
Infrared Scene Generation (IRSG)
Developer's Guide

M. Eric Rouleau
LTI inc.
2700, De Carthagène,
Québec, QC
G2B 5M4

Contrat Number: W7701-52709
Scientific Authorities:
Jean-François Lepage
(418) 844-4000 Ext.: 4291
Nathalie Harrison
(418) 844-4000 Ext.: 4604

Defence R&D Canada – Valcartier
Contract Report

DRDC Valcartier CR 2008-258
September 2008

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the
contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Infrared Scene Generation (IRSG)
Developer’s Guide

September 2008

Prepared By:
M. Eric Rouleau - LTI

Prepared For:
M. Jean-François Lepage and Ms. Nathalie Harrison

Defence R&D Canada - Valcartier

W7701-52709 (CR 2008-258)

LTI2008DES-3

Authors

M. Eric Rouleau - LTI

Reviewed By

M. Jonathan Richard - LTI

© Sa majesté la reine, représentée par le ministre de la Défense nationale, 2008

© Her Majesty the Queen as represented by the Minister of National Defence,
2008

2700, De Carthagène,
Québec, Qc
Canada
G2B 5M4

Website: www.ltinfo.ca
E-mail: contact@ltinfo.ca

Release date :

September 2008

Category :

Contract Report

Version :

1.5

Comments :

 - LTI2008DES-3 i

AAbbssttrraacctt

This contract report presents the first implementation phase of 3D infrared signature modelling
compatible with the KARMA simulation environment developed on behalf of Defence Research and
Development Canada – Valcartier in the framework of Public Works and Government Services Canada
contract number W7701-052709/001/QCL “Development and exercise simulation”. The main objective
of this first implementation is to demonstrate the feasibility and the benefits of 3D infrared signature
modelling as opposed to punctual signatures. Free and open source software as well as commercial off-
the-shelf tools have been considered, allowing the reduction of the implementation time and increasing
reliability.

This report is presented as a developer’s guide of the infrared scene generation module and describes the
implementation of the scene generation process tailored to KARMA. The first implementation phase of
3D infrared signatures improves signature modelling in KARMA and demonstrates the applicability of a
3D viewer for infrared scene generation and the higher level of fidelity that is reached for infrared guided
weapon engagement simulations. However, the current implementation could be improved to offer pre-
computations and support the former punctual signatures.

 - LTI2008DES-3 ii

RRééssuumméé

Ce rapport de contrat présente l’implémentation de l’outil de modélisation de signature qui a été
développé pour la première phase d’implémentation de la modélisation de signatures infrarouges
compatible avec l’environnement de simulation KARMA développé dans le cadre du contrat numéro
W7701-052709/001/QCL intitulé « Development and exercise simulation » émis par Travaux publics
Canada pour le compte de Recherche et développement pour la défense Canada - Valcartier. L’objectif
principal de cet outil est de supporter la modélisation 3D des signatures infrarouges. Des logiciels libres
de même que des outils commerciaux ont été utilisés pour réduire le temps de développement et pour
augmenter la fiabilité.

Ce rapport prend la forme d’un guide de développement de l’outil « Signature Modeling and Analysis
Tool » (SMAT) et présente les détails de l’implémentation de cet outil qui permet la gestion de la base de
données des propriétés infrarouges d’un modèle 3D qui est utilisée lors de la génération d’une scène
infrarouge. SMAT offre un plein contrôle sur les conditions environnementales et sur les caractéristiques
d’un senseur pour fins d’analyse. De plus, SMAT permet l’étude des compromis en fonction des choix de
modélisation. La génération de scène infrarouge KARMA est utilisée pour générer une scène infrarouge
telle que vue par le senseur et des méthodes d’analyses sont offertes pour aider à la modélisation. Tous les
résultats d’analyse peuvent être exportés pour effectuer des analyses ultérieurement ou pour fins de
référence. Cet outil est très pertinent pour la modélisation de signatures infrarouges, mais des
améliorations devront y être apportées pour mieux supporter le processus de modélisation de signatures
infrarouges.

 - LTI2008DES-3 iii

EExxeeccuuttiivvee SSuummmmaarryy

The representation of infrared signatures is the main factor influencing susceptibility of a target being
acquired and tracked by an infrared guided weapon. In order to represent a complete infrared signature,
the spatial, spectral, and temporal aspects must be taken into account in the signature modelling.
However, depending on the parameters, these aspects of the modelling might compromise the accuracy of
the resulting signature or be too demanding on computation resources.

This LTI inc. contract report presents the first implementation phase of 3D infrared signature modelling
compatible with the KARMA simulation environment developed on behalf of Defence Research and
Development Canada – Valcartier in the framework of Public Works and Government Services Canada
contract number W7701-052709/001/QCL “Development and exercise simulation”. The main objective
of this contract was to increase the level of fidelity of infrared guided weapon engagement simulations
using the KARMA simulation environment. The equivalent of 78 months/person was invested in that
effort.

Sensor models have been improved from low to medium-high fidelity by including signal processing and
an infrared scene generation module was integrated to KARMA. This report is presented as a developer’s
guide of this infrared scene generation module. The signature modelling in KARMA, based on in-band
point source intensities, was revisited to introduce 3D infrared signature modelling. The infrared scene
generation implementation had to properly interface with the existent KARMA simulation infrastructure.
Furthermore, since the infrared signatures would have to be updated several hundreds of times during an
engagement, computation resources had to be kept as low as possible to avoid slowing down the entire
simulation.

An approach based on 3D models has been implemented to benefit from the huge computing power of
commercial off-the-shelf graphics card while reducing the implementation time and demonstrating
rapidly its feasibility. The OpenSceneGraph library was integrated to the infrared scene generation
module to allow the management of 3D models into a scene. Although this library is intended for
rendering in the visible band, the availability of an application programming interface allowed performing
additional modifications to represent infrared scenes. OpenSceneGraph relies on OpenGL® for optimized
scene rendering but this task is accomplished by OSMesa (similar to the OpenGL® specification) which
allows 16-bit rendering. An infrared property database is associated to a 3D model of the supported
format (OpenFlight). Indexes of this database are set to each polygon of a 3D model to specify the
corresponding temperature and material and the KARMA infrared scene generator produces an infrared
image as seen by a sensor that is used by a sensor for signal processing (tracking).

This first implementation phase represents a major step in the modelling of infrared signature since it
offers a maximum of flexibility while ensuring accuracy. The infrared properties of the database can be
defined to best fit the modelling, spectral parameters can be of any resolution and the number of polygons
of a 3D model can be set according to the desired level of detail. The computation of the total apparent

 - LTI2008DES-3 iv

surface radiance of each polygon is performed spectrally, without pre-computations. Improvements shall
be considered to better support the varying level of details of the infrared signature modelling (e.g. pre-
computations and support the former punctual signatures).

Rouleau, E., 2008. Infrared Scene Generation (IRSG) Developer’s Guide. DRDC Valcartier CR 2008-258

 - LTI2008DES-3 v

SSoommmmaaiirree

La représentation de signatures infrarouges est le facteur principal affectant la susceptibilité d’une cible à
être détectée et poursuivie par une arme guidée à l’infrarouge. La modélisation doit considérer les aspects
spatiaux, spectraux et temporels pour qu’une représentation de signature infrarouge soit complète.
Cependant, en fonction des paramètres utilisés, ces aspects de la modélisation peuvent compromettre la
précision des signatures générées ou nécessiter beaucoup de ressources de calcul.

Ce rapport de contrat de LTI Inc. présente la première phase d’implémentation de la modélisation de
signatures infrarouges compatible avec l’environnement de simulation KARMA développé dans le cadre
du contrat numéro W7701-052709/001/QCL intitulé « Development and exercise simulation » émis par
Travaux publics Canada pour le compte de Recherche et développement pour la défense Canada -
Valcartier. L’objectif principal de ce contrat est d’augmenter le niveau de fidélité des simulations
d’engagements d’armes guidées à l’infrarouge dans l’environnement de simulation KARMA.
L’équivalent de 78 mois/personne a été investi dans cet effort.

Les modèles de senseurs ont été améliorés pour passer d’un bas niveau de fidélité à un niveau moyen-
élevé en incluant du traitement de signal et un module de génération de scène infrarouge a été intégré à
KARMA. Ce rapport prend la forme d’un guide de développement de ce module de génération de scène
infrarouge. La modélisation de signature dans KARMA, basée sur des intensités ponctuelles en bandes, a
été revue pour ajouter la modélisation de signatures infrarouges 3D. L’implémentation de la génération de
scène infrarouge devait s’intégrer adéquatement à l’infrastructure de simulation existante de KARMA. De
plus, en raison de la fréquence de mise à jour d’une signature infrarouge lors d’une simulation
d’engagement, les ressources de calcul devaient être limitées et optimisées pour éviter de ralentir la
simulation.

Une approche basée sur les modèles 3D a été développée pour tirer profit de la puissance de calcul des
cartes graphiques commerciales tout en réduisant le temps de développement, et ainsi démontrer
rapidement la faisabilité de cette approche. L’implémentation de la génération de scène infrarouge est
basée sur des logiciels libres de même que des outils commerciaux. La librairie OpenSceneGraph a été
intégrée au module de génération de scène infrarouge pour effectuer la gestion des modèles 3D sous
forme de scène. Cette librairie est conçue pour faire de l’affichage dans la bande visible, mais il est
possible de faire du traitement additionnel à l’aide d’une interface de programmation pour convertir la
scène en infrarouge. OpenSceneGraph utilise la librairie OpenGL® pour l’affichage optimisé via la carte
graphique, laquelle est substituée par OSMesa (similaire à la spécification OpenGL®) qui permet la
génération d’images en 16 bits. Une base de données de propriétés infrarouges est associée à un modèle
3D du format OpenFlight. Les indexes de cette base de données servent à spécifier une température et un
matériau pour tous les polygones du modèle 3D et le module de génération de scène infrarouge est utilisé
pour générer une scène infrarouge telle que vue par le senseur utilisée pour le guidage.

 - LTI2008DES-3 vi

Cette première phase d’implémentation représente une étape majeure dans la modélisation des signatures
infrarouges puisqu’elle offre un maximum de flexibilité en ce qui a trait à la modélisation de signatures et
assure la précision des signatures générées. Les propriétés infrarouges de cette base de données peuvent
être définies pour permettre la meilleure adéquation à la modélisation, les paramètres spectraux peuvent
avoir différentes résolutions et le nombre de polygones des modèles 3D peut être adapté au niveau de
détail désiré. Le calcul de la radiance apparente totale de surface des polygones est fait dans le domaine
spectral, sans pré-calcul de simplification. L’implémentation actuelle peut être améliorée en offrant du
pré-calcul pour alléger le traitement et en supportant les signatures ponctuelles.

Rouleau, E., 2008. Infrared Scene Generation (IRSG) Developer’s Guide. DRDC Valcartier CR 2008-258

 - LTI2008DES-3 vii

TTaabbllee ooff CCoonntteennttss

Abstract.. i

Résumé... ii

Executive Summary ... iii

Sommaire.. v

Table of Contents.. vii

List of Figures .. ix

List of Tables.. xi

1 Introduction...1
1.1 Overview..1

1.1.1 Modelling ...2
1.1.2 Simulation..2

1.2 Process..3
1.3 Implementation ..4

2 Definitions...6
2.1 Coordinate System ..6
2.2 IR Property Database ..7
2.3 Spectrum Data Type..9

2.3.1 Analytic ..9
2.3.2 In-band ..12

2.4 SceneGenerator3D..13
2.4.1 Scene Graph ...14
2.4.2 View Frustum...15
2.4.3 Animations...16

3 Initialization...19

 - LTI2008DES-3 viii

3.1 Memory Allocation ...19
3.2 Settings..20

3.2.1 Textures...20
3.2.2 Lighting ..20
3.2.3 Fog ..20
3.2.4 Blending Mode...21
3.2.5 Antialiasing ..23

4 Process ..25
4.1 Update Entities...26
4.2 Update Scene Graph States ..27

4.2.1 Updating Scene...27
4.2.2 Sensor Point of View ...27

4.3 Cull Polygons...28
4.4 Update Polygons..28

4.4.1 Compute Radiances..28
4.4.2 Compute Scaling Factor..29
4.4.3 Set Polygons Color/Transparency...30

4.5 Render Scene..30
4.6 Compute Angular Irradiance Distribution ...31

5 Modifications to OpenSceneGraph ..33
5.1 OpenFlight ...33
5.2 Rendering ..33

6 Future Work..35

References..37

Abbreviations and Acronyms ..39

Appendix 1 ..41

 - LTI2008DES-3 ix

LLiisstt ooff FFiigguurreess

Figure 1 – Scene generation steps ...4
Figure 2 – Suite of tools of the IRSG implementation...5
Figure 3 – Coordinate systems used in the IRSG module, a) NED convention and b) Z-up convention.....6
Figure 4 – IR Property Database UML class diagram ..8
Figure 5 – Spectrum resampling...10
Figure 6 – Product operation example between analytic spectrums ..11
Figure 7 – Error represented as an area for the inferior limit of product operation example when a point
with a value of 0 is extrapolated (Approach A) or when the inferior limit is increased (Approach B)11
Figure 8 – Bands representation of an in-band spectrum...12
Figure 9 – Graphical representation of an in-band spectrum ...12
Figure 10 – IRSG UML class diagram ..13
Figure 11 – Sequence diagram for the scene generation using the getImageIrradiance method..............14
Figure 12 – OSG nodes used to organize entities in the scene graph ...15
Figure 13 – Frustum culling using Near and Far planes...16
Figure 14 – Representation of the pre-allocated memory space for 3D rendering.....................................20
Figure 15 – Representation of polygon transmission (surface 1 is behind surface 2)................................23
Figure 16 – Scene generation UML sequence diagram ...26
Figure 17 – Supersampling and downsampling operations..31

 - LTI2008DES-3 x

This page intentionally left blank.

 - LTI2008DES-3 xi

LLiisstt ooff TTaabblleess

Table 1 – List of possible new or enhanced features in the IRSG..36

 - LTI2008DES-3 xii

This page intentionally left blank.

 - LTI2008DES-3 1

11 IInnttrroodduuccttiioonn

This contract report presents the first implementation phase of 3D infrared signature modelling
compatible with the KARMA simulation environment. This report is presented by LTI inc. as a
developer’s guide for the infrared scene generation (IRSG) module developed as a part of the contract
number W7701-052709/001/QCL “Development and exercise simulation”. The main objective of this
contract was to increase the level of fidelity of infrared guided weapon engagement simulations using the
KARMA simulation environment in order to study the electro-optical self-protection of transport aircraft
against infrared (IR) guided threats. The work was carried out from December 2006 to May 2008. Thus,
this report describes the development state at the end of the contract.

IRSG is the process of computing IR signature of a scene according to spectral information. It provides a
2D image of the scene, in radiometric units, as seen by a given sensor. The contract mentioned above
involves the modelling of high fidelity seeker models that operate in the IR spectral band. The signature
modelling in KARMA, based on in-band point source intensities, was then inadequate since the spectral
and the spatial aspects of the signature are simplified. Thus an approach was developed to manage
detailed signature models that are used to generate an infrared scene dynamically based on 3D models.
Although the first implementation phase was aimed at full digital simulations, the goal was to develop an
approach that would also fit the purpose of future time-critical hardware-in-the-loop simulations.
Therefore, it was important to allow the control of the level of detail as prescribed by the KARMA
philosophy [1][2][3][4].

1.1 Overview

KARMA is intended to allow for a varying level of detail, thus the previous punctual signature modelling
was kept in the IRSG implementation. In this document, IRSG refers to the 3D signature modelling if not
specified otherwise. The IRSG module is used in infrared countermeasure (IRCM) simulations, and also
by the Signature Modeling & Analysis Tool (SMAT) for 3D signature modelling. For more specific
details about SMAT, the reader is referred to the SMAT user’s guide [5] and the SMAT developer’s guide
[6].

The IRSG is based on the association of an IR Property Database with a visible 3D model (e.g. one used
in a 3D viewer). A 3D model is specified for each entity that is a part of the scene (Scene) and the
information is gathered as a scene graph. This approach eases access to the 3D model information that is
used for the Scene since the model is organized as a hierarchy of polygons having associated information

 - LTI2008DES-3 2

such as color and transparency. All information about 3D models is then available in the scene graph and
used to generate an image of the Scene (also called Image) appropriately. This step is referred as scene
rendering.

An Image is rendered for a given point of view, line of sight (LOS), resolution and field of view (FOV).
The sensor spectral response is taken into account as well as the atmospheric transmission between the
sensor and each entity into the Scene. The IRSG updates the entities position and orientation in the scene
graph and updates polygons of each 3D model to reflect the sensor IR detection (apparent surface
radiance). At this point, the IRSG acts the same way as to display a visible Image, but with updated
polygon Red Green Blue Alpha (RGBA) values. The texture and lighting capabilities used for visible
display are disabled as discussed in Section 3.2. The IRSG then read back the Image from the memory by
converting the color values of the resulting image pixels into apparent radiance, giving an apparent
radiance image. This image can also be converted into an angular distribution of irradiance (quantity used
by the seekers models).

1.1.1 Modelling

3D signature modelling is accomplished using SMAT and Remo3D® 1. The 3D model is edited using
Remo3D to associate a temperature index and a material index to each polygon of the 3D model. Two
properties already defined in the OpenFlight format are used to store indexes. These are IR Color Code
and IR Material Code, corresponding respectively to the temperature and material indexes. SMAT allows
for the edition of the IR Property Database that maps indexes to specific kind of surfaces with a given
temperature and spectral emissivity ε(λ), reflectivity ρ(λ) and transmissivity τ(λ).

SMAT is based on the IRSG module of KARMA and shares a few modules that are involved in an IRCM
simulation. This does not necessarily provide optimized computations since some operations are repeated
for each analysis. SMAT allows controlling the parameters that are used when performing signature
analysis of an IR signature model. The point of view is set easily as opposed to a typical simulation where
the point of view depends on entities behavior and parameters involved into the scene generation that are
provided by a scenario contained in Extensible Markup Language (XML) files.

1.1.2 Simulation

A typical scenario contains entities and some of them include IR sensors. In order to be detected by an IR
sensor, an entity must have an IR signature as described in Section 1.1.1. SMAT is used to create a
database of temperatures and materials that are associated to a 3D model of the OpenFlight (.flt) file
format. This is accomplished by giving the database the same name as the 3D model with the database
extension (.db) and saving the database along with the 3D model. The geometry of an entity is specified
using the Model3D parameter of the Structure class.

1 In order to preserve readability, trademark and registered symbols are shown the first time a tradename
is encountered.

 - LTI2008DES-3 3

Engagement scenarios are defined using XML files. A Scene composed of 3D models is created during
the simulation initialization only if there is at least one sensor that uses the IRSG. A scene graph is
created; memory is allocated for the scene generation process and settings for scene rendering are
selected. The initialization is presented in Section 3. Each entity having a valid 3D signature model
(database associated to an OpenFlight model) is added to the scene graph and the IR Property Database is
loaded in memory. When available, animations are set according to the frame rate settings and
synchronized to the simulation. The scene graph reflects the KARMA Theatre, so 3D models are added to
the scene graph as entities are launched or destroyed when a valid 3D signature model is available. When
a sensor is being executed, it gets an Image of the Scene for its current point of view. The Scene is
updated only when a sensor is executed.

1.2 Process

Figure 1 presents the high-level steps of the scene generation process. These steps are detailed in Section
4. First, the IRSG updates the position and orientation of the entities in the scene graph according to their
states in the Theatre (Section 4.1). The IRSG updates the scene graph states (e.g. animations) and sets the
point of view using the sensor position and orientation relative to the associated KARMA BaseEntity
(Section 4.2). The IRSG selects the polygons that might be visible in the Scene (Section 4.3). This step is
referred as polygon culling. Polygons that are not in the view frustum presented in Section 2.4.2 are
discarded. Then, the IRSG updates the polygons color and transparency by computing the radiance of the
polygons of each entity using the IR Property Database and including the spectral response of the sensor
(Section 4.4). Radiance is converted into a color value using a scaling factor that ensures that the whole
range of radiance of the Scene is represented. Finally, the IRSG generates a 2D image as seen by the
sensor (Section 4.5) and converts it into an angular distribution of irradiance also referred as the Image
(Section 4.6). The average time to generate an Image, which depends on many properties such as 3D
models, spectrums or dimensions, varies between 100 to 200 ms.

 - LTI2008DES-3 4

Update Entities

Cull Polygons

Update Scene Graph States

Update Polygons

Render Scene

Compute Radiances

Compute Scaling Factor

Set Polygons Color/Transparency

Compute Angular Irradiance Distribution

Figure 1 – Scene generation steps

1.3 Implementation

Figure 2 presents the suite of tools that is used for the first implementation phase of the IRSG. The
modelling stage is the responsibility of SMAT, which is based on the wxWidgets library (version 2.8) for
graphical user interface (GUI) development. Scene generation is performed at the simulation stage and
implemented in the KARMA simulation framework. Finally, the 3D rendering stage is based on the
OpenSceneGraph (OSG) free and open source library (version 2.2.0) [7]. OSG was selected for the
management and rendering of the Scene composed of 3D models. Although OSG is intended for
rendering in the visible band, the availability of an application programming interface (API) allows the
IRSG to perform additional computation to represent IR scenes. OSG relies on the Open Graphics Library
(OpenGL®) for rendering optimized computer graphics on any platform [8]. OSG supports many standard
3D model formats including OpenFlight, one of the most widespread formats. The Mesa/OSMesa free
and open source library (version 7.0.1) [9] replaces the OpenGL library in order to support 16-bit
rendering.

 - LTI2008DES-3 5

3D Rendering

Modelling

Graphics Processing Unit

Signature Modeling & Analysis Tool (SMAT)

OpenSceneGraph (OSG)

Simulation

OpenGL Implementation or Mesa/OSMesa Implementation

Central Processing Unit

wxWidgets

KARMA
Scene Generator

OpenGL API (Like)

Figure 2 – Suite of tools of the IRSG implementation

 - LTI2008DES-3 6

22 DDeeffiinniittiioonnss

2.1 Coordinate System

Two coordinate systems are used for the entities involved in the IRSG module. The North East Down
(NED) convention is used in KARMA. Every entities of the Theatre have a position and an orientation
that are defined according to the NED reference system. This reference system is shown on Figure 3a).
Another convention is used in OSG; the Z-up convention that is shown on Figure 3b). This reference
system is used when managing entities (geometries) in the scene graph. The 3D signature models in
OpenFlight format must also be defined using this reference system.

a)

b)

Figure 3 – Coordinate systems used in the IRSG module, a) NED convention and b) Z-up convention

 - LTI2008DES-3 7

2.2 IR Property Database

This section presents the implementation of the IR Property Database that is used to store radiometric
properties of an entity. For more specific details about the properties, the reader is referred to the SMAT
user’s guide [5].

The Database class was developed to manage IR properties that are separated into two categories:
temperature and material. The corresponding classes, Temperature and Material, gather properties for
each entry of the database. Each entry is stored in a vector, has a name and has an associated index that
corresponds to the one set in the 3D model properties as discussed in Section 1.1.1. A material is defined
using three intrinsic properties that are stored using the Spectrum (Section 2.3) type: emissivity,
reflectivity and transmissivity. Figure 4 shows the Unified Modeling Language™ (UML®) class diagram
of these classes.

The scaling properties intended for the spatial scaling of the 3D model are implemented in the Database
class. Although these properties characterize the shape of an entity according to time, they are not related
to the radiometric properties but are stored in the IR Property Database. Refer to Section 4.2.1 for details
about their use. The ScaleList attribute is a map container of the Standard Template Library (STL) that
associates a double (entity time) and a vector (scaling factor for the three axis). The scaling is defined
according to the Z-up convention presented in Section 2.1.

A database can be loaded from or stored on disk using a binary format tailored to SMAT and IRSG needs.
A description of the format is presented in Appendix 1. Methods were created in the Database class to
allow basic operations on different types: integer, double, string, Spectrum and temperature lookup table
(LUT). The database performs version management by the way of a version tag. This approach allows
backward compatibility when properties are added or deleted from the IR Property Database.

 - LTI2008DES-3 8

Temperature
Name : std::string
Index : int
TemperatureLookUpTable : std::map<double,double,ComparatorForDouble>
CoefficientA : double
RecoveryFactor : double
DeltaAmbientTemperature : double
AbsoluteTemperature : double

Temperature()
Temperature()
<<virtual>> ~Temperature()
operator=()
getName()
setName()
getIndex()
setIndex()
setCoefficientA()
getCoefficientA()
setAbsoluteTemperature()
getAbsoluteTemperature()
setRecoveryFactor()
getRecoveryFactor()
setDeltaAmbientTemperature()
getTemperatureFromLUT()
getDeltaAmbientTemperature()
findTemperatureFromLUT()
<<static>> readTemperatureLUT()
getTemperatureLUT()
setTemperatureLUT()

Material
Name : std::string
Index : int
Emissivity : KARMA::Spectrum*
Transmissivity : KARMA::Spectrum*
Reflectivity : KARMA::Spectrum*

Material()
Material()
<<virtual>> ~Material()
operator=()
getName()
setName()
getIndex()
setIndex()
getEmissivity()
setEmissivity()
getTransmissivity()
setTransmissivity()
getReflectivity()
setReflectivity()

Database
FileHandle : FILE *
UseScaling : bool
ScaleList : std::map<double,std::vector<double>,ComparatorForDouble>
Version : int

Database()
Database()
<<virtual>> ~Database()
operator=()
load()
save()
getMaterialsCount()
getTemperaturesCount()
addMaterial()
addTemperature()
deleteMaterial()
deleteMaterialByIndex()
deleteTemperature()
deleteTemperatureByIndex()
getTemperature()
findTemperature()
getMaterial()
findMaterial()
clear()
readInt()
readDouble()
readString()
readSpectrum()
writeInt()
writeDouble()
writeString()
writeSpectrum()
addScale()
findScale()
updateScale()
deleteScale()
setUseScaling()
getUseScaling()
getScale()
clearScaleList()
getScaleList()
readTemperatureLUT()
writeTemperatureLUT()

+Temperatures : std::vector<Temperature*> +Materials : std::vector<Material*>

Figure 4 – IR Property Database UML class diagram

 - LTI2008DES-3 9

2.3 Spectrum Data Type

The Spectrum class allows spectral operations by associating a list of wavelengths to a corresponding list
of values. There are two types of spectrum: analytic and in-band. The analytic type supposes that the step
between wavelengths is constant while the in-band type supports variable step. Both types assume a value
of 0 outside the spectrum band. Operations can be performed using any combination of spectrum types
and the resulting spectrum is in-band only if both spectrums are in-band. The following sections present
considerations for each spectrum type.

2.3.1 Analytic

The analytic type is the most precise since operations are performed on every wavelength. The
wavelength step (resolution) dictates the number of points and, therefore, the precision. Obviously, higher
resolution means slower performances.

2.3.1.1 Resampling

During product and addition operations, analytic spectrums are resampled to maximize the resulting
precision. The waveband is selected (intersection or combination) and the wavelength values are aligned
to the wavelengths of the spectrum having the highest precision. This way, a minimum of interpolation is
performed resulting in higher precision. Resampling is shown in Figure 5 for a product operation between
two analytic spectrums. The first step is to determine which Spectrum has the smallest wavelength step
(Δλ). Then, the alignment (Δalignment) of that Spectrum for its step is calculated using the modulo operator
which returns the remainder of the division:

() ()λλ Δ=Δ dulomoalignment min . (1)

Finally, the resulting waveband is computed to preserve alignment with constant wavelength steps. The
common waveband (minimum and maximum) might be reduced. The Spectrum having the smallest
precision is linearly interpolated between its original data points for the whole resulting waveband, using
the smallest wavelength steps.

 - LTI2008DES-3 10

Figure 5 – Spectrum resampling

As an example, Figure 6 presents a product operation over analytic spectrums. The Curve 1 has a step of
0.03 µm while Curve 2 has a step of 0.1 µm. The first curve has the highest resolution, so the wavelengths
are aligned to this curve (3.98, 4.01, 4.04, 4.07, etc.). Thus, Curve 2 is resampled at 0.03 µm and the
product is computed. At this point, it is important to note the impact of the constant wavelength step
constraint when the resulting Spectrum has wavelength limits that are not aligned to the step values. As
shown in Figure 6, the resulting waveband shall be from 4 to 4.16 µm. However, the inferior limit of
4 µm cannot be represented; only 3.98 or 4.01 µm is possible in order to preserve a constant step of
0.03 µm. Two approaches can be followed: adding a wavelength by extrapolating a point at 3.98 µm with
a value of 0 (Approach A) or starting with the next valid point at 4.01 µm (Approach B). Both ways
introduce errors, but errors decrease as the step decreases. Figure 7 presents the area of the product
operation, between 3.98 and 4.01 µm, for both approaches. Approach B shows the real area that is
neglected (0.032685 under the real area) by starting at 4.01 µm instead of 4 µm while Approach A shows
area estimated (0.01429 over the real area) by extrapolating a point. The Spectrum class implements
Approach B.

 - LTI2008DES-3 11

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3.9 4 4.1 4.2 4.3

Wavelength (µm)

V
al
ue Curve 1 (0,03)

Curve 2 (0,1)

Curve 2 (resampled)

Curve 1 * Curve 2

Figure 6 – Product operation example between analytic spectrums

Figure 7 – Error represented as an area for the inferior limit of product operation example when a point

with a value of 0 is extrapolated (Approach A) or when the inferior limit is increased (Approach B)

2.3.1.2 Numerical Integration

An analytic spectrum is integrated using the trapezoidal formula:

 - LTI2008DES-3 12

() ⎥⎦
⎤

⎢⎣
⎡ +

−≈∫ 2
)()()(21

12

2

1

λλλλ
λ

λ

ffdxxf , (2)

where λ1 and λ2 are two successive points of the Spectrum. During the integration process, linear
interpolation is performed between wavelengths and 0 is assumed when interpolation is performed
outside the waveband (no extrapolation). A discretisation error occurs while performing integration of a
spectrum but the smaller the wavelength step, the smaller the discretisation error.

2.3.2 In-band

This type of spectrum is the first spectral representation implemented in KARMA. It allows defining
multiple spectral bands easily and operations are performed quickly. Figure 8 presents how a value is
associated for a spectral band. A band is defined by two successive wavelengths and the wavelength step
can vary within the in-band spectrum. An example of an in-band spectrum having wavelengths 3, 5, 8,
12 µm is shown in Figure 9.

Figure 8 – Bands representation of an in-band spectrum

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8 9 10 11 12 13

Wavelength (µm)

V
al
ue

Figure 9 – Graphical representation of an in-band spectrum

 - LTI2008DES-3 13

2.4 SceneGenerator3D

An IRSG interface (ISceneManager) was created to support punctual and 3D approches for scene
generation. The punctual scene generation of KARMA is implemented in the SceneGeneratorPunctual
class while the scene generation based on 3D models is implemented in the SceneGenerator3D class. The
UML class diagram of the IRSG is shown in Figure 10. A sensor that is derived from the AbstractSensor
interface has a reference on a scene generator (ISceneManager). It is the sensor responsibility to
instantiate the appropriate type of scene generator during its initialization. A sensor that performs
processing using an Image of the Scene uses the SceneGenerator3D and calls the getImageIrradiance
method as shown in Figure 11. Refer to Section 4 for more details about the associated process. The
SceneGenerator3D keeps a scene of 3D models (entities) as a scene graph and entities of that scene are
updated according to their orientation and position in the Theatre. The classes GroupVisitor and
InsertCallbackVisitor/CullCallback are used to manage animations and polygon culling respectively.
More details are presented in the following sections.

SceneGenerator3D
<<static>> UniqueInstance : KARMA::SceneGenerator3D* = NULL
<<static>> Destroy er : KARMA::SingletonDestroy er<KARMA::SceneGenerator3D>
Scene : osg::ref _ptr<osg::Group>
Generator : osg::ref _ptr<osgUtil::SceneView>
CullingCallbackVisitor : InsertCallbacksVisitor *
MaxRadiance : double
Entity IDVector : std::v ector<int>
Entity DatabaseVector : std::v ector<Database*>
Entity VectorOf GeodeVector : std::v ector<std::v ector<osg::Geode*>>
Entity AtmosphericTransmission : std::v ector<const KARMA::Spectrum*>
SceneFrameStamp : osg::ref _ptr<osg::FrameStamp>
ComputePathRadiance : bool
Supersampling : int
Transparency Reserv edDy namicRange : double
LBBStep : double

SceneGenerator3D()
<<v irtual>> ~SceneGenerator3D()
<<static>> getInstance()
getIrradiance()
getImageIrradiance()
generateScene()
ev entResponse()
getBoundingSphereRadius()
updateColor()
loadMaterialsDatabase()
loadScene()
addEntity ()
deleteEntity ()
updateScene()
readFrameBuf f er()
computeLbb()
setComputePathRadiance()
setSupersampling()
setTransparency Reserv edDy namicRange()
setLBBStep()

SceneGeneratorPunctual
UniqueInstance : KARMA::SceneGeneratorPunctual* = NULL
<<static>> Destroy er : KARMA::SingletonDestroy er<KARMA::SceneGeneratorPunctual>

SceneGeneratorPunctual()
<<v irtual>> ~SceneGeneratorPunctual()
<<static>> getInstance()
getImageIrradiance()
getIrradiance()
getBoundingSphereRadius()

ISceneManager

<<abstract>> getImageIrradiance()
<<abstract>> getIrradiance()

<<abstract>> getBoundingSphereRadius()

AbstractSensor

<<XML>> FOV : DataTy pes::Double = 1.2
<<XML_VAR>> TargetListIrradiance : DataTy pes::Array
<<XML_VAR>> TargetListLOS : DataTy pes::Matrix
<<XML>> MaximumDetectionRange : DataTy pes::Double = 5000
<<XML>> MinimumDetectionRange : DataTy pes::Double = 0
<<XML>> Resolution : DataTy pes::Double = 0.034907
<<XML>> SignalWithNoise : DataTy pes::Boolean = 0
<<XML>> SpectralResponseValues : DataTy pes::Array
<<XML>> SpectralResponseWav elengths : DataTy pes::Array
SpectralResponse : Spectrum

(from Sensor)

#TheSceneGenerator
IEventListen

er

<<abstract>> ev entResponse()

(from Event)

InsertCallbacksVisitor
Entity VectorOf GeodeVector : std::v ector<std::v ector<osg::Geode*>>
RootNode : osg::Group*

InsertCallbacksVisitor()
<<v irtual>> apply ()

CullCallback
RootNode : osg::Group*
<<static>> Entity Number : int = 0

CullCallback()
<<v irtual>> operator()()

GroupVisitor

GroupVisitor()
<<v irtual>> apply ()

<<uses>>

NodeVisitor
(from OSG)

<<uses>>

NodeCallback
(from OSG)

<<uses>>

Figure 10 – IRSG UML class diagram

 - LTI2008DES-3 14

 : AbstractSensor : AbstractSensor : SceneGenerator3D : SceneGenerator3D : Environment : Environment

1: getImageIrradiance(AbstractSensor *)

1. Compute a ViewMatrix
2. Compute scene width/height
3. Disable compute of NearFarMode (PROXIMITY_SENSOR)

3: generateScene(int, int, double, double, DataTypes::Matrix, const Spectrum *, const Spectrum *, bool, double, double)

2: getTransmittance(DataTypes::Double, DataTypes::Double, DataTypes::Vector3, DataTypes::Vector3, int)

Compute AtmosphericTransmission
between the sensor and each entity

Figure 11 – Sequence diagram for the scene generation using the getImageIrradiance method

2.4.1 Scene Graph

Geometries of the 3D models are managed as a scene graph using OSG. The scene graph reflects the
Theatre for all entities having an OpenFlight 3D model and an associated IR Property Database.

2.4.1.1 Hierarchy

Geometries of a 3D model are gathered as a hierarchy of nodes. Basically, a 3D model has a root node
(osg::Group) and is composed of osg::Geode objects that are composed of geometries (osg::Drawable).
The root of the scene graph is a node osg::Group and is referred as the Scene. An intermediate node
osg::PositionAttitudeTransform is used as a child node when an entity is added to the Scene. Figure 12
presents this hierarchy and an example of the code is shown below.

// Create a transformation node at the root of the scene

osg::ref_ptr<osg::PositionAttitudeTransform> xform = new osg::PositionAttitudeTransform();

// Insert the entity transformation node as a direct child of the scene

Scene->addChild(xform.get());

// Insert the entity 3D model as a direct child of the transformation node
xform->addChild(loadedModel.get());

 - LTI2008DES-3 15

osg::Group

Entity 1

osg::PositionAttitudeTransform

Entity 2

osg::PositionAttitudeTransform

Entity 3

osg::PositionAttitudeTransform

Figure 12 – OSG nodes used to organize entities in the scene graph

The node osg::PositionAttitudeTransform offers methods to set the location and the orientation of its
children nodes (that represents the entity). Conversion between KARMA and OSG coordinate systems
presented in Section 2 is performed while updating entities:

()
().,,

;,,
ZYXEulerEuler

andZXYPositionPosition

KARMAOSG

KARMAOSG

−=
−=

 (3)

Entities of the Scene are associated to the corresponding ones in the Theatre using a vector of BaseEntity
ID attribute (EntityIDVector). Each entry of this vector is mapped to the child
(osg::PositionAttitudeTransform) of the Scene having the same index value.

2.4.1.2 States

Nodes of the scene graph have states (or properties) that are used when the 3D rendering is performed.
The osg::StateSet of the Scene allows setting default states for all entities. All the children of the root
node, regardless of what the children attribute value is, will inherit the parent node attribute value.
However, it is possible for a child node to discard default states by the way of a protection setting
(osg::StateAttribute::PROTECTED). The main properties are related to textures, lighting, transparency
and blending (related to transparency). Settings that are applied are presented in Section 3.2.

2.4.2 View Frustum

Sensor detection ranges can be used when rendering a Scene. In the current implementation of the IRSG,
it is done only for proximity fuze sensors. OpenGL, and so OSG, offers Near and Far clipping settings.
Polygons outside the Near and Far distances are not visible in the Image. This process is referred as
frustum culling and is shown in Figure 13. However, it is important to note that these settings might
compromise the quality of the Image. A Near clipping plane that is not set properly can result in artefacts
when drawing geometries near the viewpoint, usually permitting the viewer to see into nearby objects.
Consequently, the Near clipping plane is often as far as possible toward the viewpoint, in front of the
nearest object in the FOV. These settings are computed automatically by OSG to allow for appropriate
rendering. Using this mode, OSG attempts to make the most of the available resolution of the depth buffer
by tuning the Near and Far clipping planes to closely bound the visible portion of the Scene.

 - LTI2008DES-3 16

The ratio of the Far to Near distances is critical, and unless a corresponding adjustment is made to the Far
clipping plane, depth buffer precision is wasted. If the Near distance is set to zero then the standard
perspective projection is undefined (refer to the OpenGL online documentation [8]).

Figure 13 – Frustum culling using Near and Far planes

2.4.3 Animations

Entities of the Scene can be animated using 3D models animation offered by the OpenFlight file format
[10]. This feature allows flexibility for time varying signature models such as aircraft rotors, plumes, and
particles models. The IRSG implementation manages animation settings by the way of the node
comments of the OpenFlight format since Remo3D offers a limited support for animation. In addition to
associating temperature and material indexes to each polygon of a 3D model, Remo3D is used for
defining animation settings (forward or swing animations, repetitions). Using Remo3D, the frame rate of
an animation is specified in frames per second (fps) and set in the comment field of the animation node
using a specific convention.

@dis animation FRAME_RATE

An animation is a node osg::Sequence and its children nodes represent a frame of the animation. Only one
frame (child) is activated at a time. OSG supports animation, but default implementation has a fixed
frame rate and is not synchronized with time. Therefore, the next animation frame is selected each time
the scene generation is performed. In order to setup animation correctly, a node visitor GroupVisitor was
created. This class is called each time a model is inserted into the Scene to extract animation settings and
set the osg::Sequence node accordingly. The node visitor scans all nodes of the 3D model that is being
inserted into the scene graph. When an osg::Sequence node is found, its synchronize option is set and the
frame rate is set (default value of 10 fps if not available in the node comment).

 - LTI2008DES-3 17

// Synchronize frames with time

anim->setDuration(1, -1); // No speed-up and unlimited repetitions

anim->setSync(true);

// Update frames duration according to the frame rate

for (int loop = 0; loop < anim->getNumFrames(); loop++)

 anim->setTime(loop, 1.0/frameRate); // Frame duration (seconds)

The Scene time is synchronized to the simulation by the way of an osg::FrameStamp attribute.

// Allow going back in time (update sequences)

if (DOUBLE_LESS(Theatre::instance()->getTime().getValue()

 + EPSILON, SceneFrameStamp->getSimulationTime()))

{

 SceneFrameStamp->setSimulationTime(0);

 Generator->update(); // Reset simulation time for all sequences

 GroupVisitor resetGroups;

 resetGroups.traverse(*Scene); // Reset sequences

}

// Force new frame when duration is elapsed

SceneFrameStamp->setSimulationTime(Theatre::instance()->getTime().getValue() + EPSILON);

// Pass frame stamp to the SceneView so that the update, cull and draw

// traversals all use the same FrameStamp

Generator->setFrameStamp(SceneFrameStamp.get());

The if condition is used for SMAT which allows generating images for any simulation time. The method
update (osgUtil::SceneView) is called to notify animations that the simulation time has changed and then,
GroupVisitor resets animation to display the first frame. EPSILON is added when setting the simulation
time of the FrameStamp to the next frame to be activated (double comparison issue).

Entities being inserted during a simulation are also synchronized with an osg::FrameStamp attribute but
an update is performed using osgUtil::UpdateVisitor to allow their animation starting at this simulation
time.

 - LTI2008DES-3 18

// Apply current simulation time to the 3D model being inserted into the scene

SceneFrameStamp->setSimulationTime(Theatre::instance()->getTime().getValue() + EPSILON);

SceneUpdateVisitor->reset();

SceneUpdateVisitor->setFrameStamp(SceneFrameStamp.get());

// Use the frame number for the traversal number

if (SceneFrameStamp.valid())

{

 SceneUpdateVisitor->setTraversalNumber(SceneFrameStamp->getFrameNumber());

}

// Update frame stamp (animations will begin on the current simulation time,

// begin at 0 s otherwise)

loadedModel->accept(*SceneUpdateVisitor.get());

 - LTI2008DES-3 19

33 IInniittiiaalliizzaattiioonn

This section presents the operations that are performed once, when the IRSG is used for the first time
during a simulation.

3.1 Memory Allocation

The SceneGenerator3D is a singleton, so there is only one instance for a simulation. The class constructor
is called when SceneGenerator3D is called for the first time and memory is allocated for the scene
generation process. OSMesa is used to create an off-screen context that will be used transparently by
OSG to generate an Image of the Scene. The OSMesaCreateContextExt method is used to create this
context, the RGBA channel type is selected with 16-bit per channel. This allows representing colors
(pixels) using 65536 grey levels. The OSMesaMakeCurrent method is used to associate the memory to
the context. Memory is allocated for predetermined dimensions and supersampling (SS) settings:

()() BytesChannelsSSHeightSSWidth NNMaxMaxMaxMaxTotalSize = , (4)

where:

• TotalSize is the number of bytes of memory;

• MaxWidth and MaxHeight are the maximum image width and height in pixels (fixed to 1000);

• MaxSS is the maximum supersampling factor (fixed to 4);

• NChannels is the number of channels (fixed to 4 since RGBA is used); and

• NBytes is the number of bytes per pixel (fixed to 2 since 16-bit is used).

By allocating a fixed amount of memory in the constructor, memory is not continuously allocated/deleted
since many sensor configurations might be used. The memory necessary for the scene generation is set
using a viewport. Refer to Section 4.5 for more details. Figure 14 presents the concept of the pre-allocated
memory space. The total memory space is represented by the outer rectangle while the viewport is shown
as the inner rectangle. OSMesaDestroyContext method is called when the SceneGenerator3D instance is
destroyed.

 - LTI2008DES-3 20

Figure 14 – Representation of the pre-allocated memory space for 3D rendering

3.2 Settings

The settings of the Scene are used during the scene generation process and are stored in osg::StateSet
which is accessed using the getOrCreateStateSet method. As presented in Section 2.4.1.2, default settings
can be set for the scene graph.

3.2.1 Textures

By default, OpenGL includes textures when rendering 3D models. The IRSG disables textures
(GL_TEXTURE_2D) since radiometric information is only provided using polygon colors, set according
to the total apparent radiance, and is not related to textures which are usually intended for visible effects.

3.2.2 Lighting

The IRSG also disables lighting effects (GL_LIGHTING) in order to remove any visible effects (e.g.
shadow).

3.2.3 Fog

By default, OpenGL disables fog effects (GL_FOG) when rendering 3D models. For the same reasons
that the textures and lighting effect were disabled, the fog effects are kept disabled.

 - LTI2008DES-3 21

3.2.4 Blending Mode

By default, OpenGL does not perform blending and the source color overwrites the destination color. In
order to use blending, glEnable(GL_BLEND) must be called while defining the proper blending function
by glBlendFunction(GLenum sourceFactor, GLenum destinationFactor). The possible values for the
sourceFactor and the destinationFactor are described in Table 1 and the equation used by the blend
function to compute the final destination color is given by:

() () () ()
().,,,

,,,,,,,,,,,,,
,

dFdsFsdFdsFsdFdsFsdFdsFs

dFdFdFdFddddsFsFsFsFssss

AAAABBBBGGGGRRRR
ABGRABGRABGRABGR

DFCuDCSFSCFDC

++++=
⋅+⋅=

⋅+⋅=
 (5)

Where:

• FDC is the final destination color;

• SC is the source color;

• SF is the source factor;

• CuDC is the current destination color;

• DF is the destination color;

• (Rs, Gs, Bs, As) are the red, green, blue and alpha components of the source color;

• (Rd, Gd, Bd, Ad) are the red, green, blue and alpha components of the destination color;

• (RsF, GsF, BsF, AsF) are the red, green, blue and alpha components of source factor; and

• (RdF, GdF, BdF, AdF) are the red, green, blue and alpha components of destination factor.

 - LTI2008DES-3 22

Table 1: List of possible source and destination factors for color blending.

Factor Name Relevant for Factor Expression (R,G,B,A)

GL_ZERO Source or destination (0, 0 , 0, 0)

GL_ONE Source or destination (1, 1, 1, 1)

GL_DST_COLOR Source (Rd, Gd, Bd, Ad)

GL_SRC_COLOR Destination (Rs, Gs, Bs, As)

GL_ONE_MINUS_DST_COLOR Source (1-Rd, 1-Gd, 1-Bd, 1-Ad)

GL_ONE_MINUS_SRC_COLOR Destination (1-Rs, 1-Gs, 1-Bs, 1-As)

GL_SRC_ALPHA Source or destination (As, As, As, As)

GL_ONE_MINUS_SRC_ALPHA Source or destination (1-As, 1-As, 1-As, 1-As)

GL_DST_ALPHA Source or destination (Ad, Ad, Ad, Ad)

GL_ONE_MINUS_DST_ALPHA Source or destination (1-Ad, 1-Ad, 1-Ad, 1-Ad)

GL_SRC_ALPHA_SATURATE Source (X, X, X, 1)
where X = min(As,1-Ad)

By using the proper blending mode, the OpenGL blending function can be used to render polygons with
transparency effects. The source factor currently used in the IRSG is GL_ONE while the destination
factor is GL_ONE_MINUS_SRC_ALPHA. The blending equation is then given by:

() () () ()()1- , 1- , 1- , 1-s d s s d s s d s s d sFDC R R A G G A B B A A A A= + + + + . (6)

The rendering is done from back to front. Then, as shown in Figure 15, when rendering a transparent
polygon (surface 2) placed in front of another polygon (surface 1), the final R value is given by:

()2 1 21-R R R A= + . (7)

 - LTI2008DES-3 23

Figure 15 – Representation of polygon transmission (surface 1 is behind surface 2)

3.2.5 Antialiasing

Antialiasing is a technique to create smoother transition between the pixels at the edge of an object and
the surrounding pixels. It also attempts to keep a maximum of information from the original data during
pixelisation. When generating the Image, aliasing could results in significant radiometric inaccuracy.

3.2.5.1 Polygon antialiasing

The polygon antialiasing function (GL_POLYGON_SMOOTH) is defined in the basic OpenGL API. It
allows to antialias polygons that are in GL_FILL polygon mode by using a coverage algorithm. However
this technique only works with specific polygon sorting and blending parameters. In particular the
polygons must be sorted from front to back and the blending source/destination factors must be
GL_SRC_ALPHA_SATURATE and GL_ONE. Since these settings are incompatible with the one chosen
to handle the transparency (polygon sorted back to front and blending source/destination factors of
GL_ONE and GL_ONE_MINUS_SRC_ALPHA), the polygon antialiasing cannot be used.

3.2.5.2 Multisampling and supersampling

Supersampling is a technique that consists of rendering an image (in the framebuffer) at a higher
resolution than the one being displayed. This image is then downsampled to the desired size by averaging
the framebuffer pixels in a corresponding pixel of the displayed image.

The multisampling is essentially an optimization of the supersampling since it only supersamples the
edges of the polygons (not the interior). It also samples textures and perform light computation only once
per group of samples.

The GL_ARB_multisample extension defines both multisampling and supersampling implementations.
However this extension is not supported by OSMesa. Furthermore the implementation of GLUT on
Microsoft Windows does not support this extension either. In order to be able to use the
GL_ARB_multisample extension, the Microsoft implementation of OpenGL should be used alone or with
another toolkit than GLUT. It seems that Simple DirectMedia Layer (SDL) supports the multisample
extension but it has not been tested.

 - LTI2008DES-3 24

Since the need for performing 16-bit rendering was more important than the need for performing
antialiasing, the development team has decided to keep going with OSMesa. The simple software
implementation of supersampling presented in Section 4.5 has been realized to provide two levels of
supersampling.

 - LTI2008DES-3 25

44 PPrroocceessss

This section describes how the Scene is managed to generate an IR output (Image). Figure 16 shows the
UML sequence diagram of the scene generation process. The generateScene method is used to update the
IR output of the entities in the Scene and generate an Image (as seen by the sensor). Entities states are
updated from the Theatre, the sensor point of view is computed, the apparent radiance of all visible
polygons is computed and an image is generated.

 - LTI2008DES-3 26

 : SceneGenerator3D : SceneGenerator3D OSMesaOSMesa osgUtil::SceneViewosgUtil::SceneView

GroupVisitorGroupVisitor

osg::FrameStamposg::FrameStamp

1: generateScene(int, int, double, double, DataTypes::Matrix, const Spectrum *, const Spectrum *, bool, double, double)

2: OSMesaMakeCurrent(OSMesaContext, void *, GLenum, GLsizei, GLsizei)

3: loadMaterialsDatabase(BaseEntity*, KARMA::Database&)

Reload all IR properties
database when
ReloadDatabases is true.

4: updateScene()

8: update()

Reset simulation time for
all sequences.

9: traverse(Node&)

11: setFrameStamp(osg::FrameStamp*)

12: setViewport(int, int, int, int)

13: setViewMatrix(const osg::Matrixd&)

14: update()

15: cull()

5: getCamera()

6: osg::CameraNode *

Used to setProjectionMatrixAsPerspective
with total FOV and Near/Far values.

7: setSimulationTime(double)

Reset animations when
simulation time is smaller
than the frame stamp.

10: setSimulationTime(double)

Update frame stamp that is
used to update animations.

16: updateColor(const KARMA::Spectrum*)

17: draw()

18: readFrameBuffer(int, int, double, double, DataTypes::Matrix&)

19: setComputeNearFarMode(ComputeNearFarMode)

Figure 16 – Scene generation UML sequence diagram

4.1 Update Entities

The Scene is updated at the beginning of the scene generation process. As mentioned in Section 2.4.1.1,
the position and orientation is updated to reflect the corresponding entities in the Theatre. A scaling factor
is also applied to the osg::PositionAttitudeTransform to represent variation of the entity size with time.
The scaling properties of the IR Property Database presented in Section 2.2 are used. When scaling is
enabled, the 3D model is also shifted by “-Y Scale” along its y-axis (Z-up convention) in order to
represent the trailing aspect of a flare plume.

The IR Property Database (Database) is loaded when an entity is added in the Scene using the
loadMaterialsDatabase method. However, there is an argument to the generateScene method to allow
reloading a database when SMAT uses the IRSG. A reference to the entity database is stored using a

 - LTI2008DES-3 27

vector of Database (EntityDatabaseVector). Each entry of this vector is mapped to the child
(osg::PositionAttitudeTransform) of the Scene having the same index value.

Temperature and material properties are associated to polygons of a 3D model using indexes. These
indexes are stored in a user defined attribute (_userData) that is available for all osg::Node. This attribute
is a reference to any object that is derived from osg::Referenced. Indexes are stored in the user defined
attribute when the OpenFlight 3D model is loaded. The OSG implementation is presented in Section 5.1.
An object of type osg::IntArray contains the temperature and material indexes in the elements 0 and 1
respectively.

aDrawable = aGeode->getDrawable(i);

aDrawableIndices = dynamic_cast<osg::IntArray *>(aDrawable->getUserData());

ASSERT(aDrawableIndices != NULL, "Database indices are not defined in the 3D model!");

temperatureIndex = (*aDrawableIndices)[0];

materialIndex = (*aDrawableIndices)[1];

4.2 Update Scene Graph States

During this step of the scene generation process, the simulation time is updated at the Scene level and the
sensor point of view is applied.

4.2.1 Updating Scene

The Scene time is synchronized to the simulation as presented in Section 2.4.3. The time is updated
during traversal of the Scene by a GroupVisitor (when rewinding time for SMAT) or when the method
update (osgUtil::SceneView) is called.

4.2.2 Sensor Point of View

OSG uses a matrix of transformation when rendering an image and this matrix is an argument of the
generateScene method. SMAT generates such a matrix using its GUI while it is computed according to
the AbstractSensor interface in the getImageIrradiance (simulation). The sensor position and orientation
are expressed in the inertial reference system using the BaseEntity information. Then, a matrix of
transformation is created.

TransRotT MMM *= , (8)

where MT is the matrix of transformation, MRot is a matrix of rotation and MTrans is a matrix of
translation.

The final matrix is inverted to adapt to OpenGL Y-up and Z-up conventions. The
osgGA::MatrixManipulator (used in SMAT) uses the Y-up convention while all other classes, including
matrix manipulators, use the Z-up convention.

The view matrix is applied by calling the method setViewMatrix (osgUtil::SceneView) and the
dimensions of the Image that will be produced by the end of the scene generation steps is set by calling

 - LTI2008DES-3 28

the method setViewport (osgUtil::SceneView). The viewport allows selecting a subset of the pre-allocated
memory space (refer to Section 3.1 for more details).

4.3 Cull Polygons

This step discards all entities polygons that are outside the view frustum presented in Section 2.4.2. The
polygon culling process is accomplished by OSG, the cull method of osgUtil::SceneView, but the IRSG
needs to be aware of which polygon might be visible in order to reduce the computation cost of the total
apparent radiance.

A notification is made to the IRSG using the class CullCallBack that inherits from osg::NodeCallback. A
node visitor CullingCallbackVisitor was implemented to set a reference to a CullCallBack when an entity
is added to the Scene. These classes were shown in Figure 10. During polygon culling, its method
operator() is called by the cull visitor if the node has not been culled (i.e. node might be visible) and a
reference is kept to compute the apparent radiance of the polygons. Refer to Section 4.4 for more details.
A reference to an osg::Geode object is gathered in the EntityVectorOfGeodeVector that is a vector of
entities visible polygons (vector of geodes):

std::vector<std::vector<osg::Geode*>> EntityVectorOfGeodeVector;

Culling is limited to osg::Geode nodes, which was proven to be the necessary node of the nodes hierarchy
involved in the culling process. A CullCallBack is associated to osg::Transform nodes to associate the
osg::Geode nodes to the corresponding entity in the Scene. The vector is cleared before each culling
operation.

4.4 Update Polygons

The apparent radiance is computed in the updateColor method that is separated in two steps. The total
apparent radiance is calculated for all polygons located in the view frustum (stored in the
EntityVectorOfGeodeVector attribute), and then it is converted in a color value. For more specific details
about radiometric equations, the reader is referred to the document IRSG for countermeasure simulations
[11].

4.4.1 Compute Radiances

During the first step, the total apparent surface radiance (Lsurf
app) of all entities polygons located in the

view frustum is calculated as well as the apparent background radiance. The total apparent radiance is
given by:

 - LTI2008DES-3 29

surf therm refl path
app app app appL L L L= + + . (9)

It is calculated using properties from the IR Property Database presented in Section 2.2 and specified by
temperature and material indexes. More details about these formulas are presented in [11].

In order to reduce the computation cost of this process, Lsurf
app is calculated once for each combination of

temperature and material indexes at a given simulation time. This approach is allowed since the
atmospheric transmission is assumed constant for all the polygons of an entity. The resulting value is used
each time the same pair of temperature and material indexes is found.

The temperature and material indexes, IndexT and IndexM respectively, are combined into a unique
integer value (MapKey) that represents the key to access the appropriate value:

() TMKey IndexIndexMap += 1000 . (10)

Therefore, it is assumed that the value of temperature indexes is less than 1000. A local variable
(mapEntitiesColor) is used to store Lsurf

app in a map container that is indexed using the previous key and
stores values in a map container for each entity in the Scene.

std::vector<std::map<int, double*>> mapEntitiesColor;

Each entry of this vector is mapped to the child (osg::PositionAttitudeTransform) of the Scene having the
same index value.

From the surface temperatures determined by Equation (1) of the SMAT user’s guide [5], the spectral
blackbody radiance (Lbb) is calculated in the computeLbb method. An attribute (LBBStep) is used to
specify the wavelength steps of Lbb; the default value is 0.01 µm. Once again, a local variable
(mapEntityLbb) is used to reduce the computation cost. A map container associates a Lbb Spectrum to a
temperature index.

4.4.2 Compute Scaling Factor

Once Lsurf
app of all entities polygons located in the view frustum is calculated, radiance values must be

converted into a polygon color. Indeed, at a lower level, the scene generation mechanism manages a
polygon color instead of a radiance value. Therefore, a scaling factor is computed for this conversion and
maximizes the use of the total color span:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

100
1 Range

MaxScaling

D
ARAR , (11)

and

 - LTI2008DES-3 30

ScalingAR
ARColor = . (12)

Where:

• ARScaling is the scaling factor for total apparent radiance to color conversion (W/m2/sr);

• ARMax is the maximum total apparent radiance in the sensor FOV (W/m2/sr);

• DRange is the dynamic range reserved for transparency;

• AR is the total apparent radiance of a given polygon (W/m2/sr); and

• Color is the color value of a given polygon (between 0 and 1).

ARMax is stored in the MaxRadiance attribute and is determined once all Lsurf
app are computed. An

attribute (TransparencyReservedDynamicRange) is used to specify DRange; the default value is 5. This
leads to a default value of 5% of the total dynamic range being reserved for transparency effects. The
final scaling factor is stored in the MaxRadiance attribute.

4.4.3 Set Polygons Color/Transparency

The last step of the polygon update is to update the polygons color. All entities polygons are revisited to
set their color according to the value computed in the first step (stored in the mapEntitiesColor). Colors
are computed using a scaling factor, as shown in Equation (12).

A uniform background is defined using the setClearColor method (osgUtil::SceneView). This color
depends on the scaling factor and cannot be set earlier in the scene generation. Therefore, an additional
polygon culling operation is required in order to update the background color for the current rendering.

The polygon transparency (τeff) is computed as presented in Ref. [11]. When a polygon is transparent, the
alpha channel is less than 1, meaning that it is not completely opaque. τeff is equivalent to (1 – alpha).
When the Scene is rendered, the resulting color of a transparent polygon is as presented in Section 3.2.4.

4.5 Render Scene

When the Scene is updated as seen by the sensor, rendering is performed. Rendering is accomplished
using an instance (Generator) of the osgUtil::SceneView class. The dimensions of the Image to be
rendered are set using a Supersampling attribute and using the setViewport method. The supersampling
consists of rendering an image in a higher resolution than the one being displayed and to downsample it
afterward to the desired size by taking an average of the sub-pixels. Figure 17 shows an example of a 2x
supersampling where L1 = (L11 + L12 + L13 + L14)/4. The modes currently supported are 1x, 2x and 4x.
Nx means that the image is rendered at N times the resolution and each pixel displayed is an average of
the N2 corresponding pixels rendered. Higher supersampling results in smoother image and longer
computation.

 - LTI2008DES-3 31

Figure 17 – Supersampling and downsampling operations

4.6 Compute Angular Irradiance Distribution

The Image is rendered into the framebuffer by the Generator during the execution of the draw method.
The readFrameBuffer method extracts an angular distribution of irradiance from the framebuffer into an
image (DataTypes::Matrix).

This method converts a pixel color into a pixel radiance:

BitsN
Scaling

pixel

AR
ColorL

2
= , (13)

where:

• LPixel is the apparent radiance of a pixel (W/m2/sr);

• Color is the color of a pixel (between 0 and 2N
Bits-1);

• ARScaling is the scaling factor for apparent radiance to color conversion (W/m2/sr); and

• NBits is the number of bits per pixel (fixed to 2 since 16-bit is used).

As presented earlier, the scaling factor is stored in the MaxRadiance attribute. Equation (13) introduces
the number of bits per pixel since the pixels of the Image are not limited to 1 as opposed to the polygon
color. The pixel irradiance is then calculated:

VH

VH
pixelpixel NN

FOVFOVLE = , (14)

where:

• EPixel is the apparent irradiance of a pixel (W/m2);

• LPixel is the apparent radiance of a pixel (W/m2/sr);

• FOVH and FOVV are the horizontal and vertical total FOV of the image (rad); and

 - LTI2008DES-3 32

• NH and NV are the horizontal and vertical dimensions of the image (pixels).

 - LTI2008DES-3 33

55 MMooddiiffiiccaattiioonnss ttoo OOppeennSScceenneeGGrraapphh

Some modifications to the OSG external library are required to allow proper behavior mostly for scene
generation. The current version of OSG is 2.2.

5.1 OpenFlight

IR Color Code and IR Material Code fields of the OpenFlight file format are used as indices to the IR
Property Database for the scene generation. However, those fields are not supported in OSG nodes (read
but discarded). The readRecord method of the Face class (file “GeometryRecords.cpp” of the
osgdb::OpenFlight package) has been modified to read those fields and store them as user data. The
following code has been added.

// Set IRColor and IRMaterial properties (not available in OSG)

osg::IntArray * pArray = new osg::IntArray(2);

(*pArray)[0] = IRColor;

(*pArray)[1] = IRMaterial;

_geometry.get()->setUserData(pArray);

5.2 Rendering

A warning message was displayed in the application console when running a KARMA simulation each
time that a draw was performed (scene generation). This message has been disabled since the draw
operation seems to work correctly. The drawInner method of the RenderStage class (file
“RenderStage.cpp” of the osgUtil package) has been modified to disable the warning message.

 - LTI2008DES-3 34

if(state.getCheckForGLErrors()!=osg::State::NEVER_CHECK_GL_ERRORS)

 {

 GLenum errorNo = glGetError();

 if (errorNo!=GL_NO_ERROR)

 {

 const char* error = (char*)gluErrorString(errorNo);

 // if (error) osg::notify(osg::NOTICE)<<"Warning: detected OpenGL error '"<<error<<"'

 // after RenderBin::draw(,)"<<std::endl;

 // else osg::notify(osg::NOTICE)<<"Warning: detected OpenGL errorNo=

 // 0x"<<std::hex<<errorNo<<" after RenderBin::draw(,)"<<std::endl;

 if (fbo_ext)

 osg::notify(osg::NOTICE)<<"RenderStage::drawInner(,) FBO status=0x"

 <<std::hex<<fbo_ext>glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT)<<std::endl;

 }

}

 - LTI2008DES-3 35

66 FFuuttuurree WWoorrkk

The first implementation phase of the IRSG has demonstrated the benefits of modelling IR signatures
using 3D models. However, there are aspects that can be enhanced or added. There is also some part of
the code that could be reviewed before continuing the development. The envisioned improvements are
listed in Table 1.

 - LTI2008DES-3 36

Table 1 – List of possible new or enhanced features in the IRSG

Feature

Enhance the antialiasing techniques.

Investigate GL_FOG settings on the scene generation.

Investigate incompatibilities of some 3D model shapes (e.g. landing gear cover issue) in order to avoid
crashes during scene generation (those geometries have been removed at this time and incompatibilities
are misunderstood).

Optimize the computations and pre-computations to increase the execution speed (includes a deep
analysis of the performances of the scene generation steps using typical settings for dimensions,
supersampling, IR Database Properties and details of the 3D models).

Implement the thrust variable in the temperature equation.

Revisit the Near/Far usage to maximize the rendering resolution as long as it is within detection range
(instead of having the Near/Far, set to the minimum/maximum detection range).

Investigate the 16-bit implementation using OpenGL (would avoid DLL conflicts with OSMesa DLLs
and take advantage of hardware acceleration).

Implement a dynamic selection of the precision of the scene generation process (8-bit or 16-bit) instead of
replacing DLLs manually.

Investigate the optimization of the culling process.

Revisit the scene generation programming interface implemented for SMAT to generate an Image using a
sensor point of view (i.e. using AbstractSensor and transmittance model within Environment
composition).

Implement an interface to the IRSG in order to decouple KARMA from OSG and other dependencies.

Compute the atmospheric transmittance for the main group nodes of the BaseEntity instead of the
BaseEntity itself.

Investigate the externalization of the IRSG: separate in an application that could be used outside KARMA
(e.g. MATLAB), which would eliminate the 8-bit/16-bit constraint (3D viewer versus IRSG). Otherwise,
implement an interface to the IRSG in order to decouple KARMA from OSG and other dependencies.

Migrate to OpenSceneGraph 2.4 released on 25th April 2008 which features writing OpenFlight format as
opposed to the current version (OpenSceneGraph 2.2).

 - LTI2008DES-3 37

RReeffeerreenncceess

[1] Harrison, N. 2005. KARMA: Materializing the Soul of Technologies into Models. DRDC
Valcartier Fact Sheet OS-333-A.

[2] Harrison, N., Gilbert, B., Jeffrey, A., Lestage, R., Lauzon, M., and Morin, A. 2005. KARMA:
Materializing the Soul of Technologies into Models. Proceedings of the I/ITSEC 2005
Conference, Orlando, Florida, USA.

[3] Harrison, N., Gilbert, B., Jeffrey, A., Lauzon, M. and Lestage, R. 2004. Adaptive and Modular
M&S Configuration for Increased Reusability. Proceedings of the I/ITSEC 2004 Conference,
Orlando, Florida, USA.

[4] Harrison, N., Gilbert, B., Lauzon, M., Jeffrey, A., Lalancette, C., Lestage, R. and Morin, A.
2002. A M&S Process to Achieve Reusability and Interoperability. Proceedings of the NATO
M&S Conference 2002, RTO-MP-094-11, Paris, France.

[5] Richard, J. 2008. SMAT User’s Guide. DRDC Valcartier CR 2008-260, LTI, Quebec City,
Quebec.

[6] Richard, J. 2008. SMAT Developer’s Guide. DRDC Valcartier CR 2008-259, LTI, Quebec
City, Quebec.

[7] osg – Trac (online). http://www.openscenegraph.org/projects/osg (access date: April 23, 2008).

[8] OpenGL – The Industry Standard for High Performance Graphics. http://www.opengl.org/
(access date: April 23, 2008).

[9] Mesa Home Page. http://www.mesa3d.org/ (access date: April 23, 2008).

[10] OpenFlight standard. http://www.multigen.com/products/standards/openflight/index.shtml
(access date: May 15, 2008).

[11] Lepage, J. F. 2008. Infrared scene generation for countermeasures simulations, Implementation
in the KARMA framework, phase 1. DRDC Valcartier (report being published).

 - LTI2008DES-3 38

This page intentionally left blank.

 - LTI2008DES-3 39

AAbbbbrreevviiaattiioonnss aanndd AAccrroonnyymmss

API Application Programming Interface

CSV Comma Separated Value

DLL Dynamic Link Library

GUI Graphical User Interface

IR Infrared

IRCM Infrared Countermeasure

IRSG Infrared Scene Generation

LUT Lookup Table

OpenGL Open Graphic Library

OSG OpenSceneGraph

OSMesa Off-Screen Mesa

R&D Research & Development

RGBA Red Green Blue Alpha

SMAT Signature Modeling and Analysis Tool

STL Standard Template Library

UML Unified Modeling Language

XML Extensible Markup Language

 - LTI2008DES-3 40

This page intentionally left blank.

 - LTI2008DES-3 41

AAppppeennddiixx 11

IR Property Database Description
Data Type Section Offset Length Description
String 0 8 ASCII ID including NULL terminator
Integer 8 4 Version
Integer 0 4 Temperature section ID (100)
Integer 4 4 Number of temperature entries
Integer 8 4 Temperature index
Double 12 8 Temperature (K)
Double 20 8 Reserved
Double 28 8 Reserved
Integer 36 4 Length of temperature name
String 40 N ASCII name including NULL terminator

Double 40 + N 8

Coefficient A
0 = absolute temperature
1 = relative to ambient temperature

Double 40 + N + 8 8 Offset to the ambient temperature (K)
Double 40 + N + 16 8 Aerodynamic recovery factor
Integer 40 + N + 24 4 Number of entries (i) in temperature LUT
Double 68 + N + (i * 16) 8 Time n (s)
Double 76 + N + (i * 16) 8 Temperature n (K)

 - LTI2008DES-3 42

Data Type Section Offset Length Description
Integer 0 4 Material section ID (101)
Integer 4 4 Number of material entries
Integer 8 4 Material index
Integer 12 4 Length of material name
String 16 N ASCII name including NULL terminator

Integer 16 + N 4

Number of points (j) in the emissivity curve
0 = NULL
1 = constant emissivity
N = emissivity fonction of wavelength

Double 20 + N + (n * 16) 8 Wavelength n (µm)
Double 28 + N + (n * 16) 8 Emissivity n

Integer 20 + N + (j * 16) 4

Number of points (k) in the transmissivity curve
0 = NULL
1 = constant transmissivity
N = transmissivity fonction of wavelength

Double 24 + N + ((j + n) * 16) 8 Wavelength n (µm)
Double 32 + N + ((j + n) * 16) 8 Transmissivity n

Integer 24 + N + ((j + k) * 16) 4

Number of points (l) in the reflectivity curve
0 = NULL
1 = constant reflectivity
N = reflectivity fonction of wavelength

Double 28 + N + ((j + k + n) * 16) 8 Wavelength n (µm)
Double 36 + N + ((j + k + n) * 16) 8 Reflectivity n
Integer 28 + N + ((j + k + l) * 16) 4 Scale section ID (102)

Integer 32 + N + ((j + k + l) * 16) 4

Use scaling flag
0 = FALSE
1 = TRUE

Integer 36 + N + ((j + k + l) * 16) 4 Number of scaling values (m)
Double 40 + N + ((j + k + l) * 16) + (m * 32) 8 Time n (s)
Double 48 + N + ((j + k + l) * 16) + (m * 32) 8 Scaling along X axis
Double 56 + N + ((j + k + l) * 16) + (m * 32) 8 Scaling along Y axis
Double 64 + N + ((j + k + l) * 16) + (m * 32) 8 Scaling along Z axis

Distribution list

Document No.: DRDC Valcartier CR 2008-258

 LIST PART 1: Internal Distribution by Centre

2 Document Library

1 J.-F. Lepage
1 N. Harrison
1 P. Brière
1 B. Gilbert
1 C. Belhumeur
1 C. Lemelin
1 M. Lambert
1 F. Dinel
1 M. Lauzon

11 TOTAL LIST PART 1

 LIST PART 2: External Distribution by DRDKIM

1 Director Research and Development Knowledge and Information Management (DRDKIM)

1 Library and Archives Canada

1 Director Science and Technology Air (DSTA)
305 Rideau Street
Ottawa Ontario K1A 0K2

1 Director Science and Technology Air (DSTA) 6

305 Rideau Street
Ottawa Ontario K1A 0K2

1 Directorate of Technical Airworthiness and Engineering Support (DTAES) 8

National Defense Headquarters
400 Cumberland
Ottawa Ontario K1A 0K2

5 TOTAL LIST PART 2

16 TOTAL COPIES REQUIRED

dcd03e rev.(10-1999)

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(Highest Classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA

1. ORIGINATOR (name and address)
LTI inc.
2700, De Carthagène,
Québec, QC
G2B 5M4

2. SECURITY CLASSIFICATION
(Including special warning terms if applicable)
UNCLASSIFIED

3. TITLE (Its classification should be indicated by the appropriate abbreviation (S, C, R or U)
Infrared Scene Generation (IRSG) Developer’s Guide (U)

4. AUTHORS (Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.)
Rouleau, Eric

5. DATE OF PUBLICATION (month and year)
September 2008

6a. NO. OF PAGES
42

6b .NO. OF REFERENCES
11

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. Give the
inclusive dates when a specific reporting period is covered.)

Contract report

8. SPONSORING ACTIVITY (name and address)
Defence R&D Canada - Valcartier
a/s Jean-Francois Lepage and Nathalie Harrison
2459, boul. Pie-XI Nord, Québec, QC G3J 1X5

9a. PROJECT OR GRANT NO. (Please specify whether project or
grant)
Project 13et01

9b. CONTRACT NO.
W7701-052709/001/QCL

10a. ORIGINATOR’S DOCUMENT NUMBER
DRDC Valcartier CR 2008-258

10b. OTHER DOCUMENT NOS
LTI2008DES-3

N/A

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security
classification)

 Unlimited distribution
 Restricted to contractors in approved countries (specify)
 Restricted to Canadian contractors (with need-to-know)
 Restricted to Government (with need-to-know)
 Restricted to Defense departments
 Others

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally
correspond to the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is
possible, a wider announcement audience may be selected.)

Unlimited announcement

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(Highest Classification of Title, Abstract, Keywords)

dcd03e rev.(10-1999)

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(Highest Classification of Title, Abstract, Keywords)

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself.
It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin
with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified)
represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is
bilingual).

This contract report presents the first implementation phase of 3D infrared signature modelling compatible with the KARMA
simulation environment developed on behalf of Defence Research and Development Canada – Valcartier in the framework of
Public Works and Government Services Canada contract number W7701-052709/001/QCL “Development and exercise
simulation”. The main objective of this first implementation is to demonstrate the feasibility and the benefits of 3D infrared
signature modelling as opposed to punctual signatures. Free and open source software as well as commercial off-the-shelf tools
have been considered, allowing the reduction of the implementation time and increasing reliability.
This report is presented as a developer’s guide of the infrared scene generation module and describes the implementation of the
scene generation process tailored to KARMA. The first implementation phase of 3D infrared signatures improves signature
modelling in KARMA and demonstrates the applicability of a 3D viewer for infrared scene generation and the higher level of
fidelity that is reached for infrared guided weapon engagement simulations. However, the current implementation could be
improved to offer pre-computations and support the former punctual signatures.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document
and could be helpful in cataloguing the document. They should be selected so that no security classification is required.
Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be
included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and Scientific
Terms (TEST) and that thesaurus-identified. If it is not possible to select indexing terms which are Unclassified, the
classification of each should be indicated as with the title.)

Infrared scene generation
Infrared signature
Modeling and simulation (M&S)

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(Highest Classification of Title, Abstract, Keywords)

Canada’s Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

www.drdc-rddc.gc.ca

Defence R&D Canada R & D pour la défense Canada

