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Abstract …….. 

This paper describes technical enhancements implemented in the second version of the Managed 
Readiness Simulator (MARS V2).  These enhancements were required to address limitations in 
the technology and implementation of the initial prototype (MARS V1).  The limitations related 
to data volume, data structures, algorithms and performance, which prevented larger and more 
complex scenarios from being simulated.  Therefore, a range of potential approaches was 
identified, and a novel model architecture was devised that would address these limitations.  The 
approach consisted of exploiting database technology during simulation execution which was 
termed a Simulation Runtime Database (SRDB).  This allowed the simulation to use the 
database’s table data structures for runtime data storage and to invoke data processing algorithms 
through Structured Query Language commands.  A feasibility study was conducted that proved 
that the SRDB could be implemented in the MARS simulation engine, Arena.  This justified the 
implementation of the MARS V2 model using the SRDB approach.  Testing of the completed 
MARS V2 model showed that it successfully addressed all four of the limitations identified in 
MARS V1.  Ultimately, the SRDB approach provided a much more capable platform for large, 
complex simulation scenarios that will meet current and future client needs. 

 

Résumé …..... 

Dans ce document, on décrit les améliorations techniques apportées à la deuxième version du 
programme de simulation de gestion de la disponibilité opérationnelle (MARS V2). Ces 
améliorations étaient nécessaires pour éliminer des faiblesses dans la technologie et la mise en 
œuvre du prototype initial (MARS V1). Les faiblesses, reliées au volume de données, aux 
structures de données, aux algorithmes et aux performances, empêchaient la simulation de 
scénarios plus grands et plus complexes. Par conséquent, on a identifié un éventail d'approches 
potentielles et on a créé une architecture de modèle novatrice permettant d'éliminer ces faiblesses. 
L'approche adoptée consistait à exploiter une technologie des bases de données pendant 
l'exécution des simulations, que l'on a baptisée SRDB (Simulation Runtime Database). Cela 
permettait à la simulation d'utiliser les structures de données des tables de la base de données pour 
le stockage des données pendant l'exécution et d'invoquer des algorithmes de traitement des 
données au moyen de commandes SQL (Structured Query Language). Une étude de faisabilité a 
prouvé que la technologie SRDB pouvait être mise en œuvre dans Arena, le moteur de simulation 
du programme MARS. Cela justifiait la mise en œuvre du modèle MARS V2 à l'aide de 
l'approche à SRDB. La mise à l'essai du modèle MARS V2 terminé a démontré que ce dernier 
éliminait avec succès les quatre faiblesses identifiées dans MARS V1. En fin de compte, 
l'approche SRDB a permis d'obtenir une plateforme beaucoup plus puissante pour de grands 
scénarios de simulation complexes qui répondra aux besoins présent et futurs des clients. 
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Executive summary  

Managed Readiness Simulator (MARS) V2: Assessment of a 
Simulation Runtime Database Approach 

Stephen Okazawa; Mike Ormrod; Chad Young; DRDC CORA TM 2009-042; 
Defence R&D Canada – CORA;  . 

Introduction: The Managed Readiness Simulator (MARS) is a software application being 
developed at Defence Research & Development Canada - Center for Operational Research & 
Analysis as an Applied Research Project managed by the Land Force Operational Research 
Team.   MARS is designed to quickly simulate a wide range of readiness scenarios to determine if 
the resources of an establishment are able to satisfy the requirements of planned operations. 

The first version of MARS (termed V1) successfully conducted a preliminary analysis of the 
Army’s plans to generate forces for Task Force Afghanistan.  However, several technical 
limitations were encountered that related to the data volume, data structures, algorithms and 
performance of MARS V1.  In particular, the ability to model establishment dynamics was a 
priority feature with respect to meeting the needs of the client , but was not considered to be 
feasible because of these limitations. 

Therefore, a decision was made to re-examine the model architecture.  This paper examines the 
proposed technical approaches to resolve the issues identified in MARS V1 and describes a novel 
solution that was devised and implemented in a new MARS V2.  The solution consisted of 
exploiting powerful aspects of database technology during simulation execution.   This approach 
was termed a Simulation Runtime Database (SRDB). 

Results: A feasibility study and subsequent implementation and testing of the SRDB architecture 
demonstrated that the approach successfully addressed all four limitations identified in MARS 
V1.  This substantially increased the ability of MARS to simulate scenarios of greater scale and 
complexity and increased execution speed by a factor of two. 

Significance: Ultimately, the SRDB architecture allowed MARS V2 to implement important 
aspects of modelling readiness for the CF.  In particular, it opened the door to incorporating 
establishment dynamics into the managed readiness model which is a high priority capability that 
did not exist prior to MARS V2.  In general, a much higher degree of technical flexibility was 
achieved that will allow MARS V2 to continue to meet the increasingly complex simulation 
needs of CF decision makers. 
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Sommaire ..... 

Programme de simulation de gestion de la disponibilité 
opérationnelle (MARS) V2 : Évaluation d'une approche avec la 
technologie Simulation Runtime Database 

Stephen Okazawa; Mike Ormrod; Chad Young; DRDC CORA TM 2009-042;       
R & D pour la défense Canada – CARO;  . 

Introduction: Le Programme de simulation de gestion de la disponibilité opérationnelle (MARS) 
est une application logicielle que l'on développe à Recherche et développement pour la défense 
Canada – Centre d'analyse et de recherche opérationnelle comme projet de recherche appliquée 
gérée par l'équipe de recherche opérationnelle de la Force terrestre. Le programme MARS a été 
conçu pour simuler rapidement un vaste éventail de scénarios de disponibilité opérationnelle afin 
de déterminer si les ressources d'un établissement peuvent répondre aux exigences des opérations 
prévues. 

La première version du programme MARS (appelée V1) a réalisé avec succès une analyse 
préliminaire des plans de l'Armée visant à mettre sur pied des forces pour la Force opérationnelle 
interarmées Afghanistan. Cependant, on a décelé dans MARS V1 plusieurs faiblesses techniques 
reliées au volume des données, aux structures de données, aux algorithmes et aux performances. 
Tout particulièrement, la capacité de modéliser la dynamique des établissements était une 
fonction prioritaire pour répondre aux besoins du client, mais on a estimé que c'était impossible 
en raison de ces faiblesses. 

Par conséquent, on a décidé de réexaminer l'architecture du modèle. Dans ce document, on décrit 
les approches techniques que l'on propose pour résoudre les problèmes identifiés dans MARS V1 
et on décrit une solution novatrice qui a été conçue et mise en œuvre dans le nouveau MARS V2. 
La solution consistait à exploiter les aspects puissants de la technologie des bases de données 
pendant l'exécution des simulations. On a baptisé cette approche SRDB (Simulation Runtime 
Database). 

Résultats: Une étude de faisabilité, puis la mise en œuvre et la mise à l'essai de l'architecture 
SRDB ont démontré que l'approche éliminait avec succès les quatre faiblesses identifiées dans 
MARS V1. On a pu ainsi accroître considérablement la capacité du programme MARS à simuler 
des scénarios plus grands et plus complexes, et on a doublé la vitesse d'exécution. 

Importance: En fin de compte, l'architecture SRDB a permis au programme MARS V2 de mettre 
en œuvre des aspects importants de la modélisation de la disponibilité opérationnelle pour les FC. 
Tout particulièrement, elle a ouvert la voie à l'incorporation de la dynamique des établissements 
dans le modèle de disponibilité opérationnelle, ce qui est une capacité prioritaire qui n'existait pas 
avant MARS V2. De façon générale, on a atteint un degré nettement supérieur de souplesse 
technique qui permettra à MARS V2 de continuer à fournir aux décideurs des FC les simulations 
de plus en plus complexes dont ils ont besoin. 

iv DRDC CORA TM 2009-042 
 
 
 
 



 
 

Table of contents  

Abstract …….. ................................................................................................................................. i 
Résumé …..... ................................................................................................................................... i 
Executive summary ........................................................................................................................ iii 
Sommaire ....................................................................................................................................... iv 
Table of contents ............................................................................................................................. v 
List of figures ................................................................................................................................. vi 
List of tables .................................................................................................................................. vii 
1 Introduction............................................................................................................................... 1 
2 MARS Concepts and Terminology........................................................................................... 3 
3 MARS Application Components .............................................................................................. 8 
4 MARS V1 Model Architecture................................................................................................. 9 
5 MARS V1 Technical Limitations ........................................................................................... 13 

5.1 Data Volume................................................................................................................ 13 
5.2 Data Structures ............................................................................................................ 13 
5.3 Algorithms................................................................................................................... 14 
5.4 Performance................................................................................................................. 15 

6 Proposed Technical Approaches............................................................................................. 16 
7 The Simulation Runtime Database Approach......................................................................... 17 

7.1 Data Volume................................................................................................................ 17 
7.2 Data structures ............................................................................................................. 18 
7.3 Algorithms................................................................................................................... 18 
7.4 Performance................................................................................................................. 18 

8 Feasibility of Implementing the SRDB in Arena.................................................................... 20 
9 MARS V2 Model Architecture............................................................................................... 22 

9.1 Implementing the MARS V2 SRDB ........................................................................... 22 
9.2 Implementing the MARS V2 Arena Process Logic .................................................... 22 

10 Performance of the SRDB ...................................................................................................... 25 
11 Conclusions............................................................................................................................. 27 
References ..... ............................................................................................................................... 28 
Annex A .. Setting up Arena for MS Access Connectivity............................................................ 29 
Annex B .. VBA Sample Code for Interacting with MS Access from Arena................................ 30 
Distribution list.............................................................................................................................. 33 

DRDC CORA TM 2009-042 v 
 
 

 
 



 
 

List of figures  

Figure 1: Establishment Organizations and Theatre Organizations showing Slots and 
Resources ...................................................................................................................... 4 

Figure 2: The Activity Construct showing Feeders, Finders and Senders and internal 
connections.................................................................................................................... 5 

Figure 3: Resource selection process used by an Activity Finder. .................................................. 6 
Figure 4: Components of the MARS Application with data transfer shown as red arrows. ........... 8 
Figure 5: Architecture and data flow of the MARS V1managed readiness model. ...................... 10 
Figure 6: Example of a MARS V1 bubble sort algorithm implemented in-line with the top-

level process logic acting on array data containing rank values. ................................ 12 
Figure 7: Architecture and data flow of the MARS V2 Managed Readiness Model using the 

SRDB. ......................................................................................................................... 17 
Figure 8: MARS V2 Implementation of a sorting operation using an SQL command sent to 

the SRDB. ................................................................................................................... 24 
Figure A-9: Sample Arena model with VBA block ...................................................................... 29 
 

vi DRDC CORA TM 2009-042 
 
 
 
 



 
 

List of tables  

Table 1: Sample MARS V1 simulation run times. ........................................................................ 15 
Table 2: Comparison of MARS V1 and V2 simulation run times. ............................................... 25 

 

DRDC CORA TM 2009-042 vii 
 
 

 
 



 
 

viii DRDC CORA TM 2009-042 
 
 
 
 

This page intentionally left blank. 

 

 



 
 

1 Introduction 

The Managed Readiness Simulator (MARS) is a versatile program that allows the user to quickly 
simulate a wide range of Canadian Forces (CF) readiness scenarios to determine if the resources 
of an establishment are able to satisfy the requirements of a set of operational tasks.  The 
flexibility of MARS allows diverse operational tasks to be defined as processes composed of 
activities that place specific resource demands on the establishment.  The level of fidelity of a 
given scenario can also be adjusted.  MARS provides a graphical user interface that facilitates the 
creation and execution of simulation scenarios and the analysis of simulation output.  The user 
can view aggregated simulation results and drill down to view the status of specific tasks and 
units over time.  This provides the user with a powerful tool to anticipate problems that may arise 
and to identify their cause.  Ultimately, MARS is intended to be used as a decision support tool 
for senior commanders of the CF. It provides them with forecasts of the impact of proposed 
changes to lines of operation, the establishment, the readiness plan, CF policy, and other factors 
that may affect the CF’s ability to satisfy operational demands and to maintain the health of the 
establishment.  A more detailed description of the motivation behind the development of MARS 
and its potential applications can be found in Ormrod et al. [1]. 

MARS is being developed by Defence Research & Development Canada - Center for Operational 
Research & Analysis (DRDC CORA) as one of its Applied Research Projects.  DRDC CORA’s 
Land Force Operational Research Team (LFORT) is managing the project and is using an 
evolutionary development approach where new capability is added incrementally to the existing 
model.  This approach allows the model to be used in its current state with its existing capability 
while new capability is being added to the next version.  It also allows the developers to learn 
from and refine the existing model while adding new capabilities to the next version.   

The first version of MARS (termed MARS V1) was built as an initial prototype to demonstrate 
the managed readiness modeling concept.  Previous publications [2, 3] document the design and 
implementation of MARS V1.  Completed in 2007, its primary application was to assess the 
capability of the existing Army establishment (the current supply of qualified personnel and 
equipment resources) to meet the demands of planned operations.  It was implemented as a 
Discrete Event Simulation (DES) using Rockwell’s Arena software [4].  The scenario data were 
stored in a Microsoft Access database (DB) and were transferred to Arena’s internal memory 
arrays when conducting a run.  After completion, the output from the simulation was transferred 
back to the Access DB for post processing. 

Using this architecture, MARS V1 successfully conducted a preliminary analysis of the Army’s 
plans to generate the forces required for Task Force Afghanistan [5].  However, while conducting 
this analysis, several difficulties were encountered: 

1. The large volume of data imported to Arena’s arrays produced a very large runtime memory 
footprint.  In some cases, runs had to be reconfigured because they exceeded available system 
memory. 

2. Because Arena’s arrays have fixed dimensions, the sizes of these arrays had to be very 
carefully managed to accommodate changes to the scenario and input data.  This process was 
cumbersome and error-prone. 
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3. The Arena model was large and complicated, and lacked modularity and encapsulation.  This 
made it difficult and time consuming to modify and debug the program, two qualities 
considered essential because of the evolutionary development philosophy being employed. 

4. The time required to run a scenario was typically long because of a significant overhead 
required to initialize the model and populate the arrays at the start of each run. 

The practical implication of these limitations was an inability to implement important new 
features in MARS.  The next major development phase was to be the addition of model features 
and data management capabilities to realistically implement a dynamic establishment.  This refers 
to the continuous arrival, movement and release of resources in the establishment.  The 
implementation of this new capability was not considered feasible in MARS V1 because of its 
limitations.  Therefore, a decision was made to re-examine the model architecture.  This paper 
examines proposed approaches and presents a novel solution to address these limitations and 
allow for the continued capability enhancement of MARS. 

The following two sections, 2 and 3, provide a review of MARS concepts, terminology and 
components.  Section 4 discusses the model architecture used in MARS V1.  Section 5 details the 
technical limitations that resulted from this architecture.  Section 6 discusses possible approaches 
to addressing these limitations.  Section 7 describes the proposed solution and how it resolves 
each of the limitations identified in Section 5.  Section 8 details a feasibility study that 
demonstrated that this approach could be implemented in Arena.  Section 9 provides an overview 
of the implementation of the MARS V2 managed readiness model using the new architecture.  
Finally, Section 10 discusses the performance implications of the proposed solution, and Section 
11 provides concluding remarks.  Annexes A and B include basic instructions and sample code 
for implementing this approach in Arena. 
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2 MARS Concepts and Terminology 

The MARS program is designed to simulate a given readiness Scenario by forecasting the ability 
of an Establishment to generate the Resources required to satisfy a set of Tasks occurring over 
time under a given set of conditions.  The program also records the state of every Resource 
throughout the simulation; therefore the results can be used to determine the utilization level of a 
unit within the establishment or of a specific group of Resources.  

The program currently models three types of Resources:  Personnel, Equipment and Facilities.  
Every Resource occupies a Slot in an Organization as shown in Figure 1.  In general, the 
Attributes of each Slot define a particular Resource Requirement of the Organization and the Slot 
can only be occupied by a single Resource that satisfies the requirement.  For example a Slot may 
assert that it can only be filled by a resource that satisfies the criteria: rank = Captain AND 
occupation = Infantry.  However, special Overflow Slots can also be built into the establishment 
that are allowed to contain many Resources.  These Slots are sometimes needed to store extra 
Resources that do not satisfy the Resource Requirement of any Slot or that cannot be assigned to 
a Slot because eligible Slots are currently occupied.   

An Organization consists of a group of Slots that define the Resource Requirements of a unit.  
They are typically arranged in a hierarchical tree structure where only the terminal nodes of the 
tree contain Slots.  There are two types of Organizations.  Establishment Organizations define the 
units that contain the Resources available in the Scenario.  Theatre Organizations define 
templates of the units required by the Tasks being modelled and do not contain any Resources.  
During the simulation, the program uses these templates to create a group of slots that will be 
filled by Establishment resources selected to perform a task. 
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Establishment Organizations Theatre Organizations 

Resources Slots 

Organizations 

 
Figure 1: Establishment Organizations and Theatre Organizations showing Slots and Resources 

Each Resource has Attributes that define its current state.  Attributes store the information that 
determines whether a Resource can be chosen for a particular Task.  Examples of Resource 
Attributes include a person’s rank and qualifications.  Other Attributes indicate whether the 
Resource is currently busy and whether there are any restrictions on what the Resource is allowed 
to do.  In general, Attributes define the capability and availability of a Resource.  These Attributes 
along with the Organization to which the Resource is attached are used to determine the eligibility 
of the Resource to be used by a given Task. 

The operations and events being simulated in a MARS scenario are represented by Tasks within 
the model.  Each Task is broken down into Activities which are scheduled within the Task so that 
they will occur in a specified order.  Activities are responsible for assembling the Resources they 
require.  Activities can also be linked together to pass Resources from one Activity to another or 
to enforce dependencies.  There are two types of Activities in the model: 

1. A Process Activity temporarily employs Resources for a certain period of time and may alter 
their state upon commencement and completion.   

2. An Event Activity changes the state of the selected Resources at a single point in time.  

Each Activity is triggered in the simulation according to timing and Resource constraints.  
Activities simulate everything from training and operational tasks to recruitment and retirement 
events or, if referring to equipment, acquisition and disposal events.  The Activity construct is 
illustrated below in Figure 2.   
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Figure 2: The Activity Construct showing Feeders, Finders and Senders and internal 
connections. 

When an Activity is triggered and starts processing, it must acquire the Resources it needs to 
carry out its function.  Resources enter an Activity as part of a Resource Group (ResGrp) through 
either a Feeder or Finder node and exit through a Sender node.  An Activity may have multiple 
Feeders, Finders and Senders, and must have at least one Feeder or one Finder in order to act on 
at least a single ResGrp.  A ResGrp is a set of Resources currently attached to a group of Slots.  
ResGrps are created by Finders which select Resources from the Establishment to participate in 
the Activity.  Figure 3 illustrates the steps carried out by the Finders. 

First, the Finder identifies the Theatre Organizations that contain the Slots that define the 
Resource Requirement for the Activity.  For example, a Disaster Assistance Response Team 
Triage Unit might contain Slots for a medical officer, a medical technician, and a nurse.  
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Figure 3: Resource selection process used by an Activity Finder. 

Next, the Finder specifies a prioritized list of Establishment Organizations that may be searched 
to find Resources to participate in the Activity.  This prioritized list is subject to constraints that 
can be used to limit the number of Resources taken from a given Organization and to filter for 
Resources with certain Attributes.  The Finder also verifies that these Resources have not already 
been assigned to a conflicting Activity.  This produces a list of Candidate Resources.   

The Finder then attempts to fill each Required Slot with one of the Candidate Resources by 
comparing the Attributes of the Resources to the requirements of each Slot.  If a suitable match is 
found, the Resource is assigned to the Slot and becomes part of the ResGrp being created by the 
Finder.  To maximize the number of successful matches, the Finder attempts to assign the least 
qualified Candidate that meets the requirements of each Slot.  For example, a Slot that can be 
filled by either a Major or Lieutenant Colonel will be preferentially assigned a Major because 
Lieutenant Colonels, being of higher rank, are in shorter supply and may be required by other 
Slots with more stringent requirements.  This process is repeated for all Finders, with each Finder 
creating a ResGrp. 

Activities also acquire Resources through Feeders which receive ResGrps that were created by a 
preceding Activity and passed on through one of that Activity’s Senders.  After acquiring its 
Resources through its Finders and Feeders, the Activity verifies that a specified minimum number 
of the required Slots have been filled.  If this minimum requirement is not met, the Activity fails 
and the Resources are released.  If sufficient Resources are found, the Activity takes control of 
the selected Resources, altering their Attributes to reflect the nature of the Activity and employing 
them for the duration of the Activity.  
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Each Feeder and Finder is connected internally to a Sender.  Upon Activity completion, each 
ResGrp is passed to a Sender which alters the Attributes of the Resources within the ResGrp to 
reflect the completion of the Activity.  Each Sender is then responsible for either passing the 
ResGrps to the Feeder node of a follow-on Activity or for releasing the Resources within the 
ResGrp back to their Establishment unit.  Senders and Feeders are the connection nodes that 
allow Activities to be linked together within a larger Task.  When the Activity’s processing time 
has finished and each ResGrp has exited through a Sender, the Activity is complete.  Similarly, 
when all of the Activities of a Task are finished, the Task is complete. 

To allow Tasks to be reused within a Scenario and to control when they begin, Task Generators 
are used to assign a start time to a Task.  Multiple instances of a Task can be generated on a 
Rotation schedule to model the repetition of a Task such as a cycle of deployments that make up a 
continuous operation.  When all of the Task Generators have been processed, and all of their 
associated Tasks are finished, the MARS Scenario is complete and the simulation stops.  

From the outputs generated by the MARS simulation, the extent to which the Establishment was 
able to supply the Resources required for all the Tasks being modelled can be measured.  More 
specifically, the output is analyzed to determine how successful each Finder was in creating its 
ResGrp from the Establishment.  By aggregating the results from the Finders, the user can 
determine how successful the Establishment was in generating the required Resources for each 
Activity, Task, Task Generator, and the entire Scenario.  Similarly, the states of the Resources 
within the Establishment can be tracked over time.  These results can be combined to plot the 
state over time of a selected group of Resources, a unit or group of units, or the entire 
Establishment. 

MARS is a versatile tool with many potential applications.  Its strengths are its generic constructs 
that allow users to quickly simulate virtually any force generation scenario and its outputs that 
provide users with the ability to aggregate and drill down into the simulation results to identity 
the causes of a particular outcome.  The ability to forecast how successfully an establishment can 
generate the forces required to satisfy both operational and sustainment demands will provide 
decision makers with invaluable information that currently is unavailable. 
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3 MARS Application Components 

The MARS application consists of three major components, shown in Figure 4: a Scenario 
Database, a Managed Readiness Model, and a Graphical User Interface (GUI).  The Scenario 
Database stores all the data that define a specific scenario.  The Managed Readiness Model is the 
discrete event representation of the process of selecting and employing resources for.  The GUI 
allows the user to interact with the database and the model by performing three management 
functions.  As the Input Manager, it is responsible for facilitating the transfer of scenario data into 
the scenario database.  The input data consist of the tasks, the establishment, plans, and policies to 
be modelled in the proposed scenario.  The data may be input directly through the GUI input 
screens or imported from an external source such as a Corporate DB or spreadsheet.  As the 
Simulation Manager, the GUI controls the execution of the Simulation Scenario.  Finally, as the 
Output Manager, it allows a user to analyze the simulation results and to generate output reports.   

Graphical User Interface  

Output  
Manager 

Simulation  
Manager 

Input 
Manager 

Scenario: 
Tasks 
Policies 
Establishment 
Readiness Plan 

Reports: 

Managed 
Readiness Model 

 

Scenario 
Database 

Results 
Analyses 
Recommendations

 
Figure 4: Components of the MARS Application with data transfer shown as red arrows. 
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4 MARS V1 Model Architecture 

The limitations and technical enhancements described in this paper relate to the implementation 
of the Managed Readiness Model and its interface with the Scenario Database.  The Managed 
Readiness Model component of MARS consists of three main parts: data, algorithms, and process 
logic.  These parts are described below. 

• The data contain the input information that specifies a simulation scenario, the state 
information that represents the objects and scheduled events that are active during the 
simulation, and the output information that records what happened during the simulation.  
All these data are accessed during simulation execution.  For MARS, this includes the 
Organizations, Slots and Resources that represent the CF establishment; the Theatre 
Organizations and Slots; Activities, Tasks and Task Rotations; Feeders, Finders, Senders 
and their interconnections; the required Theatre units and candidate organizations for each 
Finder; definitions and descriptions of Resource Attributes; and a multitude of other tables 
relating to details of the simulation, intermediate processing during execution, and records 
of simulation events. 

• Algorithms are the low-level operations that interact with the data in response to simulation 
events.  Depending on what is involved for a given event, various algorithms may be 
invoked to carry out operations such as inserting and deleting data entries; searching and 
sorting data; updating values; and iterating through rows of data.  These operations are used 
very heavily throughout the simulation as the bulk of the computational work in MARS 
consists of complex search, match, and update operations.  This includes checking timing 
and dependency criteria prior to launching an Activity; transferring ownership of resources 
from one Activity to the next; searching for candidate resources and required Slots subject 
to constraints; matching candidate resources to required Slots based on Attributes and 
Attribute requirements; updating Resource Attributes; and generally keeping the state of all 
parts of the simulation up-to-date. 

• The process logic is the high-level discrete event representation of the managed readiness 
process.  This controls what events happen in the simulation and when they happen.  When 
an event occurs, the process logic triggers the algorithms that do the work associated with 
that event to update the data.  This includes carrying out the creation of Tasks and 
Activities; coordinating when Activities are triggered subject to Resource, timing and 
dependency constraints; and managing the lifecycle of each Activity from Resource 
acquisition through its Feeders and Finders, to Resource employment for a period of time, to 
the sending of Resources on to subsequent Activities or back to the Establishment. 

In MARS V1, all three of the parts described above were implemented in Rockwell’s Arena DES 
software using its native feature set.  These features include a comprehensive list of DES building 
blocks, internal variables and arrays for data storage and computation, and Visual Basic for 
Applications (VBA) which provides programmatic control over the simulation.  The input to the 
simulation was an access database that contained the scenario information and initial conditions.  
The simulation output was eventually written back to the database for post processing.  Figure 5 
shows the architecture of the MARS V1 managed readiness model and how the data, algorithms 
and process logic components were related.  A detailed description of the model implementation 
was documented by Pall et al. [2]. 
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Figure 5: Architecture and data flow of the MARS V1managed readiness model. 

All the data required by the model were stored in Arena’s global variables and arrays.  In order to 
initialize the data that specify the simulation scenario, a two-step data import operation from a 
database was automatically performed.  First, the data required by the current simulation scenario 
were written from the Access database to a collection of comma-separated text files.  Then, the 
text files were read into Arena’s internal variables and arrays in memory.  During simulation 
execution, the model wrote a comprehensive record of simulation events to output text files.  
After the simulation completed, the data in the output text files were transferred back to the 
Access database for post processing and analysis. 
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Both the algorithm and the process logic aspects of the model were implemented together as one 
large DES process using Arena’s discrete event building blocks.  At the highest level, the DES 
process represented the managed readiness process logic of MARS.  The algorithms that act on 
the data stored in Arena’s variables and arrays were then implemented at various points in-line 
with the process logic.  Figure 6 shows an example of a bubble sort algorithm embedded inline 
with the high-level process logic and an array of rank data that it manipulates.  Though this is a 
simple example, the algorithm implementation adds considerable bulk to the DES process.  
Throughout the MARS V1 model, typical algorithms involved in filtering resources and matching 
resources to slots based on their attributes are much more complicated. 
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Figure 6: Example of a MARS V1 bubble sort algorithm implemented in-line with the top-level 

process logic acting on array data containing rank values. 
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5 MARS V1 Technical Limitations 

Using the architecture described in the previous section, MARS V1 was used to create scenarios 
to evaluated the Army’s managed readiness system [5].  However, in conducting this analysis, 
some  aspects of this architecture proved challenging to work with in practice and some scenarios 
which would be considered of only moderate size and complexity were approaching the technical 
limits of what could be achieved in MARS V1.  This was expected to seriously hinder important 
future work in MARS.  In particular, the implementation of a model of establishment dynamics 
was considered infeasible in this architecture.  The limitations identified in MARS V1 fall into 
four main areas which are described in the next four sub-sections. 

5.1 Data Volume 

MARS V1, and simulations in general, require the model and data to be loaded from the hard 
drive into memory for the simulation to execute.  But because memory space is small compared 
to hard drive space, this limits the volume of data that can be used by the simulation and limits 
complexity of the model compared to what can be stored on the hard drive.  In the case of MARS 
V1, for a scenario of moderate size and complexity, the Arena application allocated 
approximately 700 megabytes of memory on initialization to store the model and data.  This 
approached the memory limits for a single program on current PC hardware.  While most modern 
hardware supports several gigabytes of memory, memory is a shared resource competed for by all 
running processes and their data.  As a result, allocating this much memory can produce 
unpredictable behaviour.  The operating system may deny the application’s attempt to allocate 
this much memory causing the simulation to fail, or sluggish performance and system instability 
may result as other processes compete for scarce memory and get swapped into virtual memory. 

The fact that memory limitations were encountered in a moderately sized simulation scenario 
meant that future development options were very limited.  It would not be possible to import 
more data to represent a more comprehensive scenario (e.g. including the Navy and Air Force 
establishments in addition to the Army establishment) or to implement new features requiring 
substantial additional data (e.g. modeling training courses and enforcing qualification 
requirements).  No such practical limitation exists for the data and model specification when they 
reside on the hard drive.  Ideally the simulation should be able to process data of any size and 
models of any complexity that are available and relevant to a given scenario. 

5.2 Data Structures 

The MARS V1 model stored all scenario data in Arena’s arrays for simulation execution.  Arena 
arrays are static, meaning their size is fixed and must be declared before the run starts.  However, 
for the purposes of the managed readiness model, static arrays require careful maintenance, are 
inefficient, and are prone to errors.  This is because the size of each array must be chosen 
carefully to ensure that it is equal to or exceeds the number of rows that will be used when the 
simulation runs. 
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In some cases, the required number of rows is known, so it is possible to set the array size to the 
correct value.  For example, the number of rows required for input data is known before the 
simulation starts, but this means that anytime the input data changes, the corresponding Arena 
array size must change with it.  It is possible to automate this array size management in Arena but 
this was not done in MARS V1 because the implementation requires advanced knowledge of 
Arena and involves low-level coding to adjust the model. 

However, in some cases the required array size is not known for a given scenario.  This is 
typically the case for arrays used to store intermediate results, such as a list of resource candidates 
used to fill theatre slots.  Usually the number of rows required for these intermediate results is 
small, but they must also be able to handle boundary cases where potentially very large 
intermediate datasets are generated.  Otherwise the array will overflow producing a fatal 
execution error. 

In MARS V1, the approach in sizing arrays was to make them larger, by some safety factor, than 
an estimate of what would be required.  But this approach is bound to fail eventually as 
increasingly complex simulation scenarios consume and process greater volumes of data.  
Because MARS V1 was also running into memory limitations, increasing arrays sizes on a trial-
and-error basis was not a sustainable practice.  The conventional solution to this problem is the 
use of a dynamic data structure such as a list or dictionary but Arena does not yet support these 
features. 

5.3 Algorithms 

The discrete event process paradigm is not well suited to implementing algorithms.  Data 
operations like searching, sorting, matching and updating are CPU-heavy procedures involving 
intensive looping and data access which require a considerable number of blocks and complex 
program flow to implement as a DES process.  Inserting these DES algorithms in-line with the 
process logic adds considerable bulk and complexity to the model.  Further, the knowledge and 
time required to implement the algorithms in Arena is substantial, and the probability of 
introducing programming errors is increased.  In MARS V1 approximately 90% of the overall 
Arena model consisted of algorithms with the remaining 10% devoted to the top level process 
logic.  While other programming languages typically provide data manipulation operations as 
low-level, optimized functions for advanced data structures, Arena does not include such 
functionality and provides only limited features to support working with its static arrays. 

Because MARS V1 combines the high-level process logic and the low-level algorithms into one 
large DES process, it became a challenge to debug, modify and enhance the model.  In Arena, all 
objects and variables have global scope and there is no ability to encapsulate the implementation 
of a portion of the process analogous to a function or object method in other programming 
languages.  Thus any change to one part of the model has the potential to affect or break other 
parts of the model which means the developer effort required to implement small changes is very 
high.  This presents a serious challenge to maintaining MARS in the long term because 
debugging and feature enhancement are regular activities of the evolutionary development 
approach being employed. 
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5.4 Performance 

The run time for a MARS V1 simulation included a significant overhead required to import 
scenario data from the database into Arena, to initialize the model, and to export simulation 
output back to the database.  Twenty to thirty minutes of the total simulation run time was 
devoted to this overhead which was largely independent of the specific scenario being simulated.  
This made regular testing and debugging of the model very slow because any scenario, no matter 
how small, needed these twenty to thirty minutes as a minimum to produce results. 

Table 1 shows the times required to complete various stages of a simulation run in a realistic 
scenario that consisted of seven large Task rotations each allocating approximately 2000 
resources to 18 Activities from an establishment of 20 000.  In this example, the total overhead 
was 25m 10s for a simulation that took over six hours to complete.  The large size of the Arena 
model was responsible for the long initialization time of 9m 42s.  The large volume of input data 
and complex data import process were responsible for the 12m 58s data import time.  The export 
of simulation output back to the database was not a significant time cost at 2m 30s.  This is 
because the raw output data was already in text form after the execution step completed, and the 
bulk transfer of text data to database is relatively fast. 

Table 1: Sample MARS V1 simulation run times. 

Time 
(hh:mm:ss) Run Step 

Initialize 0:09:42
Import Data 0:12:58
Execute 6:08:58
Export Data 0:02:30
Total 6:34:08

The technical limitations described in this section led to an investigation of possible technological 
solutions. 
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6 Proposed Technical Approaches 

Various options were available to address the technical issues encountered in MARS V1.  Several 
of the issues described above related to difficulties in implementing the managed readiness model 
in Arena, therefore two potential options were to either replace Arena with another commercial 
simulation package or to contract the development of a customised simulation engine.  A third 
alternative was to retain Arena but to exploit other technology to handle those aspects of the 
model that are not well suited to Arena’s feature set. 

An option assessment was carried out by the MARS development team which included 
recommendations from the Land Software Engineering Centre.  This assessment concluded that 
Arena should be retained as the simulation engine for MARS for several reasons.  First, no 
comparable DES software offers features that would specifically address the issues identified in 
MARS V1.  Second, contracting the development of a custom simulation engine for MARS 
would transfer the in-depth knowledge of the engine from LFORT to the contractor. This would 
be a substantial hindrance to progress from LFORT’s perspective because the simulation engine 
is in a state of regular development and refinement.  Finally, the initial reasoning behind the 
choice of Arena for MARS remained valid: There is a knowledge base of experienced Arena 
users within CORA and the Director General Military Personnel Research and Analysis, and the 
other major models with which MARS is likely to interface in the future are also built in Arena.  
These models include the Arena Career Modelling Environment [6], the Production Management 
Tool [7] and the Human Resources Operational Sustainability Model [8]. 

Based on this reasoning, LFORT proposed a solution that retained Arena as the simulation engine 
but that leveraged other technology to address the issues identified in the previous section.  The 
limitations discussed above generally relate to the challenge of implementing the data and 
algorithm aspects of the managed readiness model in Arena.  Therefore, it was proposed that 
relational database technology could provide an ideal platform for implementing the large-scale 
data storage and data manipulation algorithms required by the MARS model.  This implies the 
use of a database, not only as a data source, but also as the runtime computational workspace used 
by the Arena simulation.  This approach was termed a Simulation Runtime Database (SRDB). 
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7 The Simulation Runtime Database Approach 

In the SRDB approach, the database’s tables replace the runtime memory arrays used by Arena, 
and the database’s own algorithms replace significant portions of the DES algorithms previously 
implemented within the Arena process.  Further, the scenario data never leave the database for 
runtime processing.  Instead, the simulation directly manipulates the database to advance the 
simulation state.   Access to the database is managed using Arena’s VBA automation capability.  
Figure 7 illustrates the model architecture using the SRDB.  Note that the data and algorithm parts 
of the model have been moved into the SRDB which drastically simplifies the model architecture 
compared to MARS V1 as shown in Figure 5, above. 

 

Runtime 
Data & 
Algorithms 

VBA VBA 

SRDB 

ARENA 

Process Logic

Figure 7: Architecture and data flow of the MARS V2 Managed Readiness Model using the 
SRDB. 

The SRDB approach specifically addresses the major technical issues identified in MARS V1.  
The impact of the SRDB on the four problem areas described in the Section 5 are detailed below. 

7.1 Data Volume 

A database provides data storage that is not limited by available memory because it resides on the 
hard drive.  Databases are still limited in their size, in some cases by the software (MS Access has 
a 2 gigabyte file size limit), and ultimately by hard drive space (on the order of 100s of gigabytes 
to terabytes).  But even in the case of MS Access, the 2 gigabyte file size limit provides 
substantially more data processing capacity than a typical 2 gigabyte memory space because 
memory must be shared with all other data and programs running on the computer, and access to 
memory is controlled by the operating system. 

Database interfaces are also standardized for most programming languages which means that one 
database can be swapped for another with minimal impact on the other parts of the managed 
readiness model.  For example, if the 2 gigabyte file size cap on MS Access becomes a limitation, 
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it should be possible to upgrade to a more powerful database management system without altering 
the Arena model. 

7.2 Data structures 

Databases store data in tables which are very powerful data structures that provide many 
advantages over the static arrays provided by Arena.  Most importantly, tables are dynamic in that 
they automatically grow and shrink anytime records are added to or deleted from the table.  Thus, 
the simulation developer is no longer responsible for managing the size of the simulation’s 
runtime data structures.  Further, tables provide convenient features making them ideal for large-
scale data management: they are inherently 2 dimensional with named columns and column data 
formats; column relationships can be established (1:1, 1:∞, ∞:1) that can be enforced by the 
database; and the data are concurrently accessible through standard programming interfaces by 
any software. 

Databases also provide advanced features designed to prevent data corruption while actions 
(known as transactions) are performed on it.  For example, during a data update step in MARS 
V1, an unhandled algorithm error condition could leave the in-memory data in an invalid state 
where some but not all of the updates completed successfully.  The simulation would then 
proceed using this corrupted data.  The same data update step performed on a database would 
report the error, stopping the simulation, and roll all the data back to its initial valid state before 
the transaction started.  This facilitates debugging and improves the reliability of simulation 
results. 

7.3 Algorithms 

Relational databases provide a standard language for manipulating data stored in tables called 
Structured Query Language (SQL) [9].  An SQL engine is implemented by the database which 
parses and executes SQL statements.  SQL queries can be used to insert and delete data, sort data, 
search for data linked across multiple tables subject to complex criteria, aggregate results 
providing properties of the data (counts, sum, mean, standard deviation, variance, minimum, 
maximum) update data using regular mathematical expressions and parameters, among many 
other capabilities. 

Within the context of the managed readiness model, SQL statements can be used at runtime to 
instruct the database to carry out the complex data processing algorithms that were previously  
implemented within the Arena DES process in MARS V1.  This would replace the largest and 
most complex parts of the MARS V1 model with concise SQL statements that are easy to create 
and modify.  For example, the bubble sort algorithm shown in Figure 6, which requires seven 
blocks and several custom variables and attributes, would be replaced by one line of VBA code 
that executes an SQL statement: SELECT * FROM Table ORDER BY Rank. 

7.4 Performance 

The SRDB approach almost completely eliminates the overhead time observed in MARS V1 
simulations.  Firstly, the data import and export steps are eliminated because the data never leave 
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the database.  Runtime data processing simply occurs directly on the source database.  Secondly, 
the smaller size of the DES model, by virtue of replacing DES algorithms with SQL, substantially 
reduces the number of initialization steps that precedes a run.  Small simulation scenarios will 
therefore run very quickly because of the small overhead. 

However, because the SRDB is an entirely different architectural approach from MARS V1, it 
was not clear how the execution speed of the simulation would be affected.  Intensive hard drive 
input/output (I/O) activity during runtime was expected to impose a performance penalty.  But the 
use of optimized database algorithms and the simpler model implementation had the potential to 
improve execution speed.  A full scale trial simulation of comparable scale and complexity to 
those conducted in MARS V1 would be required to completely assess the performance impact of 
the SRDB approach.  Such a trial will be discussed later in Section 8. 
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8 Feasibility of Implementing the SRDB in Arena 

In order to assess the technical feasibility of the SRDB approach, a small prototype was 
developed in Arena and a simple SRDB was built in MS Access.  This prototype had to 
successfully demonstrate the following capabilities in order to prove that the SRDB approach was 
feasible: 

1. Establish a connection to the database that can be used during Arena execution. 

2. Invoke SQL commands at runtime from within the Arena discrete event process to 
manipulate data in the database. 

3. Read and react to SQL query results within the Arena discrete event process. 

Arena’s VBA programming interface provides low level control over the simulation including 
access to variables, entity attributes, and states of blocks in the process diagram.  The user can 
implement VBA subroutines that are automatically called before simulation execution starts and 
after it finishes.  Additionally, Arena process building blocks include a VBA block which can be 
embedded in the discrete event logic.  The VBA block executes a user-implemented subroutine 
when an Arena entity passes through it.  The integration of VBA in Arena provided the flexibility 
needed to establish a user-controlled interface with the database. 

For the prototype, a minimal DES process was built and the following elements were added to 
demonstrate the three requirements listed above.  

1. A VBA subroutine was written that establishes a global connection to the database using the 
Microsoft Data Access Objects (DAO) 3.6 Object Library.  This subroutine was set up so that 
it would run just prior to starting the simulation so that the database connection would be 
open during execution. 

2. A VBA block was inserted into the process diagram so that when an entity enters the block 
during the simulation, a subroutine is called that sends an SQL update command via the DAO 
interface to alter data in the database. 

3. A second VBA block was inserted in the process diagram that sends an SQL query to the 
database and reads the resulting dataset.  The code then adjusts the attributes of the entity 
depending on those results. 

The third element above is a crucial test demonstrating that the state of an entity can be altered 
depending on the result of a database query.  This allows the simulation to respond to information 
obtained from the database.  For example, when an activity has assembled its resources, it must 
query the database to determine if the resources it found are sufficient for the activity to run.  The 
attributes of the active Arena entity would then be updated in the VBA code based on the query 
result.  Subsequent DES process logic can then respond to the entity’s attributes by directing the 
activity either to run as scheduled if sufficient resources were found or else to be cancelled. 
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Testing of this prototype was successful in demonstrating the three criteria listed above.  This 
result proved that the SRDB approach was feasible within Arena.  While the full performance 
impact of this approach was not known, its potential to address all the major issues identified in 
MARS V1 justified undertaking the development effort to implement MARS V2 using an SRDB. 
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9 MARS V2 Model Architecture 

Implementing the SRDB for the MARS V2 model consisted, first, of modifying the original 
scenario database from MARS V1 in order to take on the role of the SRDB and, second, of 
rebuilding the managed readiness model to take advantage of the new capabilities provided by the 
SRDB. 

9.1 Implementing the MARS V2 SRDB 

To create the SRDB, the original scenario database from MARS V1 was altered to handle runtime 
data processing tasks.  This consisted of adding tables to handle two major runtime functions.  
First, object state tables were created to store the current state of all dynamic objects in the 
simulation.  These include the resource attribute table, the slot attribute table, various tables that 
define resource groups and their current activities, and several tables tracking the states of 
activities and tasks.  Second, temporary tables were created to store the intermediate results of 
data processing steps.  These tables were used for many operations throughout the simulation 
including storing attribute requirement lists, attribute update instructions, part type requirements, 
lists of required resources and lists of resource candidates. 

The storage of simulation input and output data was already a function of the MARS V1 scenario 
database so these tables did not change except in how they were used.  In MARS V2, the model 
did not import the input data at the start of the simulation; it accessed it directly when required at 
runtime.  And the model did not export simulation output back to the database after the 
simulation; it wrote directly to the output tables as simulation events occurred. 

9.2 Implementing the MARS V2 Arena Process Logic 

Integrating the SRDB into the MARS V2 model process logic followed the methodology used in 
the feasibility study described in Section 8.  A VBA subroutine that ran just before the start of the 
simulation established a global connection to the SRDB using the DAO library.  Then, VBA 
blocks placed within the process logic carried out the data processing tasks associated with 
simulation events.  The VBA code used SQL to manipulate and query the database and reacted to 
query results. 

The DAO interface allows SQL queries to take two forms.  First, SQL scripts can be defined 
directly in the VBA code and sent to the database.  This method is appropriate for simple queries 
such as adding and deleting records and for querying single tables with straightforward criteria.  
However, for more complex queries, the SQL statement can become very long and difficult to 
interpret.  For these larger queries, a second method was implemented which involves defining 
the query as an object in the database.  Most databases provide this capability.  In MS Access, 
SQL query objects can be designed using a visual interface that allows very complex queries to 
be built quickly and easily.  Query fields, table joins, nested queries, field criteria and parameters 
are represented graphically in the MS Access query design tool.  The query is given a name and 
saved as an executable object in the Access database.  The VBA block code in the Arena model 
then calls the query object by name, passing in the necessary parameters, and retrieves the result 
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and acts on it if necessary.  This approach very efficiently exploits a powerful commercial tool to 
implement the complex data-processing algorithms used in the MARS model.  Data operations 
that would take weeks to implement as a DES process in MARS V1 can be developed in minutes 
using the Access query design tool. 

All the algorithms implemented in Arena in MARS V1 were replaced with VBA code blocks that 
sent SQL commands to the database by one of the two methods described above.  This drastically 
simplified the Arena DES process.  For example, the Arena-implemented sorting algorithm 
shown previously in Figure 6 would be implemented in MARS V2 as shown in Figure 8 using a 
VBA block and SQL.  In this case, when the SQL command is invoked, the database responds by 
retrieving the requested data, sorting it, creating a temporary result recordset in memory and 
returning this to the Arena VBA block to be read and acted upon.  In general the SRDB approach 
makes available the most powerful aspects of database technology to the MARS developer in 
implementing the managed readiness model. 

For further detail, Annex A provides instructions for setting up an Arena model to interact with 
MS Access using VBA.  Annex B provides VBA sample code that shows how to connect to the 
database, send SQL commands, and retrieve query results from within Arena. 
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10 Performance of the SRDB 

Because the MARS V2 runtime data resides in the SRDB on the hard drive, the approach was 
expected to suffer a performance penalty as hard disk I/O is significantly slower than memory 
I/O.  However, other aspects of the SRDB approach improved overall performance and 
compensated for the cost of increased hard disk I/O.  Ultimately, the SRDB approach was found 
to perform better than the conventional in-memory approach in MARS V1.  Table 2 compares the 
run times measured previously in MARS V1 to those of MARS V2 using a scenario that matched 
as closely as possible the scenario described in Section 5.4.  While MARS V2 saved time by 
nearly eliminating the runtime overhead, note that the pure execution time was also less than half 
that of MARS V1. 

Table 2: Comparison of MARS V1 and V2 simulation run times. 

Time (hh:mm:ss) 
Run Step MARS V1 MARS V2 
Initialize 0:09:42 0:00:42 
Import Data 0:12:58 0:00:00 
Execute 6:08:58 2:49:57 
Export Data 0:02:30 0:00:00 
Total 6:34:08 2:50:39 

The improved execution speed of MARS V2 using the SRDB was attributed to several factors 
that positively affect performance.  The impact of these factors is described below. 

If the simulation runs in memory, the input data must be moved from the hard disk to memory 
before the simulation starts and the output data must be moved back the hard disk after it finishes.  
The process of writing from the database to text files, reading the text files into Arena’s memory, 
writing output events to text files and reading the output text files back to the database involves 
multiple read/write operations on the hard drive for the entire input and output datasets.  Thus, 
even for memory-based models, extensive hard-disk I/O is unavoidable.  Additionally, much of 
the data import step is often wasted effort because a given simulation scenario will frequently 
only access a fraction of the whole input dataset.  The SRDB approach is more efficient in that it 
only accesses what data are necessary.  Thus, it is not necessarily true that memory-based 
simulations involve less hard disk activity than the SRDB approach. 

Developing algorithms for processing data structures is a complex subject.  Optimizing these 
algorithms for scale, performance, and memory efficiency is the occupation of a field of computer 
science.  The algorithms provided by databases and invoked through SQL have the benefit of 
being mature, robust, and specifically optimized for scale.  Conversely, in most instances 
algorithms built using DES process logic are not well tested and are unlikely to scale well as the 
problem size increases.  For example, in MARS V1, DES search algorithms were implemented as 
exhaustive searches which scale proportionally with the number of items to be searched, O(n) for 
n items in big-O notation [10].  In MARS V2 using the SRDB, the indexing of table fields allows 
searches to be performed much more efficiently than O(n).  For MS Access tree-based indexes, 
the search time is proportional to the logarithm of the number of items, O(log(n))[10].  While 
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each individual data access event is slower in the database than in memory, given a list of 1000 
items, the database’s search requires two orders of magnitude fewer steps on average than an 
exhaustive search.  Further optimizations in databases, such as keeping indexes in memory, and 
the efficient use of the hard drive cache bring overall database performance close to memory I/O 
performance for many data operations. 

Moving the data and algorithm components of MARS into the database also provides options for 
speed optimization independent of the process logic which remains in Arena.  In the MARS V2 
SRDB, it was possible to improve performance substantially through the use of table field 
indexing and the design of queries.  If further performance gains are required in the future, it is 
possible to switch to one of several databases designed specifically for performance.  If true 
memory-based performance is desired, some databases allow the creation of temporary tables that 
reside in memory, such as MySQL [11], and some databases can be run entirely in memory, such 
as SQLite [12].  These in-memory database options would provide the benefits of tables and SQL 
and would eliminate the performance penalty of hard-disk access.  However, an in-memory 
database would still have to import from and export to a permanent database on the hard-disk. 
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11 Conclusions 

This paper described technical limitations in the architecture of the MARS V1 managed readiness 
model.  LFORT devised a novel solution to address these limitations in which the powerful data 
management and data processing capabilities of relational databases were incorporated into 
simulation execution.  This was termed a Simulation Runtime Database, or SRDB, approach and 
was implemented in MARS V2.  This provided MARS V2 the ability to process a much larger 
volume of data using more powerful data structures.  It also allowed SQL to be used to invoke 
complex data processing algorithms and produced a substantial performance increase compared 
to MARS V1.  Ultimately, the SRDB architecture provided a more powerful foundation on which 
to implement important aspects of modelling readiness for the CF that were not possible in  the 
MARS V1 architecture, including the dynamics of the establishment.  The design and 
implementation of these new features will be described in future publications on MARS V2.  In 
general, a much greater degree of technical flexibility was achieved by implementing the SRDB 
architecture, and this will allow MARS V2 to meet the increasingly complex simulation needs of 
CF decision makers. 
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Annex A Setting up Arena for MS Access Connectivity 

1. Attach the Blocks template (if not already present in the templates panel) 

a. Open an Arena project file 

b. Under the File menu, select Template Panel > Attach… 

c. Select Blocks.tpo and click Open 

2. Add a VBA block from the Blocks template to the model, as in Figure A-9 

 

 

Figure A-9: Sample Arena model with VBA block 

3. Double-click the VBA block to enter the VB Editor 

4. Setup VB References to connect to Access databases 

a. In the VB Editor, under the Tools menu, select References… 

b. Check Microsoft DAO 3.6 Object Library 

c. Click OK 
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Annex B VBA Sample Code for Interacting with MS 
Access from Arena 

'connect to a database 

Dim dbScenarioDB As Database 

Set dbScenarioDB = OpenDatabase("Data.mdb") 

 

 

'execute action SQL queries 

dbScenarioDB.Execute "DELETE * FROM [Scenario Information]", dbFailOnError 

dbScenarioDB.Execute "INSERT INTO [Scenario Information] VALUES (365, 20)", 
dbFailOnError 

     

     

'open the result of an SQL select query 

Dim rsTable1 As Recordset 

Set rsTable1 = dbScenarioDB.OpenRecordset("SELECT * FROM [Personnel] WHERE Age > 25") 

     

     

'read the values from the query result 

Dim Age 

Dim QualLevel 

     

If rsTable1.RecordCount > 0 Then 

     

    rsTable1.MoveFirst 

     

    Do While Not rsTable1.EOF 

         

        Age = rsTable1("Age") 

        QualLevel = rsTable1("Qual Level") 

        rsTable1.MoveNext 

             

    Loop 

         

End If 

     

rsTable1.Close 

     

     

'execute a query created in Access with parameters 

Dim QDef As QueryDef 

Set QDef = dbScenarioDB.QueryDefs("UpdateAge") 

QDef.Parameters("pYears") = 1 

'QDef.Parameters("2nd parameter") = x 

'QDef.Parameters("3rd parameter") = y 

'... 

QDef.Execute dbFailOnError 

QDef.Close 

 

 

'open the result of a select query created in Access with parameters 

Set QDef = dbScenarioDB.QueryDefs("QualifiedPers") 
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QDef.Parameters("pMinQual") = 10 

Set rsTable1 = QDef.OpenRecordset 

QDef.Close 

'access the records in rsTable1 as above 

rsTable1.Close 

     

dbScenarioDB.Close 
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