computation and storage requirements. In most cases, it is even unfeasible since
most tracking systems keep only the current state estimate and the corresponding error
covariance matrix.

Several methods have been proposed in the literature to deal more efficiently with the
OOSM problem. Most of these methods are based on backward prediction of the current
state to incorporate the OOSMs, also referred to as retrodiction approach [3, 6, 2, 7, 21, 15,
11, 9, 16, 19, 25, 18, 17]. All the retrodiction-based methods vary in how the process noise
is accounted for during the retrodiction. The suggested methods in [7, 21, 15] compensate
partially for the process noise, or simply ignore it. The major difficulty here is that there is a
strong dependency between the retrodicted process noise and the current state in backward
prediction.

In this report, a new method that does not rely on retrodiction is proposed. The main idea

DRDC Valcartier TR 2005-485 1



consists in combining forward prediction with track decorrelation, as used in the information
filter approach [12], to optimally incorporate the OOSMs. This is why the method is
referred to as Forward-Prediction Fusion and Decorrelation (FPFD). The proposed method
has proved to provide performance that compares favorably to the best retrodiction-based
algorithms, while requiring, in most cases, less data storage.

This report is organized as follows. The problem of OOSMs is stated in Chapter 2. In
Chapter 3 are discussed the retrodiction-based methods. Before addressing the OOSM
solution, a study of the impact of missing measurements on tracks is presented in Chapter 4.
Then the proposed FPFD approach is described in Chapter 5. In Chapter 6, comparison
results and performance discussion of the FPFD method are provided. Finally, concluding
remarks about the proposed method are given in Chapter 7.

2 DRDC Valcartier TR 2005-485



2 Problem statement

The dynamical model of the target of interest is assumed to be

x(k) = F (k, k − 1)x(k − 1) + υ(k, k − 1) (1)

with F (k, k − 1) the state transition matrix from time tk−1 to time tk and υ(k, k − 1)
represents the effect of the process noise from time tk−1 to time tk. The measurement
model is

z(k) = H(k)x(k) + ω(k) (2)

where H(k) is the measurement matrix and ω(k) is the measurement noise. The process
noise υ(k, k − 1) and the measurement noise ω(k) are assumed to be white with zero mean
and covariance matrices Q(k, k − 1) and R(k), respectively. Details on F (k, k − 1) and
Q(k, k − 1) are given in Section A. Also, note that throughout this work the continuous
time representation of a discrete time i is noted ti.

: Measurements Updates

: OOSM

: Prediction

z(τ)
h

time -

discrete
τ k d

delay

time -

continuous
tτ tk td

Figure 1: Out-of-sequence measurement

The role of the tracking system is to update the target track composed of a state estimate
x̂ and an estimation error covariance matrix P . It is assumed that a measurement z
is collected and used to update the track at the time interval h. At time tk, the tracking
system computes the state estimate x̂(k|k) and its corresponding estimated error covariance
matrix P (k|k)

x̂(k|k) = E

[

x(k)

∣

∣

∣

∣

Zk

]

(3)

P (k|k) = cov

[

x(k)

∣

∣

∣

∣

Zk

]

(4)
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where Zk corresponds to the measurement sequence up to time instant tk, excluding a
measurement z(τ) with a time stamp tτ < tk, as shown in Figure 1. Once z(τ) arrives at
the processing center, with a certain delay, the problem comes to calculate x̂(k|k, τ) and
P (k|k, τ) that take into consideration the OOSM z(τ), as shown below.

x̂(k|k, τ) = E

[

x(k)

∣

∣

∣

∣

Zk, z(τ)

]

(5)

P (k|k, τ) = cov

[

x(k)

∣

∣

∣

∣

Zk, z(τ)

]

(6)

Furthermore, depending on the delay time τ , an OOSM can have different step lag values.
Then, a l-step lag OOSM is defined as an OOSM for which

l = k − τ (7)
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3 Backward prediction methods

A widely used approach to tackle the problem of OOSMs in tracking is based on the
“prediction” of the state estimate back to the time of the delayed measurement. Depending
on the authors, this approach may be referred to as retrodiction, backward prediction
or reverse-time prediction. It sums up to predict the track from the last update time k
backward to the time τ of the OOSM, and then update the track using the OOSM and
then predict forward from time instant τ to time instant k.

Various retrodiction methods have been presented in the literature recently [3, 6, 2, 7, 21,
15, 11, 9, 16, 19, 25, 18, 17]. In [2], a retrodiction method is suggested, which is presented as
an exact solution compared to those in [7, 21, 15], insofar as the process noise is accounted
for entirely during the retrodiction. This solution has proved to give optimal results for
the case where the OOSM lies between the last two measurements, which is also called the
1-step lag case. The problem with this algorithm, compared to those presented in [21, 15],
where the process noise in the retrodiction process is only partially compensated for, is
that it requires storage of the innovation. The optimal approach described in [2] and the
suboptimal approaches in [21, 15] were extended in [3] to the case of an OOSM with an
arbitrary lag, that is an OOSM whose time stamp can be earlier than the last sampling
interval. The approach in [3] for an arbitrary lag, which was originally presented in [6],
uses an equivalent measurement concept. This concept was first presented in [13, 14]. The
equivalent measurement combines together all the measurements that are more recent than
the OOSM. This concept was used to extend the algorithms in [2], the optimal and the
suboptimal, to the case of an n-step lag OOSM. The authors concluded in [3] that the
suboptimal algorithm, which ignores the retrodicted noise, is a good compromise between
accuracy and cost.

All of the above-discussed retrodiction-based methods have some advantages and some
drawbacks. The optimal solutions presented in [19, 25] require a large storage capacity
compared to other suboptimal OOSM methods. The equivalent measurement concept with
backward prediction presented in [3] also necessitates a considerable amount of data stor-
age. Even in the case where the retrodicted noise is ignored, covariance of the equivalent
innovation needs to be computed. This requires storage of the error covariance matrices
corresponding to the state estimates based on all measurement time stamps that are sub-
sequent to the OOSM. The same applies to the Augmented State Kalman Filter method
presented in [9], which also uses equivalent measurements.

DRDC Valcartier TR 2005-485 5



4 Impact of missing measurements on track quality

In the presence of OOSMs, an interesting issue concerns the evaluation of the accuracy
that is gained or lost whether a track has a measurement update or not. In other words,
it should be determined how useful is the inclusion of an OOSM to the current estimate,
in order to decide whether the OOSM should be included or discarded. To answer that
question, the impact of a particular measurement on track accuracy must be determined.
In [20], it is suggested that the decision to include or not an OOSM should be based on a
utility measure of the measurement. Here are studied the factors that influence the impact
of missing measurements on track accuracy. The study separates in two cases: the 0-step
miss case and the multi-step miss case. Figure 2 shows both cases, where the 1-step and
2-step miss cases corresponds to the multi-step case. It will be shown that the impact
of missing measurements on track quality is influenced differently depending wheth-er the
miss is 0-step or multi-step.

No miss P̂ (k)

: Measurement
0-step miss P̂ψ0(k)

: Prediction

1-step miss

2-step miss

Missing

measurement
:P̂ψ1(k)

P̂ψ2(k)

k - 3 k - 2 k - 1 k

Figure 2: Track comparison between no miss, miss at current time (0-step lag), 1-step lag,
2-step lag and 3-step lag. All tracks originate from the same one prior to time k − 3.

4.1 Factors

There are some different factors that determine the degree of the impact of missing mea-
surements on the track accuracy. With dynamic processes, the most obvious one is the age
of the missing measurement, in that older missing measurements should have less impact
on the track accuracy than the newer ones. The influence of age can be explained by the
Kalman filter recursiveness. Therefore, the age of a measurement is determined by the
number of subsequent measurements. The degree of impact should also be related in some
way to the process noise, the measurement noise, the state estimated error covariance prior
to the time of the missing measurement, and the sampling interval.

Suppose that at time k−1 a track has a related estimated error covariance matrix P (k−1).
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Here P will be referred to as the estimated covariance matrix of the track that would have
had all the measurements, while Pψ will be defined as the estimated covariance matrix of
the track that misses the measurement. Furthermore, in order to simplify calculations, let
define the measurement error covariance matrix in terms of a unique measurement error
covariance σ2

R for all of the space dimensions

R = σ2
RI (8)

Also,
Υ = ΓΓT (9)

where Γ is the process noise gain matrix such that

Q = σ2
υΥ (10)

and where σ2
υ is the process noise variance. Finally, let us have

ζ = [HTH]−1 (11)

where H is the measurement matrix.

0-step miss

The 0-step miss case is the one where a measurement is missing at the current update time
k. In that case, the last measurement inclusion happened before the missing measurement
time.

Suppose that at time k, a measurement update is scheduled, given that a measurement is
available. In the case where the measurement is available (No miss case in Figure 2), the
track accuracy expressed in the information space is

P (k)−1 =

[

FP (k − 1)F T + σ2
υΥ

]

−1

+

[

σ2
Rζ

]

−1

(12)

In the case where the measurement at time k is missing (0-step lag case in Figure 2), there
is no measurement update at time k and the track accuracy is only defined by the filter
prediction

P (k)−1

ψ =

[

FP (k − 1)F T + σ2
υΥ

]

−1

(13)

According to (12) and (13), the ratio of the track estimated error covariance without a
measurement update at time k (P (k)ψ) to the track estimated error covariance with a
measurement update at time k (P (k)) is:

PψP−1

∣

∣

∣

∣

k

=

[

FP (k − 1)F T + σ2
υΥ

](

[

FP (k − 1)F T + σ2
υΥ

]

−1
+

[

σ2
Rζ

]

−1

)

(14)

= I + FP (k − 1)F Tσ−2

R ζ−1 + σ2
υσ

−2

R Υζ−1 (15)

According to (15), the impact of a 0-step missing measurement on the track accuracy is
influenced by
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1. σ2
υσ

−2

R , which represents the ratio of the process noise variance to the measurement
noise variance.

2. FP (k − 1)F Tσ−2

R , which involves the transition matrix and the estimated error co-
variance at time k − 1 and the measurement noise variance.

To have a more explicit analysis of the factors that influence the impact of a 0-step missing
measurements on track accuracy, assume the following 1-dimension constant velocity model
with white noise acceleration

x(k + 1) = Fx(k) + Γυ(k) (16)

where

F =

[

1 h
0 0

]

(17)

and

Γ =

[

h2/2
h

]

(18)

and where h is the sampling interval time. The process noise covariance matrix is

Q = σ2
υ

[

h4/4 h3/2
h3/2 h2

]

(19)

Also, let P (k − 1) be defined as

P (k − 1) =

[

σ2
x σ2

xẋ

σ2
xẋ σ2

ẋẋ

]

(20)

According to that, in the case where a measurement update occurs at time k, the position
error variance σ2

x(k) at time k is

σ2
x(k) =

[

(σ2
x + 2σ2

xẋh + σ2
ẋẋ +

1

4
σ2
υh

4)−1 + σ−2

R

]

−1

(21)

where σ2
R is the measurement variance. In the case where a measurement update does not

occur at time k, the position error variance σ2
xψ

(k) at time k is

σ2
xψ

(k) = σ2
x + 2σ2

xẋh + σ2
ẋẋ +

1

4
σ2
υh

4 (22)

Using (21) and (22), the ratio of the position estimated error variance with a measurement
update at time k to the position estimated error variance without a measurement update
at time k is

σ2
xψ

σ2
x

∣

∣

∣

∣

k

= 1 +
σ2
x + 2σ2

xẋh + σ2
ẋẋh

2 + 1

4
σ2
υh

4

σ2
R

(23)

Equation (23) shows the influence of σ2
υ, σ2

R and h as well as the state error covariances
σ2
x,σ

2
xẋ and σ2

ẋẋ. Note that
σ2
xψ

(k)

σ2
x(k)

> 1 (24)

for the 0-step lag case shown in Figure 2.

Therefore, according to the above analysis, it follows that
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1. The higher συ/σR is, and

2. the higher the initial estimated error covariance is,

the more a 0-step missing measurement will have an impact on the track accuracy.

Multi-step miss

The multi-step miss case is the one where a measurement has been missing and where new
measurements have been included since then. In that case, the last measurement inclusion
happened after the missing measurement time. Unlike the 0-step miss case and because the
last measurement inclusion happened after the missing measurement time, it is believed that
the συ/σR ratio will not have the same impact on track accuracy. Because of the recursive
nature of the Kalman filter, this multi-step miss case will not be developed analytically (see
Section B for some brief analysis). Rather, it will be studied quantitatively in Section 4.2.
It will also be shown that the later the missing measurement occurs in the track update
sequence, the more its impact over track accuracy.

4.2 Quantitative analysis

Tests were made to quantify how συ, σR and age of the missing measurement influence the
track estimated error covariances. The 0-step miss case and the multi-step miss case are
presented.

The impact of a missing measurement on track accuracy is measured in terms of the deter-
minant ratio (DR), defined as follows

DR(l) =
det(Pψl(k))

det(P (k))
(25)

The determinant ratio is a way to compare the estimated error covariance matrix of the
track that misses a measurement (Pψl(k)) with the estimated error covariance matrix of
the track that does not miss the measurement (P (k)) [23]. Note that Pψl(k) refers to the
state estimated covariance matrix at time k for which a measurement is missing at time
k − l, as shown in Figure 2. l expresses the age of the missing measurement, or its lag,
defined as the number of update intervals passed since the missing measurement time and
up to the current time. DR is always greater than 1, and as DR approaches 1, the missing
measurements have less impact on the track accuracy.

0-step miss

With the 0-step miss case, the impact of a missing measurement over track accuracy is
expected to increase as the ratio συ/σR increases. Tests made with different συ/σR values
verify this statement, as shows Table 1. In fact, for a noise ratio συ/σR of 0.02, the DR is
about 2. This represents a relatively small impact compared with the case of συ/σR = 50
and where the DR is about 513950. Thus track uncertainty of tracks that misses the last
measurement is much more high for high συ/σR ratios than for low ones.
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συ/σR DR

.02 2.0

.1 2.5
1 16.0
10 2206.9
50 513950.6

Table 1: DR for the 0-step miss case and for different noise ratio values (συ/σR)

Multi-step miss

With the multi-step miss case, the impact of a missing measurement over track accuracy
varies depending on συ/σR, although it is hard to find the relation between συ/σR and the
impact. A more extensive study would be needed.

Anyhow, Table 2 shows that there are συ/σR values for which the impact is not negligible
even for higher step misses. With low συ/σR ratios we have DR > 1 even for 4-step, 5-
step and 6-step missing measurement. For example, with συ/σR = 0.005 and with a 5-step
missing measurement the determinant ratio is 1.19. Low συ/σR ratios have less impact than
high συ/σR ratios for the small step miss cases (such as 3-step, 2-step and 1-step missing
measurements). As the number of steps increases, it seems that the more συ/σR gets close
to 1, the less is the impact of the missing measurement over track accuracy. Figure 3
illustrates the variation of DR for different συ/σR values and for different step misses.

l 6 5 4 3 2 1 0

.005 1.225 1.191 1.193 1.231 1.312 1.448 1.665

.02 1.164 1.154 1.173 1.221 1.307 1.447 1.669

.1 1.046 1.074 1.117 1.179 1.274 1.433 1.743
συ/σR 1 1.000 1.001 1.003 1.009 1.058 1.320 2.142

10 1.000 1.000 1.002 1.011 1.077 1.600 10.023
50 1.981 2.413 3.178 4.699 8.359 21.084 146.121

Table 2: DR for different miss lags and different noise ratio values (συ/σR)

From the above discussion, and from the results of Tables 1 and 2, the following conclusions
can be drawn with respect to the impact of the missing measurements on track accuracy.

First, in terms of track accuracy it is always better to include a measurement than discarding
it if the measurement accuracy does not change through time. Still, the impact on track
accuracy can variate depending on several parameters, that include the συ/σR ratio, the
initial estimated error covariance, the sampling interval h, and the missing measurement
lag l. From the results shown in Tables 1 and 2, there is an evidence that there may be
situations where older measurements have a non-negligible impact on track accuracy. The
impact is not the same depending on the age of the missing measurement.
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Figure 3: DR for different miss lags and different noise ratio values (συ/σR)

Based on these remarks and following a more extensive study, the συ/σR ratio could be
used to decide whether an OOSM should be discarded or not, depending on its predicted
impact on track accuracy. Moreover, the decision to reject or not an OOSM may ultimately
be based on computation and memory requirements. Chapter 5 presents an new algorithm
that reduces the memory requirements for the inclusion of OOSMs.
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5 Forward-Prediction Fusion and Decorrelation

The Forward-Prediction Fusion and Decorrelation (FPFD) method, proposed in this docu-
ment, uses a decorrelation technique originally presented in [12] and exploited in the infor-
mation filter used for track-to-track fusion. A forward predicted version of a tracklet that
uses the OOSM is fused with the current track using the information form of the Kalman
Filter. A tracklet is used, instead of a complete track, to remove the correlation between
the two pieces of information and created by their common history. Such a decorrelation
aims at making the OOSM-based tracklet independent of the current track.

5.1 Algorithm

At time k, before the OOSM is processed, the state estimate and its error covariance matrix
are represented by x̂(k|k) and P (k|k) respectively. As shown in Figure 4, the OOSM is
predicted forwards up to time k in order to incorporate the OOSM z(τ) into the current
state estimate x̂(k|k). This requires knowledge of the state estimate at a time tb < tτ .

The forward predicted OOSM x̂(k|τ)∗ and the corresponding covariance matrix P (k|τ)∗ are
used to update the track x̂(k|k),P (k|k) at time k. The goal is to have a forward predicted
OOSM x̂(k|τ)∗ and its covariance matrix P (k|τ)∗ such that the state estimate obtained
by using the forward predicted OOSM will be the same as when all the measurements
(including the OOSM) are processed sequentially. This requires independence of x̂(k|τ)∗

and x̂(k|k). Consequently, the covariance update for the forward predicted OOSM is given
by

P−1(k|k)∗ = P−1(k|k) + P−1(k|τ)∗ (26)

= P−1(k|k, τ) (27)

where P−1(k|k, τ) represents the inverse of the covariance matrix after the OOSM has
been included and P−1(k|k)∗ represents the inverse of the covariance matrix of the state
estimate x̂(k|k)∗. x̂(k|k)∗ results from the in-sequence reprocessing of all the measurements
(including the OOSM).

Equation (26) represents the optimal solution where x̂(k|τ)∗ and x̂(k|k) are independent.
The followings will show our approach to get x̂(k|τ)∗.

Let us consider a forward predicted OOSM x̂(k|τ)Ψ and its covariance matrix P (k|τ)Ψ.
These are given based on the state estimate x̂(b), with tb < tτ , and the corresponding error
covariance matrix P (b)

P (τ |b) = F (τ, b)P (b)F (τ, b)T + Q(τ, b) (28)

P−1(τ |τ)Ψ = P−1(τ |b) + H(τ)TR−1(τ)H(τ) (29)

P (k|τ)Ψ = F (k, τ)P (τ |τ)ΨF (k, τ)T + Q(k, τ) (30)
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and

x̂(τ |b) = F (τ, b)x̂(b) (31)

P−1(τ |τ)Ψx̂(τ |τ)Ψ = P−1(τ |b)x̂(τ |b) + H(τ)TR−1(τ)z(τ) (32)

x̂(k|τ)Ψ = F (k, τ)x̂(τ |τ)Ψ (33)

where F (j, i) represents the state transition matrix from time ti to time tj and Q(j, i) is
the process noise error covariance matrix for the time interval [ti, tj ].

x̂(k|τ)Ψ and x̂(k|k) are correlated since they share the same history (i.e., x̂(b)) and both
rely on the same prediction model between tb to tk. To have fusion of independent pieces of
information, the redundant information between the forward predicted OOSM x̂(k|τ)Ψ and
the state estimate x̂(k|k) must be removed. Let this redundant information be represented
by the forward prediction of the state estimate x̂(b) from time tb to tk, denoted x̂(k|b). The
prediction of the state estimate from time tb to tk and the corresponding error covariance
matrix are given by

x̂(k|b) = F (k, b)x̂(b) (34)

P (k|b) = F (k, b)P (b)F (k, b)T + Q(k, b) (35)

Using the information form [12], the de-correlation of the forward predicted OOSM x̂(τ |b)
from the state estimate x̂(k|b) is given by

P−1(k|τ)∗ = P−1(k|τ)Ψ − P−1(k|b) (36)

P−1(k|τ)∗x̂(k|τ)∗ = P−1(k|τ)Ψx̂(k|τ)Ψ − P−1(k|b)x̂(k|b) (37)

where x̂(k|τ)∗ is the resulting de-correlated measurement and P (k|τ)∗ is its corresponding
covariance matrix.

Finally, the current state estimate x̂(k|k) is updated with the forward predicted OOSM
x̂(k|τ)∗. Using the information fusion form as in (26), the covariance update for the forward
predicted OOSM is

P−1(k|k, τ) = P−1(k|k) + P−1(k|τ)∗ (38)

and the state update is

P−1(k|k, τ)x̂(k|k, τ) = P−1(k|k)x̂(k|k) + P−1(k|τ)∗x̂(k|τ)∗. (39)

5.2 Impact of the correlation between the process noise and the

current state

An OOSM algorithm is optimal if it performs exactly as the in-sequence measurements
reprocessing method. In order to have the FPFD method optimal, the fusion of the forward
predicted OOSM x̂(k|τ)∗ at time tk must be equivalent to the fusion of the OOSM z(τ) at
time tτ .
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When no measurements have contributed to the state estimate between ]tb, tτ [ and ]tτ , tk[,
the FPFD method is optimal. This corresponds to the 1-step lag OOSM case. The opti-
mality comes from the fact there is no correlation between the process noise and the state
estimate over the intervals ]tb, tτ [ and ]tτ , tk[:

E

[

x̂(τ |b)υ(τ, b)T
]

= 0, if Zτ−1

b+1
= {∅}, (40)

E

[

x̂(k|τ)υ(k, τ)T
]

= 0, if Zk−1
τ+1 = {∅}, (41)

where Zτ−1

b+1
and Zk−1

τ+1 are the cumulative sets of measurements from time tb+1 to time tτ−1

and from time tτ+1 to time tk−1 respectively. In that case the estimation of the state x

over the intervals ]tb, tτ [ and ]tτ , tk[ uses forward prediction only, so that it does not depend
on the process noise. Then, the forward prediction of the OOSM z(τ) provides an optimal
fusion since the process noise does not influence the state estimate x̂ between ]tb, tτ [ and
]tτ , tk[.

However, when there are one or more measurements between ]tb, tτ [ or between ]tτ , tk[, there
is some correlation between the process noise and the state estimates for the corresponding
intervals ]tb, tτ [ or ]tτ , tk[. This corresponds to the multiple-step lag OOSM case.

E

[

x̂(j|j)υ(j, j − 1)T
]

6= 0, if ∃z(j), (42)

with
j = b + 1, . . . , τ

or
j = τ + 1, . . . , k

and where x̂(j|j) has been updated with measurement z(j). Equations (1) and (2) demon-
strate that z(j) depends on x(j), and that x(j) depends on υ(j, j − 1). Therefore x̂(j|j)
and υ(j, j − 1) are correlated since x̂(j|j) has been updated with z(j).

The estimation of the state x over the intervals ]tb, tτ [ and ]tτ , tk[ depends on the measure-
ments Zτ−1

b+1
and Zk−1

τ+1 and on the forward prediction model. Therefore the state estimate x̂

over the intervals ]tb, tτ [ and ]tτ , tk[ does depend on the process noise cumulated over ]tb, tτ [
and ]tτ , tk[. This correlation between the process noise and the state estimate is not taken
into account by x̂(k|τ)∗. Hence, the fusion of x̂(k|τ)∗ and x̂(k|k) is not optimal when there
are one or more measurements between ]tb, tτ [ or between ]tτ , tk[.

Let e be the discrepancy caused by ignoring the process noise in x̂(k|τ)∗ and E be its
corresponding covariance matrix. As a comparison with the optimal case shown in (26) and
according to e and E, we have

P−1(k|k)∗ = P−1(k|k) + P−1(k|τ)∗ + E−1 (43)

= P−1(k|k, τ) (44)
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and

P−1(k|k)∗x̂(k|k)∗ =P−1(k|k)x̂(k|k) + P−1(k|τ)∗x̂(k|τ)∗

+ E−1e (45)

=P−1(k|k, τ)x̂(k|k, τ). (46)

Note that the equivalent measurement retrodiction solution presented in [3] faces the same
correlation problem for multiple-step lag OOSMs.

5.3 Data storage

Data storage may be a relevant issue depending on the storage capacity available in a
tracking system. The storage requirements of the retrodiction-based algorithms Al1 and
Bl1 from [3], as well as of the optimal algorithm presented in [25], will be compared with
the storage requirements of algorithm FPFD.

As mentioned in [3], all OOSM algorithms necessitate, at least, the storage of the following
data: i) a scalar for the time stamp of the next update; ii) n scalars for the state estimate;
and iii) n(n + 1)/2 scalars for the covariance of the state estimate. Furthermore, algorithm
FPFD requires; i) a scalar for the time stamp tb associated with track x̂(b), P (b); ii) n
scalars for the state estimate x̂(b) held in memory at time instant tb; iii) n(n + 1)/2 scalars
for the covariance P (b) of the state estimate.

Based on the numbers given above, algorithm FPFD requires a storage of n2+3n+2 scalars.
Because the delay of an OOSM cannot be predicted in advance, a maximum number of lags
lmax needs to be determined. This maximum number of lags lmax has a direct impact on
the storage requirements of the retrodiction-based algorithms. As shown below, the storage
requirements for the FPFD approach do not depend on lmax

1. Some details about the
storage requirements for algorithms Al1 and Bl1 are provided in [3]. The total number of
scalars stored for each OOSM algorithm is given below

FPFD : n2 + 3n + 2 (47)

Al1 :

[

lmax + 1

2

]

(n2 + 3n + 2) (48)

Bl1 :

[

lmax + 1

2

]

(n2 + 3n + 2) − nlmax (49)

The data storage requirements of the FPFD, Al1 and Bl1 algorithms are less than those of
the optimal algorithm presented in [25], which requires at least2

[

4lmax − 1

2

]

n2 +

[

8lmax − 1

2

]

n + lmax (50)

1Although the storage requirements of algorithm FPFD do not depend on a predetermined maximum
number of lags lmax, its performance in terms of track accuracy does depend on lmax. This is discussed in
Section 5.4.

2Data storage requirements for Case I : Perfect knowledge about τ at time j + 1 in [25].
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scalars.

Table 3 shows the data storage requirements in terms of lmax for a state vector of 4 dimen-
sions.

lmax 1 2 3 4

FPFD 30 30 30 30
Al1 30 45 60 75
Bl1 26 37 48 59
Algorithm I in [25] 39 88 137 186

Table 3: Number of scalars needed to be stored in terms of lmax and for a state vector of 4
dimensions

5.4 Determination of the storage time of the state estimate

Algorithm FPFD requires the storage of the state estimate and its covariance matrix at a
time tb < tτ . Depending on the context of the tracking application, different approaches
can be used to determine the storage time tb of the state estimate. For example, in the
case where the sampling rate is constant, the estimate can be stored in memory after each
measurement update and up until an anticipated measurement update is missed due to
a delay (of the OOSM). This would ensure that the estimate is always stored at a time
tb < tτ , with tb = tτ − h.

Last track storage Next track storage

h

B

tτ tktb

Figure 5: Case where the storage time tb of the state estimate is determined according to
a time interval of length B. The state estimate and its covariance matrix are stored in
memory after each time interval of length B, where B > h.

In a more general case, the state estimate could be stored in memory after each time interval
of length B, where B > h. In that case the storage time tb of the state estimate changes after
each time interval of length B, as illustrated in Figure 5. B corresponds to the maximum
number of lags lmax that are taken into consideration. Note that the state estimate is not
stored at the time of the OOSM tτ .
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The value of B has some influence on the performance of algorithm FPFD. On average, the
performance will deteriorate as B increases. More exactly, the performance deteriorates as
the difference tτ − tb increases, where we have

max(tτ − tb) = B (51)

The deterioration of the performance for increasing tτ−tb differences is due to the correlation
between the process noise and the current state, as discussed in Section 5.2.

5.5 Data association

Faced with the problem of data association and OOSM, the most straightforward but costly
solution is to include the OOSM by reprocessing in chronological order all the measurements
that happened after the OOSM time. Besides its computational cost, this method works
with any data association algorithm. With more efficient OOSM algorithms that do not
reprocess the sequence of the past measurements, and therefore do not store the past mea-
surements, data association becomes a more complicated problem. Some methods use the
probabilistic data association filter (PDAF) [10, 24], but they require some large amount of
storage and processing. PDAF could be used jointly with the FPFD method, though this
will not be investigated in this work. In short the approach would come down to save all
tracks at tW , predict up to the OOSM time, compute the association weight of the OOSM
for each track, update the tracks with the OOSM, predict the tracks up to the current
time, fuse and decorrelate the same way as described in equations (34) to (39). Note that
this method, that combines PDAF and FPFD, would not yield optimal results since PDAF
normally requires the innovation for all pairs of measurements and tracks. Besides PDAF,
one of the most widely used multi-target tracking and data association approach is the
multiple hypotheses tracking algorithm (MHT) [1, 7]. The combination of FPFD and MHT
has not been studied, and it looks to be a very challenging problem. As more, no solution
have been presented yet in the literature that combines MHT and an OOSM algorithm.
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6 Results and discussion

To demonstrate the performance of the FPFD method, the latter is compared with the
retrodiction-based algorithms presented in [2, 3]. The results reported therein are compared
with those yielded by the FPFD method, using the same test scenarios. First, a scenario
with a delayed measurement whose time stamp is within the last sampling interval (Example
2 of [2]) is presented. It will be referred to as the 1-step lag scenario. Afterward, we present
a multiple-step lag scenario that is identical to the one used in [3]. This scenario considers
the case of delayed measurements whose time stamps are within one or more sampling
intervals. Finally, we simulate three OOSM scenarios with 2D nonlinear measurement
model and sensor communication delays. The three scenarios are similar to some of the
real-world examples presented in [3]. In order to preserve symmetry of the covariance
matrices, the Joseph form is used for the covariance update [8]. Also, the storage of the
state estimate for algorithm FPFD is made such that tb = tτ − h, except for the results
shown in Tables 14 and 15, where different values of the storage interval B are tested.

6.1 1-step lag scenario

The considered scenario (from [2]) uses a discrete-time dynamical system with three different
values for the continuous time process noise variance (q = 0.5, 1, 4). The state equation is
given by

x(k) =

[

1 h
0 1

]

x(k − 1) + υ(k, k − 1) (52)

where h is the sampling interval, and where the process noise υ(k, k − 1) is assumed white
with a zero mean and a covariance matrix

E

[

υ(k, k − 1)υ(k, k − 1)′
]

= q

[

h3/3 h2/2
h2/2 h

]

= Q (53)

The measurement z(k) of the state x(k) is given by

z(k) =
[

1 0
]

x(k) + w(k) (54)

where w(k) is white measurement noise, with a zero mean and a covariance matrix

E

[

w(k)2
]

= R = 1. (55)

The estimation starts at time k = 1, with initial covariance matrix

P (1|1) =

[

R R/h
R/h 2R/h2

]

. (56)

An OOSM with time stamp τ = 1.5 has to be processed at time k = 2.

Based on the above-described scenario, the FPFD method is compared with the in-sequence
measurements reprocessing method (In-seq), OOSM discarding, and with the algorithms3

3Algorithm A is also referred to as the “Y-algorithm” in [10].
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A, B, and C from [2]. Algorithm A is referred to as the optimal retrodiction algorithm in
that it accounts entirely for the process noise. Algorithms B and C are called suboptimal
retrodiction algorithms since they ignore the retrodicted noise. Algorithm C is a simpler
version of algorithm B. Furthermore, the in-sequence measurement reprocessing method
is the simple approach that reprocesses all the past measurements chronologically starting
from the OOSM time. It provides the optimal solution4). The discard approach simply
ignores the OOSM.

1. Performance — As shown in Table 4, algorithm A and FPFD are both optimal since
they yield the same P̂ (k|k, τ) as the in-sequence measurements reprocessing method.
This applies for different values of the process noise. Table 5 shows that discarding
the OOSM has a significant impact on the track quality, since the trace of P̂ (k|k, τ)
is 6.1% to 18.4% higher than in the case of the optimal methods.

q 4 1 0.5

In-Seq

[

.6825 .7396

.7396 2.5725

] [

.6248 .5018

.5018 1.0539

] [

.6129 .4526

.4526 .7626

]

Discard

[

.8636 .6818

.6818 2.5909

] [

.8421 .5526

.5526 1.0658

] [

.8378 .5270

.5270 .7872

]

FPFD

[

.6825 .7396

.7396 2.5725

] [

.6248 .5018

.5018 1.0539

] [

.6129 .4526

.4526 .7626

]

A

[

.6825 .7396

.7396 2.5725

] [

.6248 .5018

.5018 1.0539

] [

.6129 .4526

.4526 .7626

]

B

[

.6826 .7396

.7396 2.5725

] [

.6249 .5018

.5018 1.0539

] [

.6129 .4526

.4526 .7626

]

C

[

.7143 .8571

.8571 2.3851

] [

.6364 .5455

.5455 1.0655

] [

.6190 .4762

.4762 .7754

]

Table 4: Covariance matrices for different process noise (1-step lag scenario)

For further comparison, the actual Mean Square Error (MSE) was also computed
through 10000 Monte Carlo runs. The results are summarized in Table 6, where, as
a further demonstration of their optimality, the MSE of algorithm FPFD and that of
algorithm A are equal to the MSE yielded by in-sequence measurements reprocessing.

4Note that algorithm Zl presented in [25, 17] also provides an optimal solution for the general l-step lag
case. However, its storage requirements is high compared to the other sub-optimal OOSM algorithm (see
Table 3)
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q 4 1 0.5

In-Seq 3.2550 1.6787 1.3754
Discard 3.4545 (6.1%) 1.9079 (13.7%) 1.6250 (18.4%)
FPFD 3.2550 (0%) 1.6787 (0%) 1.3754 (0%)
A 3.2550 (0%) 1.6787 (0%) 1.3754 (0%)
B 3.2551 (.003%) 1.6787 (0%) 1.3754 (0%)
C 3.0994 (-4.8%) 1.7019 (1.4%) 1.3944 (1.4%)

Table 5: Trace of covariance matrices and relative deviation with respect to the
optimal (1-step lag scenario)

q 4 1 0.5

In-Seq

[

.6895 .7684

.7684 2.5937

] [

.6274 .5327

.5327 1.1257

] [

.6192 .4704

.4704 .8063

]

Discard

[

.8571 .6988

.6988 2.6211

] [

.8494 .5868

.5868 1.1389

] [

.8565 .5416

.5416 .8273

]

FPFD

[

.6895 .7684

.7684 2.5937

] [

.6274 .5327

.5327 1.1257

] [

.6192 .4704

.4704 .8063

]

A

[

.6895 .7684

.7684 2.5937

] [

.6274 .5327

.5327 1.1257

] [

.6192 .4704

.4704 .8063

]

Table 6: MSE for 10000 Monte Carlo runs (1-step lag scenario)
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2. Cost — In terms of track quality, the FPFD method was proved, based on the above
results, to be as optimal as method A. Algorithms FPFD and A provided a similar
performance, both in terms of MSE and estimation error covariance estimation. For
the cost associated with data storage, and for lmax = 1, equations (47) to (49) lead to
identical requirements for algorithms FPFD and A (i.e., n2 +3n+2) and less storage
requirement for algorithm B (i.e., n2 +2n+2). The counterpart of this lower cost for
algorithm B is its lower performance in terms of tracking quality, as shown in Tables 4
to 6.

6.2 Multiple-step lag scenario

A dynamic system, identical to the one used in [3], is considered with three different OOSM
lags l = 1, 2, 3. The system behavior is similar to the 1-step lag case, where the dynamics
are given by (52) and (53), except that here both position and velocity are measured. The
measurement equation is then

z(k) =

[

1 0
0 1

]

x(k) + w(k) (57)

where w(k) has an error covariance matrix

R =

[

1 0
0 0.1

]

. (58)

The filter is initiated at t0 = 0, with

x̂(0|0) = z(0), P (0|0) = R (59)

and ends up at t4 = 4s. The three OOSM lags l = 1, 2, 3 correspond to times τ = 1.5s, 2.5s,
and 3.5s, as illustrated in Figure 6.

Figure 6: OOSM with three different lags l = 1, 2, 3

The in-sequence measurements reprocessing method, algorithm Al1, algorithm5 Bl1, the
OOSM discard solution, and algorithm FPFD are all compared. Algorithms Al1 and Bl1
are the l-step lag extensions to the 1-step lag algorithms A and B presented in [2], respec-
tively. They both use an equivalent measurement concept originally presented in [6].

5Bl1 is the one-step equivalent measurement version of the “M-algorithm” defined in [16].
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Lag 1 2 3

In-Seq

[

.2287 .0225

.0225 .0759

] [

.2597 .0381

.0381 .0832

] [

.2854 .0387

.0387 .0833

]

FPFD

[

.2287 .0225

.0225 .0759

] [

.2563 .0372

.0372 .0827

] [

.2906 .0403

.0403 .0827

]

Al1

[

.2287 .0225

.0225 .0759

] [

.2563 .0372

.0372 .0827

] [

.2906 .0403

.0403 .0827

]

Bl1

[

.2330 .0254

.0254 .0779

] [

.2667 .0389

.0389 .0830

] [

.2955 .0403

.0403 .0828

]

Discard

[

.3142 .0370

.0370 .0834

]

Table 7: Covariance matrices for different lag values (l-step lag scenario), q = 0.5

1. Performance — As shown in Tables 7 and 8, for the l-step lag case (l > 1), algo-
rithm FPFD has a performance equal to algorithm Al1. According to the estimated
covariance matrix P̂ (k|k, τ), the performance of algorithm FPFD does degrade as the
number of step-lag increases, compared to the in-sequence reprocessing of the mea-
surements. The difference is represented in Table 8, where the trace of P̂ (k|k, τ) is
presented for the different algorithms, along with the trace relative deviation com-
pared to the optimal in-sequence measurements reprocessing. This degradation is
due to the dependence issue between the process noise and the state (discussed in
Chapter 5).

Lag 1 2 3

In-Seq .3046 .3429 .3687
Discard .3976 (30.5%) .3976 (16.0%) .3976 (7.8%)
FPFD .3046 (0%) .3390 (-1.1%) .3733 (1.2%)
Al1 .3046 (0%) .3390 (-1.1%) .3733 (1.2%)
Bl1 .3109 (2%) .3497 (2%) .3783 (2.6%)

Table 8: Trace of covariance matrices and relative deviation with respect to the
optimality (l-step lag scenario), q = 0.5

Table 9 presents the MSE of each algorithm for the l-step lag cases. MSE for algo-
rithms FPFD and Al1 are close to the MSE provided by the in-sequence measurement
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reprocessing method. Algorithm Bl1 is also relatively close to the optimal method.
Note that the performance of algorithms Al1 and Bl1 was discussed thoroughly in [3].

Lag 2 3

In-Seq

[

.2564 .0371

.0371 .0813

] [

.2835 .0404

.0404 .0845

]

Discard

[

.3110 .0356

.0356 .0814

] [

.3120 .0382

.0382 .0847

]

FPFD

[

.2592 .0380

.0380 .0817

] [

.2887 .0408

.0408 .0848

]

Al1

[

.2592 .0380

.0380 .0817

] [

.2887 .0408

.0408 .0848

]

Bl1

[

.2613 .0375

.0375 .0815

] [

.2894 .0403

.0403 .0847

]

Table 9: MSE for different lag values (l-step lag scenario) and for 10000 Monte Carlo
runs, q = 0.5

2. Cost — According to equations (47) to (49), the FPFD method has a storage require-
ment that is equal to the one of algorithm Al1 only for lmax = 1 (1-step lag situation).
For l-step lag scenarios, where lmax > 1, algorithm FPFD requires less storage space
than algorithm Al1. This is also the case with algorithm Bl1. As shown previously,
algorithm Bl1 requires less storage for the 1-step lag case (lmax = 1). However, its
storage requirements are larger for multiple-step lag OOSMs (lmax > 1).

6.3 2D nonlinear measurement model and sensor communication

delays

The following example is drawn from the practical examples in [3, 17]. It aims at comparing
the FPFD method against other OOSM algorithms when nonlinear measurements conver-
sion are considered. As in [3, 17], a target is tracked using two GMTI sensors. The target
motion follows the constant velocity model in two dimensions with process noise spectral
density q = 1m2/s3. The two GMTI sensors have nearly orthogonal lines-of-sight and both
have a slant range of about 100 km from the target. Each sensor observation is in polar
coordinates and includes range (r), azimuth (θ) and range rate (ṙ). The related standard
deviations are 10 m, 1 mrad and 1 m/s, respectively. Since the bias significance factor
is below 0.4 (rσ2

θ/σr ≈ 0.001), the measurements are converted into Cartesian coordinates
using the conventional coordinate transformation [4, 7]. Three scenarios are simulated.
Scenario 1-SL, 3-SL and 5-SL see sensor 1 have its last measurement delayed with one lag,
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Scenario 1-SL Sensor ID 1 2 1 2 1 2 1 2 1 2 2 1
Time Stamp (s) 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 27.5 25

Scenario 3-SL Sensor ID 1 2 1 2 1 2 1 2 2 1 2 1
Time Stamp (s) 0 2.5 5 7.5 10 12.5 15 17.5 22.5 25 27.5 20

Scenario 5-SL Sensor ID 1 2 1 2 1 2 2 1 2 1 2 1
Time Stamp (s) 0 2.5 5 7.5 10 12.5 17.5 20 22.5 25 27.5 15

Table 10: Communication delays in a 2 GMTI radar network. 1-step lag (1-sl), 3-step lag
(3-sl) and 5-step lag (5-sl) OOSM scenarios.

Trace(P ) Trace(MSE)

Scenario 1l 3l 5l 1l 3l 5l

FPFD 252.39 249.24 253.62 251.63 259.68 260.03
Al1 252.39 249.24 253.62 251.63 259.68 260.03

Table 11: Traces of the average filter covariance matrix (Trace(P )) and of the actual MSE
matrix (Trace(MSE)) for the OOSM algorithms Al1 and FPFD. Results are obtained from
1000 Monte Carlo runs

three lags and five lags, respectively. The lists of the measurements sent to the central
tracker by the two GMTI sensors are presented in Table 10 for the three scenarios. The
initial target state is [70000 m, 70000 m, 60 m/s, 20 m/s]. Track initialization is made
according to the two-point initialization technique [5].

Table 11 shows the trace of the average filter covariance matrix and the trace of the actual
MSE matrix for the OOSM algorithms Al1 and FPFD. Clearly, for the three scenarios, the
results are the same whether algorithm Al1 or algorithm FPFD is used. Table 12 shows
the normalized estimation error squared (NEES) [5] for the 4-dimensional state based on
1000 runs. Both algorithms Al1 and FPFD result in a NEES of 3.87 in scenario 1l, 4.00
in scenario 3l and 4.14 in scenario 5l. The NEES for algorithms Al1, Bl1 and FPFD all
lie within the two-sided 95% confidence bounds based on the χ2

4000 distribution (3.8261,
4.1767) [5]. Therefore, algorithms Al1, Bl1 and FPFD are statistically consistent for the
three scenarios.

The aim of this practical example is to show that algorithm FPFD has the same perfor-
mance as algorithm Al1 in a practical OOSM example that involves nonlinear measurement
conversions. The results presented in Tables 11 and 12 are conclusive, since the measured
performance of algorithm FPFD is identical to the measured performance of algorithm Al1.

Moreover, Table 13 shows the CPU times of algorithms Al1, Bl1 and FPFD for 1000 Monte
Carlo runs. Although the measured CPU times represent only imprecise approximations of
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Scenario 1l 3l 5l

In-Seq 3.87 3.97 4.01
FPFD 3.87 4.00 4.14
Al1 3.87 4.00 4.14
Bl1 3.87 4.01 4.08

Table 12: Normalized Estimation Error Squared (NEES) at last update time for differ-
ent OOSM algorithms. 1-step lag (1-SL), 3-step lag (3-SL) and 5-step lag (5-SL) OOSM
scenarios. Results are obtained from 1000 Monte Carlo runs.

Lag 1 3 5

FPFD 0.71 0.67 0.73
Al1 0.82 0.84 0.82
Bl1 0.75 0.68 0.69

Table 13: CPU times (s) for 1000 Monte Carlo runs

the computational complexity of the algorithms, they are used here for comparison purposes.
The measured CPU times of algorithm FPFD are comparable to those of algorithm Bl1,
which are lower than those of algorithm Al1 in all of the three lag cases shown in Table 13.

Finally, Tables 14 and 15 show the performance of algorithm FPFD according to the storage
interval B defined in (51) and for the 1-step lag scenario described in Table 10 (Scenario
1-SL). The NEES obtained with algorithm FPFD and shown in Table 14 are 3.99, 4.01 and
4.02 for B = 1, B = 4 and B = 6, respectively. Therefore, the NEES increases slightly as B
augments. Recall that the corresponding two-sided 95% confidence bounds for 1000 Monte
Carlo are [3.8261, 4.1767]. The traces of the actual MSE matrices shown in Table 15 also
increase slightly as B augments, while the traces of the average filter covariance matrices
decrease as B augments. Note that for B > 1 algorithm FPFD loses its optimality compared
to the in-sequence measurements reprocessing method. Hence, we have e 6= 0 in (45) when
B > 1.

B 1 4 6

FPFD 3.99 4.01 4.02

In-Seq 3.99

Table 14: NEES for algorithm FPFD at last update time, for the 1-step lag OOSM case
(Scenario 1-SL) and in terms of the storage interval B. Comparison with the In-sequence
reprocessing method (In-Seq) from 1000 Monte Carlo runs.
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Trace(P ) Trace(MSE)

B 1 4 6 1 4 6

FPFD 252.3 250.8 250.4 247.1 247.4 247.9

In-Seq 252.3 247.1

Table 15: Traces of the average filter covariance matrix (Trace(P )) and of the actual MSE
matrix (Trace(MSE)) for the 1-step lag OOSM case (Scenario 1-SL) and in terms of the
storage interval B of algorithm FPFD. Comparison with the in-sequence measurement
reprocessing method (In-Seq) from 1000 Monte Carlo runs.

7 Conclusions

In the preceding, a forward prediction and decorrelation-based method for processing out-
of-sequence measurements was presented. In terms of track quality, the proposed FPFD
method was proved to be optimal for the 1-step lag case. For the multiple-step lag case, the
method loses its optimality compared to the in-sequence measurements reprocessing and to
the optimal solution presented in [25]. Nonetheless, its results are valuable since they are
equal to those obtained with some of the most recent retrodiction methods presented in the
literature, while requiring less data storage. Finally, the performance of the FPFD method
depends on the track storage interval B. It was shown that the performance deterioration
is minor for small values of B. Moreover, when the sampling rate is fixed so that it is
known when a measurement has not arrived, the time of track storage can be brought close
enough to the OOSM time such that there is no performance deterioration due to the track
storage time. In such conditions, the FPFD method can be a valuable choice for practical
applications.
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Annex A: Dynamics model

The tracked target is assumed to be moving with constant velocity in a 2D space, where
the acceleration acts as an input6. Cartesian coordinates are used in order to be in a linear
system. The state to be estimated is composed of the target’s coordinates, viz., the position
and the linear velocity. With the following state variable notation

x =









x
y
ẋ
ẏ









and υ =

[

υ1

υ2

]

(A.1)

the equations of such a target can be expressed as

x(k + 1) = F (k, k − 1)x(k) + Γυ(k) (A.2)

where υ is a vector of random variables that reflects the unforeseeable variation of the
acceleration in both directions. Note that Γυ(k) is the same as υ(k, k−1), which represents
the cumulative effect of the process noise over the time increment k − 1, k. The state
transition matrix is given by

Fk =









1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1









(A.3)

where h is the time increment. The matrix Γ in (A.2) depends on the model used to
represent the discrete-time nature of the process noise v. Two examples are given below.
The first one

Γ =









h2/2 0
0 h2/2
h 0
0 h









(A.4)

represents to the pulse model, while the following one

Γ =



















3
√

h2

2
√

3

3
√

h2

2
0 0

0 0

3
√

h2

2
√

3

3
√

h2

2
0

√
h 0 0

0 0 0
√

h



















(A.5)

6Since the acceleration may change unforeseeably, it is often modeled as a random variable, and so will
be as such.
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is used by the Brownian motion modeling. Note that the latter requires four random
variables instead of two. If the process noises are assumed to have the same standard
deviation δυ, the pulse model results in the following process noise covariance matrix

Q = δ2
υΓΓT (A.6)

= δ2
υ























h4

4
0

h3

2
0

0
h4

4
0

h3

2
h3

2
0 h2 0

0
h3

2
0 h2























(A.7)

while the covariance matrix for the Brownian motion is given by

Q = δ2
υΓΓT (A.8)

= δ2
υ























h3

3
0

h2

2
0

0
h3

3
0

h2

2
h2

2
0 h 0

0
h2

2
0 h























(A.9)
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Annex B: l-step lag case analysis of P (k) and P (k)ψl

It will be demonstrated that P (k)ψ − P (k) is always positive definite for the 1-step lag
cases. The results will then be generalized to the l-step lag case.

B.1 1-step lag case

Let Pk−2 be the error covariance matrix at one sampling interval before the OOSM time.
In the case the measurement is available, we have:

P (k − 1)−1 = [FP (k − 2)F T + σ2
υΥ]−1 + [σ2

Rζ]−1 (B.1)

P (k)−1 = A + [σ2
Rζ]−1 (B.2)

where

A =

[

[

[FFP (k − 2)F TF T + σ2
υFΥF T ]−1 + [σ2

RFζF T ]−1
]

−1
+ σ2

υΥ

]

−1

(B.3)

In the case where the measurement at time k is missing, we have:

Pψ1
(k − 1)−1 = [FP (k − 2)F T + σ2

υΥ]−1 (B.4)

Pψ1
(k)−1 = B + [σ2

Rζ]−1 (B.5)

where
B =

[

FFP (k − 2)F TF T + σ2
υFΥF T + σ2

υΥ
]

−1
(B.6)

Then the difference between the track estimated error covariance without a measurement
update at time k (P (k)ψ1

) and the track estimated error covariance with a measurement
update at time k (P (k)) is:

P (k)ψ1
− P (k) =

[

A + [σ2
Rζ]−1

]

−
[

B + [σ2
Rζ]−1

]

(B.7)

P (k)ψ1
− P (k) = A − B (B.8)

since A − B is positive definite, then we have:

xT (A − B)x > 0 (B.9)

for all nonzero vectors x ∈ Rn. Equation (B.9) can be developed into

xTAx − xTBx > 0 (B.10)

xTAx > xTBx (B.11)

xTA−1x < xTB−1x (B.12)

For simplicity, let A and B be expressed as

A =

[

[

[C]−1 + [D]−1
]

−1
+ σ2

υΥ

]

−1

(B.13)

B = [C + σ2
υΥ]−1 (B.14)

DRDC ValcartierTR 2005-485 33



where

C = FFP (k − 2)F TF T + σ2
υFΥF T (B.15)

D = σ2
Rζ (B.16)

Using (B.13) and (B.14) in (B.12) yields

xT
[

[

[C]−1 + [D]−1
]

−1
+ σ2

υΥ

]

x < xT [C + σ2
υΥ]x (B.17)

xT
[

[C]−1 + [D]−1
]

−1
x + xTσ2

υΥx < xTCx + xTσ2
υΥx (B.18)

xT
[

[C]−1 + [D]−1
]

−1
x < xTCx (B.19)

xT
[

[C]−1 + [D−1]
]

x > xTC−1x (B.20)

xTC−1x + xTD−1x > xTC−1x (B.21)

xTD−1x > 0 (B.22)

This is always true since D−1 is positive definite. Therefore, P (k)ψ−P (k) is always positive
definite for the 1-step lag cases. On the contrary, the statement

xTD−1x ≤ 0 (B.23)

is always false. This means that a track that has a 1-step lag missing measurement will
always have poorer accuracy compared to a track that does not miss the measurement.

B.2 General l-step lag case

Because the Kalman equations are recursive, the proofs that P (k)ψ−P (k) is always positive
definite for the 1-step lag cases can be extended to the general l-step lag case. Consequently,
in terms of track accuracy it is always better to include a measurement than discarding it.
Although its impact over track accuracy may change depending on some conditions, such
as the συ/σR ratio and the measurement age, there are no conditions where it is better to
discard a measurement when συ, σR and the sampling interval stay constant throughout
the entire filtering duration.
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