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For spherical waves that radiate from a point source in a homogeneous fluid and propagate across
a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly
from the geometric acoustic approximation if either the source or receiver is near the interface �in
acoustic wavelengths� or if the stationary phase path is near the critical angle. In such cases, the
entire acoustic field must be considered, including inhomogeneous waves associated with diffraction
�i.e., those components that vanish with increasing frequency�. The energy flow from a
continuous-wave monopole point source across the boundary is visualized by tracing acoustic
streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity
vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with
the “Snell’s law” or stationary phase path. Also, plots of acoustic energy streamlines do not display
unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of
refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to
Snell’s law of refraction of ray paths across sound speed discontinuities. Examples include
water-to-seabed transmission and water-to-air transmission.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2931956�
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I. INTRODUCTION

Geometric ray tracing, which is based on an approxima-
tion to solutions of the acoustic wave equation, provides an
intuitive visualization of propagation of an acoustic field
from source to receiver,1 but has limitations. Being the high-
frequency limit of the solution, geometric ray theory does
not include diffracted components of the field. Also, geomet-
ric rays only coincide with the direction of energy flow when
the medium has slowly varying properties and negligible re-
flection and diffraction. To correctly determine energy flow,
the full wave-theory solution to the acoustic wave equation
�with appropriate boundary conditions� is required, including
reflected and diffracted components of the field. However, it
would be instructive to have a raylike visualization of the
acoustic field that portrays the propagation of energy from
source to receiver, especially in cases where diffraction
and/or reflection significantly alter the field. Such a visual-
ization is provided by the acoustic energy streamline �also
called the acoustic streamline or the intensity streamline�.
The acoustic energy streamline is the curve which at every
point is tangent to the direction of the local average acoustic
intensity vector, that is, the product of acoustic pressure and
acoustic particle velocity averaged over one wave cycle.2

The acoustic streamline is not a new concept, having
previously been applied to homogeneous media with mul-
tiple coherent sources and nearby boundaries. Waterhouse et
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al.3,4 introduced continuous streamlines as an alternative to
grids of intensity vectors. Skelton and Waterhouse5 and
Zhang and Zhang6 applied the method of Ref. 3 to radiation
from a spherical shell. These papers established not only that
sound energy from cw sources propagates along streamlines
but also that adjacent streamlines constitute a streamline tube
of energy flow, as there is no energy flow across streamlines.
In this way, the magnitude of acoustic intensity varies in-
versely as the cross-sectional area of the streamline tube, a
property already employed in ray acoustics.7

In this paper, the acoustic streamline concept is applied
to problems involving propagation of acoustic waves across
fluid-fluid boundaries, that is, propagation from a
continuous-wave �cw� monopole source in a semi-infinite
homogeneous fluid medium having a plane boundary with a
second semi-infinite homogenous fluid medium with differ-
ent density and sound speed. Specifically, two examples are
considered: water-to-seabed transmission and water-to-air
transmission. The acoustic fields and streamlines in these
relatively simple environments provide a variety of some-
times surprising physical results.

At the outset it should be emphasized that, unlike rays,
streamlines do not represent alternate solutions or approxi-
mations to the acoustic field. The acoustic field must be
known for streamlines to be traced. Thus, there are no sav-
ings in computational time or efficiency; there is only the
benefit of an improved visualization of the average energy
flow in the acoustic field.

The current analysis is restricted to cw fields. In the case
of time-dependent fields �pulse propagation, for example� in-

volving multipaths with different times of flight, geometric
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ray paths and acoustic streamlines are more likely to coin-
cide as the pulse components propagating via the multipaths
may not overlap at the receiver; however, diffraction may
still have a role to play in time-dependent fields. Even for cw
fields, streamlines and rays can be practically the same par-
ticularly in slowly varying media away from reflectors and
diffractors.

The analysis below is limited to fluid media. Although it
would be more realistic �and likely interesting� to include the
elastic properties of the lower medium in the water-to-seabed
case, these properties are assumed to be not important for the
purpose at hand. This is a common approximation made
when the seabed is unconsolidated sediment.8

II. THEORY

A. Integral representation of acoustic fields

Referring to Fig. 1, consider a homogeneous fluid half-
space of density �1 and sound speed c1 in contact with a
second �lower� homogeneous fluid half-space of density, �2

=g�1, and sound speed, c2=c1 /n, separated by the plane
boundary, z=0. �That is, the lower:upper density ratio is g
and the upper:lower speed ratio, or index of refraction, is n.�
A monopole cw source of angular frequency � is placed in
the upper medium at height z=zs, and the receiver could
either be in the upper medium �z�0� or the lower medium
�z�0� at horizontal range r. The exact wave-theory solution
for the acoustic potential is well-known;9 however, there is
no straightforward functional form, only a representation
based on expanding the spherical waves into an integral over
plane waves traveling in all directions. Taking advantage of
the cylindrical symmetry, the incident acoustic velocity po-
tential reduces to the single integral

�inc =
eik1

�r2+�zs − z�2

�r2 + �zs − z�2

=
ik1

2�
�

i�

�/2

J0�k1r cos ��eik1�zs−z�sin � cos �d�

�z � 0� , �1�

in which J0 is the Bessel function of zero order, k1=� /c1 is
the wavenumber in medium 1, and � is the integration vari-
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FIG. 1. Geometry of transmission from a point source in one homogeneous
medium to a receiver in another, separated by a plane boundary, the case
c2�c1.
able. �There is an implied time factor e .� Note that the
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incident potential has a source singularity at �r ,z�= �0,zs�, a
fact which has computational consequences.

The integration contour runs from +i� in the �-plane
along the positive imaginary axis to the origin and then along
the real axis to � /2. Equation �1� represents an integral over
cylindrical waves with horizontal wavenumber k1 cos � and
vertical wavenumber k1 sin �, so � represents the grazing
angle of the wave relative to the boundary plane. Waves
associated with real � are the familiar homogeneous waves
�constant amplitude along constant phase fronts�, while
waves associated with imaginary � are inhomogeneous
waves10 �evanescent amplitude along constant phase
fronts�.11 Inhomogeneous waves are necessary to represent
the near field of the point source and diffracted components
of the reflected and transmitted fields. There exists an
alternate—yet mathematically equivalent—formulation that
uses wavenumber integration, a basis for several computa-
tional wave propagation codes.12–14

The reflected potential �which must be added to the in-
cident potential to represent the entire field in the upper me-
dium� is

�refl =
ik1

2�
�

i�

�/2

J0�k1r cos ��eik1�zs+z�sin �R���cos �d�

�z � 0� �2a�

and the transmitted potential �the entire field in the lower
medium� is

�trans =
ik1

2�g
�

i�

�/2

J0�k1r cos ��eik1�zs sin �−z�n2−cos2 ��

	T���cos �d� �z � 0� , �2b�

in which z is positive upward and R��� and T��� are the
familiar plane-wave reflection and transmission coefficients
for pressure, respectively,

R��� =
g sin � − �n2 − cos2 �

g sin � + �n2 − cos2 �
�3a�

and

T��� =
2g sin �

g sin � + �n2 − cos2 �
. �3b�

The acoustic pressure and two components of particle
velocity in either medium are given by

p = �
��

�t
= − i��� , �4a�

vr = −
��

�r
, �4b�

vz = −
��

�z
. �4c�

In this paper, the integrals in Eqs. �2a� and �2b� will be
evaluated numerically, so the derivatives in Eqs. �4a�–�4c�
need to be applied before the integration. Note the factor g in

the denominator of Eq. �2b�; this is needed to ensure that
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both the pressure and the vertical component of the particle
velocity are continuous at the boundary, and it also governs
the ratio of the horizontal components of particle velocity on
either side of the boundary, as will be seen in Sec. V.

B. Asymptotic evaluation, phase functions, and Snell’s
law

Brekhovskikh9 and Brekhovskikh and Godin12 derive
the geometric acoustics limit of the reflected and transmitted
fields, using Eqs. �2a� and �2b� as starting points, applying
the method of steepest descent. These results are not neces-
sary for the streamline calculations below, but the stationary
phase paths are of interest, as they are the geometric ray
paths. Because the media are homogeneous, the ray paths in
both media are straight line segments with associated grazing
angles.

For a receiver in the upper medium, the rays are simply
straight lines: �a� for the direct path, a straight line from the
source at height zs above the boundary to the receiver at
horizontal distance r and height z, and �b� for the reflected
path, a straight line from the image source at depth zs below
the boundary to the same receiver in the upper medium
straightforward. This image construction ensures that the
angle of incidence equals the angle of reflection for the re-
flected ray, a straightforward consequence of the stationary
phase condition applied to the reflected field.

For a receiver in the lower medium, the phase of the
transmitted field is


trans = k1r cos � + k1�zs sin � − z�n2 − cos2 �� �z � 0� .

�5�

The geometric ray angles follow from the stationary phase
condition, that is, �
 /��=0. In this case, the stationary
phase path is given by

r = zs cot �1 − z cos �1/�n2 − cos2 �1

= zs cot �1 − z cot �2, �6�

in which �1 is the ray angle in the upper medium and �2 is
the ray angle in the lower medium, given by

cos �1 = n cos �2, �7�

which is Snell’s law of refraction.15 For a given source-
receiver geometry, Eq. �6� is numerically solved for �1 and
then Eq. �7� gives �2. In the geometric acoustic approxima-
tion, the wavefront is perpendicular to the ray, and the par-
ticle velocity is parallel to the ray. Later, these geometric ray
propagation angles will be compared to the direction of en-
ergy flow.

C. Critical angle

Note that for n�1 there is a critical angle �c=cos−1 n
dividing the range of � into two regions: ���c and ���c. In
the absence of absorption, for ���c, the vertical wavenum-
ber in the lower medium is real, and the reflection and trans-
mission coefficients are real. In this domain of angles, the
reflected and transmitted plane waves are homogeneous, and

the reflected wave has reduced amplitude. For ���c, the
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vertical wavenumber in the lower medium is imaginary, and
the reflection and transmission coefficients are complex. The
reflected plane wave is homogeneous �with a phase shift and
unreduced amplitude� and the transmitted plane wave is in-
homogeneous. The presence of these inhomogeneous trans-
mitted waves just beneath the boundary has significant influ-
ence on the energy flow there and have, in fact, been
observed in nature16 and in propagation models.17–19

Conventionally, absorption in either medium is intro-
duced by adding a small negative imaginary component to
the corresponding sound speed. �If c→c�1− i��, the attenua-
tion in dB/wavelength becomes �40� log10 e���54.6�.� The
index of refraction, reflection coefficient, and transmission
coefficient become generally complex. Waves that are purely
homogeneous or purely inhomogeneous retain their principle
characteristics but acquire a small dose of the opposite char-
acteristics.

III. METHOD OF COMPUTATION

All computations are performed in MATHEMATICA 6 �Ref.
20� on a typical laptop computer with an Intel Pentium
2 GHz processor.

A. Calculating acoustic field variables

The computation of the acoustic field necessarily de-
pends on whether the field point is on the same side of the
boundary as the source or the other side of the boundary.
Assuming the source is in the upper medium, if the receiver
is also in the upper medium, the total field is the sum of the
incident field and the reflected field; if the receiver is in the
lower medium, the total field is simply the transmitted field.

When needed, the field values for pressure and particle
velocity are computed from Eqs. �1�, �2a�, and �2b�. In the
upper medium, �1=�inc+�ref. The incident field �inc has
analytic form, so no integration is needed, as Eqs. �4a�–�4c�
can be applied directly and the result can be evaluated. �In
principle, the integral for the incident field could be com-
bined with the integral for the reflected field, but this intro-
duces instabilities in the numerical integral in the vicinity of
the source singularity.� For the reflected field �refl, the inte-
gral in Eq. �2a� is numerically calculated, applying Eqs.
�4a�–�4c� to the integrand first. In the lower medium, �2

=�trans, and again Eqs. �4a�–�4c� must be applied to the in-
tegrand of Eq. �2b� first. The calculation uses the MATH-

EMATICA function NIntegrate, an adaptive algorithm that
subdivides the range and chooses the appropriate method
according to the nature of the integral. Integration over real-
valued angles and imaginary-valued angles must be per-
formed separately, and the latter integral must be truncated at
a finite value �of the order 100 divided by the source fre-
quency in kilohertz, enough to span significant contributions
from inhomogeneous waves�. Although the integrands
are naturally oscillatory, this poses no difficulty for
MATHEMATICA at the low frequencies where diffraction ef-
fects are significant. �Poor convergence is flagged by
MATHEMATICA, which also suggests remedies.� Including re-
alistic values of acoustical absorption dampens the oscilla-

tions somewhat and aids convergence. For a given environ-
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ment, all three acoustic field variables at a point are
calculated in about a second.

B. Acoustic intensity of a continuous-wave field

The instantaneous acoustic intensity �the vector of
acoustic energy flux� is the product of pressure and
velocity.21 For a cw field, writing the acoustic potential in
terms of real-valued amplitude and phase functions,

��x,t� = A�x�ei�
�x�−�t�, �8�

the instantaneous intensity is, from Eqs. �4a�–�4c�

j = Re p Re v = ��A2 � 
 sin2�
 − �t�

− ��A � A sin�
 − �t�cos�
 − �t� . �9�

Note that the instantaneous intensity is the sum of a pulsating
�nonreversing� component in the direction of the gradient of
phase and an oscillatory �zero-average� component in the
direction of the gradient of amplitude. Averaging over one
cycle of time, the average intensity is22

	j
 = 1
2��A2 � 
 � 1

2Re p*v . �10�

The average intensity governs the net transport of energy,
which is in the direction of the gradient of phase. The instan-
taneous intensity is always in the direction of the particle
velocity, which may not be the same as the direction of net
energy flow. This is discussed by D’Spain et al. in detail.23

For visualizing net energy flow, it is the average intensity
that is relevant.24

C. Tracing acoustic streamlines

Acoustic streamlines are tangent everywhere to the di-
rection of the local average intensity vector, so the first step
in tracing streamlines is to calculate the acoustic intensity
and determine its orientation. For monopole sources in lay-
ered media, we can restrict our view to the single plane con-
taining source and receiver. The grazing angle of the average
intensity vector is �after Ref. 3�

� = tan−1�	jz
/	jr
� , �11�

and the differential equation of the streamline in parametric
form is

dz/ds = sin ��r,z� , �12a�

dr/ds = cos ��r,z� , �12b�

in which ds is the element of arc length along the streamline.
The streamline is traced in a simple two-stage marching-
style solution based on algorithm with stepsize 
s

ẑi = zi + 1
2
s sin ��ri,zi� , �13a�

r̂i = ri + 1
2
s cos ��ri,zi� , �13b�

ˆ ˆ
zi+1 = zi + 
s sin ��ri,zi� , �13c�
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ri+1 = ri + 
s cos ��r̂i, ẑi� . �13d�

In words: From a given point �ri ,zi�, the direction ��ri ,zi� of
the intensity vector is determined, and a half step 
s /2 is
taken in that direction to a provisional point �r̂i , ẑi�. At this
provisional point, a revised direction ��r̂i , ẑi� of the intensity
vector is determined. Finally, a full step 
s is taken from the
original point �ri ,zi� in the direction ��r̂i , ẑi�. The final posi-
tion �ri+1 ,zi+1� is the estimated next point on the streamline.
Without the half step, this would be the Euler method; the
modification using the half step has lower error. Overall error
is minimized by making the step size sufficiently small.

In practice, a variable step size 
s is used that adapts to
the local curvature of the streamline. The distance between
the provisional point �r̂i , ẑi� and the point halfway between
the original point �ri ,zi� and the final point �ri+1 ,zi+1� is com-
pared to two threshold values, t1 and t2, with t1� t2. As long
as

t1 � ��ri+1 − ri,zi+1 − zi�/2 − �r̂i − ri, ẑi − zi�� � t2, �14�

the step size is maintained; should the difference drop below
t1, the step size is increased to speed up the streamline trac-
ing; should the difference exceed t2 the step size is reduced
to improve accuracy. In this paper, in which the source-
receiver distance is only a few meters, the starting step size is
typically 0.05 m, the error thresholds are of the order
10−4 m, and t2=2t1. When needed, the step size is altered up
or down by the factor of �2. The number of steps required to
trace a streamline can vary between around 10 to several
hundred, depending on the geometry, source frequency, and
complexity of the field.

When the streamline crosses a density discontinuity,
care must be taken to account for the discontinuous change
of direction that occurs. �The law of streamline refraction at
boundaries will be discussed in Sec. V.� If the new point lies
across the boundary from the previous point, the crossing
position is interpolated and that becomes the new point. The
step size is reduced and the calculation resumes in the new
medium.

In the case of multipath interference, the structure of the
acoustic field becomes finer as frequency increases and
wavelength decreases. The steps of a streamline trace be-
come smaller and smaller. This makes streamline tracing in
such cases more expensive, computationally speaking, as fre-
quency increases. On the other hand, when there are no mul-
tipaths, the amplitude of any diffracted field component de-
creases with increasing frequency, so convergence to the
high-frequency limit is more rapid in this case.

The above streamline tracing method is elementary, and
without a doubt it could be improved upon for speed while
maintaining accuracy; however, it is adequate for the purpose
at hand, and is validated by tracing streamlines in both di-
rections, discussed below.

1. Streamline between source and receiver

To trace a streamline between source and a receiver at a
specified location, the initial field point is chosen to be the
receiver location, the direction of travel is deemed to be the

opposite of the intensity vector, and the streamline tracing
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procedure outlined above �presumably� finds its way back to
the source. As the source is approached, the incident
spherical-wave field dominates, becoming a “sink” for the
streamline. The calculation is terminated at a point suitably
close to the source. To check the calculation, the streamline
is relaunched at the terminal point, with the direction of
travel the same as the intensity vector. If the initial step size
and error tolerances are chosen well, the return streamline
will pass the receiver at an acceptably small distance. Some
tuning of the numerical parameters is needed to achieve con-
vergence, which is judged by eye. This procedure is a nec-
essary check if streamline fans are to be computed.

2. Tracing of streamline fans

A streamline fan is a group of streamlines launched from
the source, usually at equally spaced angles around a central
streamline. According to the development in this paper,
sound energy from cw sources propagates along streamlines;
therefore streamlines in a streamline fan can be viewed as
cross sections of streamline tubes of equal energy flow, as
there is no energy flow across the tube wall. In this way, the
downstream spacing of streamlines provides an indication of
the relative intensity �see Ref. 4�. To ensure this interpreta-
tion, the launch radius must be sufficiently small that any
reflected field is insignificant at the launch point; for the
computations in this paper, a launch radius of about 1 /20 of
the source-boundary distance is used and the ratio of re-
flected to incident field is verified to be less than 1 /100 be-
fore proceeding. Highly dissimilar media demand a smaller
launch radius, owing to the strong reflection from the bound-
ary.

IV. COMPUTED EXAMPLES

Two examples of cross-boundary acoustic transmission
are provided: one water-to-sediment and the other water-to-
air. In each case, 31 streamlines or rays are launched into
180°, 6° apart.

A. Water-to-sediment transmission

For the water-to-sediment example, inspired by the
SAX04 experiment,25,26 the environment used is c1

=1531 m /s, c2=1687 m /s, sediment attenuation
=0.23 dB /wavelength, and g=2.02. �That is, c2=1687
−7.1i m /s or n=0.9075+0.0038i.� The critical angle
�Re�cos−1 n�� for this environment is �c=24.8°. The source is
at height zs=2.58 m. �In the experiment, the sensors were
between 7 and 9 m from the source at less than 1 m depth.�
Figures 2�a�–2�c� show the streamline fans at frequencies of
150, 500, and 1500 Hz. Figure 2�d� shows the corresponding
ray fan.

Whereas the geometric ray paths are straight lines, the
streamlines are, in general, curved, owing to constructive
interference between waves. Note that the streamlines may
cross the critical ray �heavy dashed line�, that is, the ray
incident at the critical angle. Also note the discontinuous
change in streamline direction at the boundary. �This is dis-

cussed in Sec. V in detail.�
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The structure of the field in the upper medium becomes
increasingly complicated as frequency increases, owing to

FIG. 2. �Color online� Streamlines of energy flow for water-to-sediment
transmission: �a� 150 Hz, �b� 500 Hz, �c� 1500 Hz, and �d� the correspond-
ing ray paths. Solid lines: streamlines ��a�–�c�� or incident, transmitted, and
totally reflected rays �d�. Dashed lines: partially reflected rays. Heavy
dashed line: critical ray. Associated acoustic wavelengths in water: �a�
10.2 m, �b� 3.1 m, �c� 1.0 m.
the interference of the incident and reflected fields at shorter
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wavelengths. As frequency increases in a cw multipath envi-
ronment, a streamline will not converge to a ray, unless all
other paths are increasingly attenuated; however, the stream-
line should converge to a limiting trajectory around which
the streamline weaves with fine scale structure. There is evi-
dence of this in Fig. 2�c�, particularly for those streamlines
that enter the sediment.

In regions where streamlines have significant curvature,
linear extrapolation of the local intensity vector would not be
a good indicator of the path of energy transport to that point.
One even sees streamlines enter the lower medium and then
turn back and return to the upper medium well downstream.
This return of energy to the upper medium is reminiscent of
“head waves” or “lateral waves” that travel substantially at
the speed of the lower medium but are sensed in the upper
medium, and which have practical application in seismoa-
coustic inversion.26

Beyond the point at which the critical ray ends, just
under the boundary, ray theory predicts a “shadow zone” of
low intensity. Diffractive wave corrections to ray theory27 in
this region can be interpreted as a vertically inhomogeneous
wave traveling horizontally in the lower medium, associated
with a perfectly reflected ray striking the boundary. This in-
homogeneous wave is strongest at the boundary, penetrates
deeply at lower frequencies and vanishes in the limit of in-
finite frequency. The streamline visualization of this phe-
nomenon in Figs. 2�a�–2�c� shows that the energy in this
region actually enters the lower medium considerably up-
stream of the measurement point, resolving the apparent con-
tradiction that a ray could be perfectly reflected yet still
transmit a sensible signal.

In the lower medium, there are only transmitted waves,
both refracted and diffracted, without the complication of
reflected waves. At all frequencies shown, in the region be-
neath the source, the streamlines are nearly straight, owing to
the dominance of the geometrically refracted field there. Fur-
ther downstream, the stronger influence of the inhomoge-
neous waves of the diffracted component causes the stream-
lines to curve more upward as the boundary is approached.
The transition between the refracted-dominated field and the
diffraction-dominated field is gradual at the lowest frequency
shown �Fig. 2�c��. At the highest frequency shown �Fig.
2�c��, there is a more obvious demarcation between these
extremes, as one would expect as the geometric acoustic
limit is approached �compare to Fig. 2�d��.

Detailed directional differences between geometric rays
and intensity vectors are difficult to see by simply comparing
streamline fans with ray fans. To more clearly demonstrate
the difference between the direction of the geometric ray
through a point and the direction of the acoustic intensity at
that point, their differences �ray minus intensity� at three
frequencies are plotted in Figs. 3�a�–3�c� as two-dimensional
contour plots spanning the lower medium. Positive values
indicate where the ray direction is steeper than the associated
streamline and vice versa. Note that there is an island of
negative values �streamlines steeper than rays� just beneath
the point where the critical ray joins the boundary; this island
shrinks with increasing frequency. Further downstream, there

is generally a region of positive values �rays steeper than
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streamlines�. The directional differences in this region grow
remarkably large in this region as frequency increases, yet it
should be recalled from Figs. 2�a�–2�c� that the magnitude of
the intensity is quite small there. This feature disappears as
frequency is increased to 5000 Hz �not illustrated�. Overall,
for the transmitted wave, one can see that the direction of the
intensity tends to coincide more with the direction of the
geometric ray path as frequency increases. Even so, direc-
tional measurements with intensity probes should be inter-
preted with caution with respect to the path along which the
signal arrived.

B. Water-to-air transmission

For the water-to-air example, inspired by recent interest
in anomalous acoustic transparency of the water/air
boundary,28 the environment used is c1=1500 m /s, c2

=330 m /s, and g=0.001 25. �That is, c2=330−0.06i m /s or
n=4.5454+0.0008i.� A very mild absorption coefficient of
0.01 dB/wavelength is included to stabilize the calculation.
The source is at height zs=0.5 m in water. �The air layer is
placed below to aid comparison with the previous water-to-
sediment case.� Figures 4�a�–4�c� show the streamline fans at
frequencies of 15, 150, and 1500 Hz. Figure 4�d� shows the
corresponding ray fan.

This sequence of streamline fans shows the strong fre-
quency sensitivity of anomalous transmission of sound from
water to air. Godin et al.26 explains how incident inhomoge-
neous waves in the near field of the source interfere with
inhomogeneous waves reflected by the boundary with the
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FIG. 3. Contour plots of ray direction minus intensity vector direction �in
degrees� in the lower medium for water-to-sediment transmission. �a�
150 Hz, �b� 500 Hz, and �c� 1500 Hz. Positive values: rays steeper than
streamlines. Negative values: streamlines steeper than rays. Associated
acoustic wavelengths in sediment: �a� 11.2 m, �b� 3.4 m, and �c� 1.1 m.
result that significant energy can be transmitted across the
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boundary at very low frequencies. This is considered anoma-
lous because this high impedance contrast �mostly due to the
800-fold density ratio� conventionally implies that the
boundary would act as an acoustic mirror. As frequency in-
creases, more and more streamlines are turned back from the
boundary until at the highest frequency shown the conven-
tional mirrorlike nature of the boundary is restored.

In this example, the ray fan bears little resemblance to
any of the three streamline fans, and hence provides little
insight to the energy flow from the source. Considering the
streamline trajectories, note the very large direction change
at the boundary associated with the large density contrast,
which will shortly be explained analytically. Also note that
the transmitted streamlines, when traced back linearly, ap-
pear to emanate from the true source position, a peculiarity

FIG. 4. �Color online� Streamlines of energy flow for water-to-air transmissi
Solid lines in �a�–�c�: streamlines. Solid lines in �d�: incident and trans
wavelengths in water: �a� 100 m, �b� 10 m, and �c� 1 m.
that is not fully understood at this time.
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V. REFRACTION OF STREAMLINES AT A BOUNDARY
WITH A DENSITY DISCONTINUITY

From the computed examples, it is evident that acoustic
streamlines are generally curved �even in homogeneous me-
dia� according to the structure of the acoustic fields that gov-
erns them. Additionally, there appears to be discontinuous
refraction of streamlines at the boundary between dissimilar
fluids. In fact, this discontinuous refraction only occurs when
the density changes abruptly across the boundary and this
fact can be stated in the form of a refraction law analogous to
Snell’s law.

Since both the acoustic pressure and vertical component
of particle velocity are continuous across a horizontal bound-
ary between two fluids, it follows from Eq. �10� that the
vertical component of average intensity is also continuous at

ote that the water is above the air�: �a� 15 Hz, �b� 150 Hz, and �c� 1500 Hz.
d rays. Dashed lines in �d�: partially reflected rays. Associated acoustic
on �n
mitte
the boundary:
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	jz1
 = 	jz2
 . �15�

The horizontal intensity components are related as well:
From the integrands in Eqs. �1�, �2a�, and �2b�, consider the
acoustic field at an individual incident angle �. From Eqs.
�3a�, �3b�, and �4a�–�4c�, the ratio of the horizontal compo-
nents of particle velocity at the boundary is

vr1���
vr2���

=
1 + R���
g−1T���

= g , �16�

Since this ratio turns out to be independent of angle, it ap-
plies equally well to the entire field �i.e., the entire integral�.
That is �at the boundary�,

vr1 = gvr2. �17�

Again, pressure is continuous at the boundary, so the hori-
zontal components of average intensity have the same ratio
as those of the particle velocity:

	jr1
 = g	jr2
 . �18�

Since the vertical component of average intensity is al-
ways continuous and the horizontal component of average
intensity changes according to the density contrast, it follows
that the streamlines must change direction at a density dis-
continuity. In fact, from Eq. �8�,

tan �2

tan �1
=

	jz2
/	jr2

	jz1
/	jr1


= g , �19�

that is,

tan �2 = g tan �1, �20�

as illustrated in Fig. 5. This law of streamline refraction at a
boundary is comparable to Snell’s law of ray refraction in
Eq. �7�, with the interesting difference that the streamline
bends toward the denser medium, whereas the ray bends
away from the faster medium. Although derived for the re-
stricted cases considered in this paper, it is believed that the
law of streamline refraction at a boundary is more generally
true. �The identical argument also applies to instantaneous
intensity, which is not considered in this paper.�

VI. CONCLUSIONS

An acoustic streamline is a curve whose tangent every-

φ1

φ2

ρ1

ρ2>ρ1

medium 1

medium 2

tan φ = (ρ /ρ )tan φ2 2 1 1

FIG. 5. Acoustic streamline refraction by a density discontinuity, for the
case �2��1.
where along its path is parallel to the the average local in-
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tensity vector. The acoustic streamline thus represents the
path of mean energy flow. This concept was applied to visu-
alize energy flow from a monopole cw source across bound-
aries between dissimilar fluids. Streamline fans were calcu-
lated and shown for two examples: �1� water-to-sediment
transmission, typical of sediment acoustic experimentation,
and �2� anomalous water-to-air transmission at infrasonic
frequencies. It was observed that significant levels of dif-
fracted waves �inhomogeneous waves� alter the energy flow
significantly from what would be expected from geometri-
cally traced rays. It was also observed that the critical angle
�when one can be defined� is less relevant to energy flow as
frequency decreases. A material density contrast across a
boundary leads to the discontinuous bending of acoustic
streamlines, governed by a law of streamline refraction at a
boundary analogous to Snell’s law for ray refraction, but
involving the cross-boundary ratio of densities rather than
the ratio of sound speeds. Potential for further work includes
�1� investigating streamlines based on instantaneous inten-
sity, leading to realistic tracing of energy propagation in
pulses when interference and diffraction are significant, �2�
consideration of the role of elastic properties of seabed me-
dia, and �3� consideration of the role of acoustic absorption
on streamline trajectories and energy loss along their arcs.
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