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Abstract

This paper presents a novel approach to the generalization of mathematical morphology to complex signals and images.
This generalization is strongly dependent upon the issue of multivariate order relationships. Although there is no natural
way to order multivariate data such as complex numbers, it is possible to design an order relationship such that it meets
criteria that are appropriate to complex signal processing. We first outline the criteria that the order relationship should meet.
We then propose a new order relationship that meets these criteria. Based on this order relationship, we construct the basic

operators in mathematical morphology: dilations and erosions.
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1. Introduction

Mathematical morphology is an image processing
methodology which has been very successful in pro-
cessing binary and gray-tone images. It is also appli-
cable to 1-D signals. However, it lacks a strong con-
ceptual framework in processing complex signals and
images. The goal of this paper is to provide such a
framework, thus extending mathematical morphology
to complex signals.

Morphological operators are based on order rela-
tionships. However, there is no natural way of order-
ing complex numbers, as Barnett {2} observed, among
others. Therefore, any order relationship among com-
plex signals will be somewhat arbitrary. Yet, there
are some guidelines we can use in order to design an
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order relationship which would be robust, physically
relevant and reasonably implementable.

We first outline the criteria that make an order rela-
tionship appropriate to our specific context. We then
propose a new order relationship that fulfills these cri-
teria. We define the set complementation, based on this
order relationship. As Serra did for gray-tone functions
i8], we define the umbra on compiex signais. Finaily,
we present the dilation and erosion operators, which
constitute the basis onto which all the morphological
operators are built upon.

There have been some extensions of morphology
to color, or multi-valued images, Comer and Delp’s
work [4,5] being typical. They proposed two meth-
ods: the first one was to perform standard morpho-
logical operations on each of the red (i), green (¢y)
and blue (/) (RGB) components separately. The prob-
lem with this approach is that the transformations
introduce values that do not exist in the input im-
age. It is the same situation with complex signals.
New phases and amplitudes would be created in an
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uncontrolled manner. Moreover, this method does not
provide a strong enough formalism to assess and pre-
dict the behavior of such transformations. Their sec-
ond approach partially corrected these problems. They
transformed the vector-valued colors to a scalar, usu-
ally the Euclidean distance d = \/r2 + ¢2 + b2. They
then used d to order pixels. They finally defined a
maximum V and a minimum A operator that used this
order relationship. However, using a single scalar to
order multivariate data has ambiguity problems. Two
pixels with the same amplitude could very well not
have the same color. Although Astola et al. [1] men-
tioned it was of little practical importance for color
image processing, it is a different situation in com-
munication signals, where we often strive to trans-
mit and receive constant amplitude signals. More-
over, the relationship is not an ordering because it
violates the antisymmetry property: a < hand b < a
implies a = b.

Talbot et al. [9] suggested the use of a lexicographic
order relationship for multivalued morphology. They
proposed simple and efficient algorithms that are ap-
propriate for both quantized and continuous vectors.
Chanussot and Lambert [3] proposed ordering rela-
tionships based on space filling curves. Both these ap-
proaches are vector-preserving, that is, they do not
introduce values that do not exist in the input image.
However, they are not directly applicable to complex
signals.

Complex signals have their own specificities, that
we need to take into account when generalizing mor-
phology. First, samples at constant amplitude are
more likely than in multi-spectral images. Second,
it is absolutely necessary not to create samples that
do not exist in the input signals. Specifically, phase
is a fundamental characteristic of these samples and
we should definitively not modify it in uncontrolled
manner. Using standard morphological operators on
the real and imaginary components independently is
not appropriate. Third, complex signals usually are
devoid of DC component. Usually, it has been care-
fully removed by filtering, because it is an undesir-
able characteristic. It is also removed by propagation
in the environment. In contrast, DC components are
omnipresent in multi-spectral images. Finally, sig-
nal power is an important selection criterion and has
to be taken into account in the design of an order
relationship.

2. Order relationship
2.1. Properties

X < Y is an order relationship between X and Y if
the following properties hold:

Property 1.
X < X is true. (1)
Property 2.
If X< Yand Y <X thenX =Y. (2)
Property 3.
If X< VYandY<XZthenX XZ. (3)

Property 4. Trichotomy law: one and only one of the
Sollowing relationships holds, for all X and Y in C:

X<Y, X=VY, XV (4)
When X, ¥ and Z are complex samples, we found

that we should add the following properties, in order
to improve the applicability of the order relationship.

Property 5. The order relationship should be main-
tained under attenuation and gain variations ).

If X < Y then )X < 1Y, A€ R™. (5)

Property 6. Scaling, translation and  rotation

Invariance.

The order relationship should only concern
point-wise values. It should be invariant to scalings,
that is, magnification factors and time scalings, as
well as translations and rotations.

Property 7. Comparing X to Y should yield the sume
result as comparing Y to X.

This property eliminates implementation depending
on the order into which the operands are applied.

X <Y impliesY = X (6)
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Property 8. Signal statistics independence.

The order relationship should be independent of the
signal statistics. It should be a sample-to-sample. or
point-wise relationship, regardless of the global char-
acteristics of the signals under consideration. This
property eliminates all the relationships that could rely
on global measures such as averages. Not having this
property could expose us to inconsistencies when pro-
cessing signals with a DC bias. For instance, Barnett
suggested using a scalar function based on some dis-
tance measurement between a sample and the average
value of the dataset, which would be inapplicable to
our context.

2.2. Order relationship
We propose the following order relationship, where

R(X) is the real part of X and J(X') is the imaginary
part and |X| is the modulus of X

| <Y
or
|X]=1]Y] and R(X) < R(Y)
X< YIf: (7)
or
|X] =1Y] and R(X") = R(Y) and
JX)STY).

We can also define a strict inequality based on this
order relationship:

Xl <|Y|

or

X{=]Y]and RX ) < R(Y)
X <YIf: (8)
or

|X] =1Y] and R(X ) =R(Y) and
JX)Yy<IY).

Physically, signals which have more power than
others should be considered larger. This is intuitively
appealing in signal processing. Signals which have the
same power level are considered larger than others if
their real part is larger, in the usual sense. If signals
are identical both for amplitude and for their real part,
we then examine their imaginary part. The largest sig-
nal is then the one which has a positive imaginary

component. This approach is somewhat arbitrary, es-
pecially when we put emphasis on the real component
in the comparison. However, it is not possible to re-
move such arbitrariness.

For instance, we could have resolved the amplitude
ambiguity by comparing phases instead of compo-
nents. However, because phases vary between 0 and
27, it is not possible to decide which phase is the
largest without betng arbitrary. Phase unrolling tech-
miques could be devised, in order to free ourselves
of the 0 — 2r circularity, but that would violate time
translation and time scaling invariance, which would
then make the order relationship impractical.

Speaking in terms of phase, for equal signal am-
plitudes, our order relationship arbitrarily decides that
signals whose phases are closer to zero are the largest.
Signals that are symmetrically positioned with respect
to the real axis are considered larger if their phases
are between 0 and m.

2.3. Proofs

Eq. (7) is an order relationship because Properties
1-4 hold.

Property 1. It is true because the relation reduces to
|X] =X] and RX ) = RX ) and T(X)=T(X).

Property 2. It is true hecause |X| <|Y| and
[Y| < |X| is not possible. Therefore. the order rela-
tionship reduces to first comparing the real values
of X and Y, followed by a comparison of the imag-
inary values, should the real values be equal. Com-
paring the real values, we find that R(X) < R(Y)
and R(Y) < R{(X) is nor possible. Therefore,
R(X ) =R(Y) and the order relationship reduces to
JXYSAY). and 3(Y) < TIX). which is the same
as WX )y=3(Y ) und therefore X =Y.

Property 3. There are tivo situations. In one case,
there is at least one modulus not equal to the others.
Inn the second case, all the modulus are equal.

When there is at least one modulus different

Jrom the others, for instance, | X| < |¥| and that

Y| < 1ZI. it is obrious that |X

< |Z| and there-

Jore that X < Z. By svmmetry, if |Y| < |Z| and

X| <|Y|. we then have the same final result.
The final case is |X| < |Y| < |Z| and the proof is
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trivial. Therefore, whenever the modulus are not
the same, it is easy to demonstrate that Property 3
holds.

In the second case all the modulus are equal, that
is, |X|=Y|=1Z|. The order relutionship then reduces
to

R(X)=R(Y)
R(x) < R(Y) or and and
JX)<TY)
R(Y)=R(Z)
and . 9)
IY)<HZ))

If RX) <R(Y), then R(X) < R(Z) and there-
fore X =< Z. By symmetry, it is the same situ-

ation for R(Y) < R(Z), with the same result. If

R(X ) = R(Y) =R(Z), the relationship reduces to
XY Y)Y << TIZ), therefore X X Z.

Property 4. First, on the complex plane, the set of

points X that are strictly smaller than Y, {X 1 X <
Y}, according to our order relationship, is the fol-
lowing union:

1. The interior of the circle with radius |Y| centered
on the origin.

2. The points of the circle with radius |Y| centered
on the oriyin, starting from Y (Y excluded), pass-
ing through point —|Y| and ending at Y* (Y*
excluded), where Y* is the complex conjugate
of Y.

3.V Yy > 0.

Second, only one point for the set of points that fulfills
X =Y.

Finally, the set of points X that ure strictly larger
than Y, {X : X = Y} is the following union:

L. All the space outside of the circle centered on the
origin and with the radius |Y|.

2. The path on the circle centered on the origin and
with the radius |Y|, starting from Y (Y excluded),
passing through the point |Y|, and finishing at Y*,
Y* excluded.

3. Y% if3(Y) < 0.

Careful observation of this complex plane partition
shows us that the three regions corresponding respec-
tivelyto X < Y, X=Y,X > Y are mutually exclusive,
which means that the trichotomy law holds.

Therefore, our relationship X < Y is an order
relationship. We then verify the other properties of
this order relationship as follows:

Property 5. Substitution of Eq. (5) into (7) yields
AX| =47
AX| < ZY]  or and or
ZR(X) < ABR(Y)
AX| =AY
and
MRX)Y=R(Y) |. (10)
and
23(X) < 23(Y)

It is obvious that this equation is true for >0, if’
XY,

Property 6. There is no purameter in Eq. (7) that
takes into account spatial or temporal scalings.
Therefore, the order relationship is invariant to these
parameters.

Property 7. There is no part of Eq. (7) that depends
on the order of the operands.

Property 8. The order relationship is exclusively a
point-wise comparison. Therefore, no signal statistics
is involved.

It should be noted that this order relationship, in
general, does not simplify to the order relationship in
R, when J(X ) =0. It however does when R(X ) e R*
and J(X)=0.

3. Complementation

The complementation procedure is a generaliza-
tion of Serra’s complementation on real-valued func-
tions [8]. For signals in general, Serra defined the
complementation as a simple negation, X¢ = —X. In
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image processing. signals are generally bounded to
some maximum value, M € R™ because of limited dy-
namic range of the pixel representation, or because of
detector limitations. Then, the definition of the com-
plementation on an image sample P € R, P° is de-
fined as follows:

P‘=M—P. (1)

Heijmans [6, Section 10.21] suggested an extenston
of complementation to color images which negates
each component of the image:

P(rg.h) = (M — M — g, M — b). (12)

We generalize the complementation to complex
numbers. There are two fundamental properties asso-
ciated with complementation:

Property 9. Order relationship reversal under com-
plementation,

X < Yimplies X¢ = Y°. (13)

Property 10,

X< =X (14)

A simple negation such as Serra’s would not be
appropriate in our case, because Property 9 would not
hold, according to our order relationship. Eq. (11) and
its generalization to color images, 12 are appropriate
only if the samples are positive. Moreover, Property
9 does not hold with our order relationship. Another
type of generalization is needed.

First, we use the trigonometric representation of a
complex sample:

X = 4é", (15)

where 4 = |X'| and 0 is the phase.
We define the complement of X € C, X, as

XO=(M — Ay, (16)

It should be noted that this definition does not sim-
plify to Serra’s, when J(X )=0. This is to be expected,
because our order relationship is based on signal am-
plitudes, that is, it usually ignores the sign of a sample
and uses it merely to resolve ambiguities in case the
amplitudes of X and Y are identical.

Fig. 1. The umbra of a single complex number, X, on the complex
plane.

Property 9 holds because of the following. First, let
X=Ae and Y =Be? . If 4 < B, then M —4 > M —B
and therefore the order relationship is reversed. If
A=B.then M — 4 =M — B. There are then two cases:
RX ) <R(Y)or RX)=9(Y), and J(X) < 3(Y).
When R(X) < R(Y). R(X) = —R(X)R(Y®) =
—R(Y) and therefore R(X°) > R(Y) and the or-
der relationship is reversed. If R(X) = PR(Y), then
J(XC) = —THX),T(Y) = =T(Y) and therefore the
order relationship is reversed as well.

Property 10 holds because, first M — (M — A)=A4,
and because el("*+27) = @i

4. Umbra

The umbra U of a real-valued function f is defined
as the portion of space that is below the function, union
with the function itself. For a single real-valued sample
P. it is all the points of the real axis that are smaller
than or equal to P. In the image processing practice,
the signals are limited between +M, or between 0 and
M, depending on the application.

The umbra of a complex sample X is similarly de-
fined using our order relationship:

U={Y:¥y <X} (17)

Fig. 1 illustrates graphically the umbra of a single
sample on the complex plane. The umbra is the union
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of the following regions on the complex plane:

1. The interior of the circle centered on the origin and
radius A4.

2. The path on the circle centered on the origin and
radius A, starting from X, passing by 0 = 7, and
ending at X*, X* included if J(X') > 0.

5. Maximum (V) and minimum (A)

The max V and the min A operators are defined:

X ifrY<ux,
XVY= ) (18)
Y otherwise,
Yy ity <ux,
XAY = . (19)
X otherwise.
These operators are dimensionality preserving [7]:
IXNLY =X AT, (20)
IXVAY =X VYY) (21)

This property is important because it ensures that
the output of these operators have the same physical
units as the units of the input signals. This property
enables us to predict the properties of the output, when
the signals are attenuated or amplified. The Vv and A
operators preserve the dimensionality of the input sig-
nal because they merely choose between two samples,
based on their order relationship.

6. Dilation and erosion

The dilation of a complex signal F by a flat struc-
turing element B is denoted Jz(F) and is defined as
the maximum value of the translations of F by the
vectors —b of B, trans_,(F) [8]:

dp(F) = \/ trans_(F). (22)
heR

The erosion a complex signal F by the flat structur-
ing element B uses the minimum instead of the max-
imum:

ep(F) = /\ trans_,(F). (23)
heB

It should be noted that the dilation and the erosion,
using our order relationship, does not create new signal

values. As it is the case with the scalar dilation and
erosion, this transformation merely chooses among a
certain number of samples the one that is the output.

These operators also preserve the dimensionality of
the samples, exactly like they do for gray-tone images
when we use flat structuring elements. This is because
the operators V and A preserve the dimensionality, as
mentioned in Eqs. (20) and (21):

20p(F) = 0g(/F), (24)

/6g(F) = eg(2F). (25)

They also commute under spatial or time scaling,
like their relatives in gray-tone and binary image pro-
cessing. For signals, the time axis is ¢. For images, the
image plane coordinates are (x, y'). In general, let X~
be the coordinates, and A" a uniform scaling /. over
these coordinates. F(#") is a function of coordinates
A, the dilation d5(F )(A") is also function of " and
so is B(X'):

Op(F Y2 H) = Ol (F(AA')), (26)
cp(F)YAA) = epw(F(AA)), (27)

where F(4) and B(/) denote spatial o~ time scaling on
the image plane of signal F and structuring element B
by the scaling factor 4. This is because such scaling
is strictly a space/time operation.

6.1. Non-flat structuring elements

Flat structuring elements translate images and sig-
nals only along the image plane or the time axis.
Non-flat structuring elements translate both along the
image plane, or time axis, and along the value axis. Di-
lations and erosions of gray-tone image, or real-valued
signal, f(x, y) by a real-valued structuring function
g(x, v) are then defined:

O (f(x.¥))
-V [ V f(xi,,v—j)w(i,f)},
—o<j<oo Lmoo<i<no )
g f(x.3))
= A [ A\ Af'(.r+i,,v+_/)ac/(i,i)].
—oo<j<no L—so<i<oo o)
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For complex signals, the definitions still apply. The
only differences are that now F and G are complex
signals. It should be noted that non-flat structuring
elements need to be used with care: one must en-
sure that the subtraction and the addition are within
the [0...M] limits. These signal transformations are
usually too sensitive to gain changes, because the ef-
fective structuring element shape changes with these
changes. Pre-normalization may alleviate the problem.
but might be difficult to perform.

7. Conclusion

In this paper, we generalized morphological opera-
tors to complex signals. We did so by first exploring
the specificities of these signals, leading us to set cri-
teria that make the operators usable in practice. Al-
though there are already multivariate morphological
operators, these are mostly applied to color images.
Our context is different and this is the first time mor-
phology has been specifically generalized to complex
signals.

We also developed a new complementation proce-
dure. This procedure is appropriate for the order rela-
tionship we developed. Our approach of the problem
also enabled the re-use of all the work already done on
gray-tone images. For instance, because we now have
an order relationship and a complementation proce-
dure, the theorems in morphological filtering are valid
on complex signals.

The order relationship is also usable to generate
rank filters, such as the median filter. However. this is
beyond the scope of this paper.
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