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Abstract

This document proposes a new program analysis technique, called hybrid analy-
sis, that combines both static and dynamic analysis principles. It is currently being
developed to ensure the security of Java programs in the context of critical mili-
tary information systems. This new program verification technique is theoretically
sound and precise, which constitutes a major contribution to the formal program
verification domain.

At this stage, Java hybrid analysis is based on finite state automata theory and first-
order predicate logic, only succinctly covered in this document. The reader is thus
assumed to be relatively familiar with these domains. However, the precise model
and logic used by Java hybrid analysis are extensively described. Furthermore,
five different hybrid analysis approaches have been devised. They have been given
the following names: interactive hybrid analysis, parameterized hybrid analysis,
test-based hybrid analysis, worst-case hybrid analysis, and statically-supported dy-
namic analysis. A small case study is presented in order to illustrate the concepts
behind the first approach. Finally, a discussion depicts the future of this approach.

The Java hybrid analysis detailed in this document is labeled version 0.5 to depict
the fact that it is still unstable and evolving.

Résumé

Ce document propose une nouvelle technique d’analyse de programmes, appelée
analyse hybride, qui combine des principes d’analyses statique et dynamique. Elle
est présentement développée pour assurer la sécurité de programmes Java dans le
contexte des systèmes d’information militaires critiques. Cette nouvelle technique
de vérification est théoriquement saine et précise, ce qui constitue une contribution
majeure au domaine de la vérification formelle de programmes.

À ce stade, l’analyse hybride pour Java est basée sur la théorie des automates finis
et la logique des prédicats, qui sont seulement succinctement présentées dans ce
document. Le lecteur est donc supposé connaı̂tre relativement bien ces domaines.
Cependant, le modèle et la logique précis utilisés par l’analyse hybride pour Java
sont décrits en détail. De plus, cinq approches différentes d’analyse hybride ont
été imaginées. Elles ont les noms suivants : analyse hybride interactive, analyse
hybride paramétrée, analyse hybride basée sur les tests, analyse hybride en pire
cas et analyse dynamique supportée par l’analyse statique. Une petite étude de cas
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est aussi présentée de façon à illustrer les concepts sous-jacents à cette première
approche. Finalement, une discussion envisage le futur de cette approche.

L’analyse hybride pour Java détaillée dans ce document est étiquettée par la mention
“version 0.5” pour illustrer le fait qu’elle est encore instable et en évolution.
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Executive summary

The Java Architecture is believed to be one of the best commercial architectures
with which to build C2IS and other critical military information systems because
it includes high-quality mechanisms to enforce security policies such as static ver-
ification (i.e., prior to execution) and run-time monitoring (i.e., during execution).
However, optimized configurations and specialized extensions are needed to satisfy
military requirements in terms of safety, reliability and security. Harmonizing the
Java Security concepts with validated design and execution surveillance has been
identified as a top R & D priority to allow continuous risk management.

The novel software verification approach, called hybrid analysis, that this document
presents combines static verification and run-time monitoring principles in order to
successfully fulfill these paramount safety-, reliability- and security-related mili-
tary requirements. Indeed, by integrating advanced mechanisms to enforce security
policies into one consolidated analysis and by allowing these mechanisms to com-
municate and cooperate, hybrid analysis greatly reduces the chances of executing
malicious code. The idea of this approach came from the experience of the Mali-
COTS Project, that demonstrated the need for a verification technique that unifies
static and dynamic analysis principles in a common framework.

F. Painchaud; 2007; Java hybrid analysis version 0.5; DRDC Valcartier TM
2004-060; Defence R & D Canada – Valcartier.
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Sommaire

Plusieurs croient que l’architecture Java est une des meilleures architectures com-
merciales pour développer des systèmes d’information de commandement et con-
trôle, et autres systèmes d’information critiques militaires, parce qu’elle contient
des mécanismes de qualité pour mettre en application des politiques de sécurité,
comme la vérification statique (c’est-à-dire avant l’exécution) et le monitorage dy-
namique (c’est-à-dire pendant l’exécution). Cependant, des configurations améliorées
et des extensions spécialisées sont nécessaires pour satisfaire aux exigences mili-
taires en matière de sûreté, de fiabilité et de sécurité. L’harmonisation des concepts
de sécurité Java, de conception validée et de surveillance de l’exécution est considérée
comme une priorité importante en R & D afin de permettre la gestion continue du
risque.

La nouvelle approche de vérification logicielle, appelée analyse hybride, présentée
dans ce document combine des principes de vérification statique et de monitorage
dynamique de façon à mieux satisfaire les besoins militaires en matière de sûreté,
de fiabilité et de sécurité logicielles. En effet, en intégrant des mécanismes avancés
pour mettre en force des politiques de sécurité dans une analyse consolidée et en
permettant à ces mécanismes de communiquer et de coopérer, l’analyse hybride
réduit de façon importante les risques d’exécuter du code malicieux. L’idée de cette
approche est venue de l’expérience du projet MaliCOTS, qui a démontré le besoin
de développer une technique de vérification qui unifie les principes d’analyse sta-
tique et dynamique dans un cadre de travail commun.

F. Painchaud; 2007; Java hybrid analysis version 0.5; DRDC Valcartier TM
2004-060; Recherche et développement pour la défense Canada – Valcartier.
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1 Introduction

In this document, hybrid analysis is defined as an analysis technique that combines
static and dynamic analysis principles such as, for example, traditional static anal-
yses combined with interaction with the analyst (interaction similar to the one used
in conventional debugging). Parametrization, discussed later in this document, can
also be used in order to reduce the necessity for constant human interaction. This
integration of static and dynamic analysis provides more precise analysis results by
complementing the information that is statically missing in the program being ana-
lyzed with information only available at run-time. Informally stated, hybrid analy-
sis uses a model, encoded using a computational theory, and a property, expressed
via a logic or automaton, and determines if the model satisfies the property, that is,
if the property is true in the model. In this respect, the hybrid analysis described
in this document is inspired by model checking, a program analysis technique that
takes into account the behavior of analyzed programs.

In this case, hybrid analysis is used to ensure the security of Java programs, ex-
pressed at the bytecode level, in the context of critical military information systems.
In the current framework, the model is represented by a non-deterministic finite
state automaton and the property, by a first-order predicate logic formula. Note
that this Java hybrid analysis theory is not yet stable and is meant to be evolving.
This version is developed only to set the stage for using more expressive underlying
theories like Abstract State Machines (ASMs) and temporal or modal logics.

Non-deterministic finite state automata theory and first-order predicate logic are
described in sections 2 and 3, respectively. Section 4 depicts a few hybrid analysis
approaches that could be used in the setting presented in this document. A small
case study is also presented in section 5 in order to illustrate the major concepts of
the current framework. Finally, section 6 discusses this framework and section 7
presents conclusions.

This research was performed under WBE 15BF34 – “Secure JAVA Exploitation in
C2IS”.

2 Model

The model used by Java hybrid analysis is based on traditional non-deterministic
finite state automata theory. This theory is very well explained in [1] and therefore,
it is not extensively explained in this document. Rather, the model used in the
current framework is directly detailed in the following.

Formally stated, a model M is a tuple (S, Σ, ρ, ι, F ), where
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• S is a finite, non-empty set of states,

• Σ ⊆ I ×P is a relation on an alphabet (i.e., a finite, non-empty set of symbols)
I and another finite, non-empty set P of parameters,

• ρ ⊆ S × Σ× S is a transition relation,

• ι ∈ S is the initial state, and

• F ⊆ S is the (possibly empty) set of final states.

In other words, a model M is a labelled, directed graph where S is the set of nodes,
Σ is the set of labels, ρ is the set of edges (or links), ι is the graph entry point,
and F is the graph set of exit (or termination) points. A model is an abstraction
of a program. It should contain all the information necessary to reason about the
program, without the unnecessary information. It defines what is to be considered
true for a given program.

Applying this theory to Java programs expressed at the bytecode level, the different
components of a model are as follows:

• S contains the program points,

• Σ contains the parameterized bytecode instructions of the program (see remark
2 in subsection 2.1),

• ρ represents the control-flow between these bytecode instructions,

• ι is the program entry point, and

• F contains the program exit (or termination) points.

2.1 Remarks

Before going on to the description of the logic, a few remarks must be made con-
cerning this model representation:

1. Program points lie between each bytecode instruction of the program.

2. In Σ, bytecode instructions in I are parameterized by their parameter in P .1

For example, the invokevirtual instruction takes the following parameter:
a symbolic reference to the constant pool pointing to the name and signa-
ture of the method to invoke. Thus, a program could possibly contain the

1Here, it is assumed that all bytecode instructions only take one parameter. This is false for a
few bytecode instructions but it is easy to compact their parameters into a single, conceptual one.
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following instruction: invokevirtual #19, where #19 refers to the method
boolean delete() (see section 5 for a more complete example).

With this definition of bytecode instructions, there can be an infinite number
of them, because there are infinitely-many possible parameters.2 It means that
P , and thus Σ, would not be finite, which contradicts the finite state automata
theory assumption. However, for any particular Java program, the parameter of
any bytecode instruction is statically-defined (refer to section 5 for a concrete
illustration of this fact). Moreover, any Java program is finite in length. There-
fore, with this definition of a parameter, P and Σ are really finite for any given
Java program.

3. ρ is a relation and not a function. Therefore, non-deterministic control flow can
be easily and naturally modelled.

4. If F is empty, the modelled Java program does not terminate. However, if F
is not empty, it does not mean that the modelled Java program certainly termi-
nates. It only means that it is possible that it terminates.

5. Since the current focus is placed on verifying security, the interesting bytecode
instructions are the ones calling security-critical methods of both user- and stan-
dard API code. A technique to automatically find security-critical methods in
user- and standard API code is discussed in subsection 3.1.1.

6. Theoretically speaking, if it is assumed that the analyzed programs always ter-
minate, the set of runs (or execution paths) of M is the set of sequences accepted
by M , noted L(M). Under this assumption, L(M) is therefore a regular lan-
guage.

3 Logic

The logic used by Java hybrid analysis is based on first-order predicate logic. This
logic is quite simple. It is very well known and it is explained in many documents
(for instance, refer to [2] for a short introduction). It is summarized in the following
paragraphs.

Logic is used to represent properties of objects in the world about which it is nec-
essary to reason. The fundamental components (or entities, constants) of logic are

• objects,

• functions (procedures), and
2For instance, strings constitute an infinite domain.
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• relations (predicates).

Logic is always used to reason about fundamental elements of a given world. These
fundamental elements are called objects. Objects are the most atomic entities of the
world under consideration. For example, in the model of section 2, objects are the
system’s security-critical resources (files, network connections, etc.). Indeed, the
current Java hybrid analysis needs to be able to reason about security, i.e., about the
different accesses to security-critical resources that are performed by the Java pro-
gram. Therefore, security-critical resources need to be the fundamental elements of
the world, expressed via its model.

Functions are mathematical entities that take a certain number of objects as param-
eters and return an object as a result of computations, which are normally based
on these passed parameters. Therefore, in logic, functions are used to compute
objects from other objects. Together with relations (see below), they are used to
specify fundamental, or atomic, properties of objects in the logic. These funda-
mental properties are called atomic propositions (see p in the syntax of subsection
3.1). In the model of section 2, functions are considered to be the bytecode in-
structions that call security-critical methods. Indeed, these bytecode instructions
can be viewed as functions taking a security-critical resource as a parameter (the
resource to be accessed) and returning a security-critical resource, which is the ac-
cess (to the resource) itself. In fact, these functions do not return a tangible object,
but their side effect (the access to the security-critical resource) can be conceptu-
ally viewed as a return value. In this respect, functions of the model of section 2
could be considered as procedures. An example of a bytecode instruction that calls
a security-critical method is, once again, invokevirtual #19, where #19 refers
to the method boolean delete(). The corresponding formula in the current logic
to specify such call would simply be: delete. The reasons for this correspondence
are given by the semantics of the logic (see subsection 3.2; and section 5 for a more
complete example).

Security-critical methods are defined to be the ones that access security-critical re-
sources. For instance, a method that deletes a file is a security-critical method since
it accesses a security-critical resource: a file. A bytecode instruction that calls this
method would be considered a function (or procedure) in the model. Therefore,
in this case, functions are simply bytecode instructions “of interest”, i.e., bytecode
instructions that manipulate security-critical resources. A technique to automati-
cally find security-critical methods in user- and standard API code is discussed in
subsection 3.1.1.

Finally, relations (also called predicates), establish a link between a certain number
of objects. For example, the fictional relation
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before ⊆ Objects× Objects

could represent the fact that some resource is used before another one. Therefore,

(open(“file1.txt”), delete(“file1.txt”)) ∈ before

would represent the fact that the file “file1.txt” is opened before it is deleted. As
noted above, together with functions, relations are used to specify the atomic propo-
sitions in the logic. No relations are currently used in the current framework, but it
does not mean that none will be eventually added. Relations add expressivity to the
logic, but at the cost of greater complexity.

3.1 Syntax

Formally stated, the syntax of the current logic is as follows:

Φ ::= p(s) | ¬Φ |Φ1∨Φ2 |Φ1∧Φ2 |Φ1 → Φ2 |Φ1 ↔ Φ2 | (Φ) | ∀r : Ri.Φ | ∃r : Ri.Φ,

where p ∈ AP , the set of all atomic propositions (i.e., the functions and relations
(if any) of the logic), s ∈ R, the set of all security-critical resources (which are, as
noted before, the objects of the logic), and r is a typed variable over the set Ri of
security-critical resources. The sets R and Ri are later defined below.

The set AP contains all the atomic propositions expressible in the logic. In other
words, it contains all the basic security-critical actions that can be performed on the
security-critical resources. Therefore, the logic can handle many different security-
critical resources like files, network connections, processes, windows, etc. Further-
more, it can also handle many different actions on these resources like open, close,
create, delete, read, write, connect, listen, show, hide, etc. For the purposes of this
document, only files are considered with the actions open and delete, although the
theory scales well to more resources and actions.

Formally stated, in the current framework,

AP = {openfile, deletefile}.

The definition of R is
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R =
⋃
i∈I

Ri,

where I is a set of indices and each Ri is a set of security-critical resources, one i for
each type of security-critical resources (files, network connections, etc.). Therefore,
because s ∈ R, s can be viewed as any string that represents the name and location
of a file, the URL of a network connection, the name of a process, just to cite a few
examples. Note that λ ∈ R is always considered to be true, where λ is the empty
string, representing no resource. Furthermore, from the definition of R and Ri, it
can be concluded that the quantifiers ∀ and ∃ are typed in the logic.

In theory, the sets Ri (and R by definition) should contain, for a particular system
(environment), all the possible security-critical resources. In the current context
where only files are considered on atomic propositions open and delete, that corre-
sponds to instantiating these atomic propositions for all files of the system, that is,
for example, openfile(“file1.txt”), openfile(“file2.txt”), . . ., deletefile(“file1.txt”),
deletefile(“file2.txt”), . . .. Of course, this cannot be systematically applied in prac-
tice. Therefore, in practice, the sets Ri and R do not have to be completely and con-
cretely defined. They are more like conceptual sets, useful in defining the hybrid
analysis theory. It is enough to say that they conceptually contain all the possible
security-critical resources, for a particular system. These sets are very large but
finite, so they match well with the theory.

Another way of viewing the sets Ri and R would be to let the analyst define them in
appropriate configuration files. This would give additional flexibility to the frame-
work.

Going back to the definition of the syntax, the informal, or intuitive meaning of the
different syntactic constructions are standard and are not detailed in this document.
Subsection 3.2, however, gives their formal semantics in the current framework.

Nevertheless, note that the logical operators have the following precedence (from
strongest to weakest):

1. ¬

2. ∨,∧

3. →,↔

The parentheses “()” are provided for the analyst to override this precedence if
needed. They can also be used to clarify the properties and make them easier to
read for a human by grouping subproperties.
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3.1.1 Finding Security-Critical Methods

A simple but effective technique to automatically find security-critical methods in
user- and standard API code is to proceed by regular expression searching in the
standard Java API source code. Regular expression searching simply gives more
expressivity, more power than standard text searching.

In fact, the Java architecture contains a component called the Security Manager.
This component is responsible for enforcing a local user-defined security policy
at run-time. All the methods of the standard API that access system resources
perform a call to the Security Manager before accessing the resource itself, in order
to verify that the access is permitted. Therefore, by searching for these calls to the
Security Manager, it is possible to find all methods that access system resources,
which, by definition, are the security-critical methods of the standard API code.
Note that finding the security-critical methods via such a technique is equivalent to
exhaustively defining the set AP of atomic propositions (see subsection 3.1).

From there, the security-critical methods of user-code are simply the ones that call
at least one of the security-critical methods of the standard API code.

This technique has the advantage of being very simple and static. Once the security-
critical methods of a certain version of the standard API have been enumerated, they
are known once and for all for all user programs executing on this API version.
However, this requires trusting the source code of the standard API. In other words,
if a call to the Security Manager is missing from the list of security-critical method
of the standard API, this security-critical method will also be missing in the list
created by this technique.

3.2 Semantics

The semantics of the logic is interpreted on the model defined in section 2. This is
easily understandable by recalling that the model defines what is to be considered
true for a given program. Therefore, it becomes clear that it is necessary to consult
the model in order to determine whether a given property expressed in the logic is
true or not.

Formally stated, the semantics of the logic follows:

DRDC Valcartier TM 2004-060 7



M |= p(s) iff if s = λ then
there exists s1, s2 ∈ S and (q, r) ∈ Σ

such that (s1, (q, r), s2) ∈ ρ and p = q
else if s 6= λ then

there exists s1, s2 ∈ S such that (s1, (p, s), s2) ∈ ρ or
if there exists s3, s4 ∈ S

such that (s3, (p, λ), s4) ∈ ρ then
Hybrid Analysis()

M |= ¬Φ iff not(M |= Φ)
M |= Φ1 ∨ Φ2 iff M |= Φ1 or M |= Φ2

M |= Φ1 ∧ Φ2 iff M |= Φ1 and M |= Φ2

M |= Φ1 → Φ2 iff M |= ¬Φ1 ∨ Φ2

M |= Φ1 ↔ Φ2 iff M |= (Φ1 → Φ2) ∧ (Φ2 → Φ1)
M |= (Φ) iff M |= Φ
M |= ∀r : Ri.Φ iff for all s ∈ Ri, M |= Φ[s/r]
M |= ∃r : Ri.Φ iff there exists s ∈ Ri such that M |= Φ[s/r]

The following cases of this semantics are conventional and therefore, they are not
detailed in this document: M |= ¬Φ, M |= Φ1 ∨ Φ2, M |= Φ1 ∧ Φ2, M |= Φ1 →
Φ2, M |= Φ1 ↔ Φ2, and M |= (Φ).

The cases M |= ∀r : Ri.Φ and M |= ∃r : Ri.Φ, however, are particular because
the quantified variable r is typed over a domain Ri. Therefore, their semantics
reflects this particularity by quantifying over the same domain. The notation Φ[s/r]
represents Φ where every occurrence of r has been replaced by s. In words, M
satisfies (models) the formula ∀r : Ri.Φ if and only if for all s ∈ Ri, M satisfies
Φ, where every occurrence of r has been successively replaced by each s. For
example, if Ri = {r1, r2, . . . , rn}, M |= ∀r : Ri.Φ ≡ M |= Φ[r1/r] and M |=
Φ[r2/r] and . . . and M |= Φ[rn/r]. The case M |= ∃r : Ri.Φ is similar but over
existentiality instead of universality. Note that for both cases, the typed variable r
should be present in Φ in at least one of its p(r)’s (that is, p(s)’s where s is named
r).

Because this document is about hybrid analysis, and not conventional static analy-
sis, the case M |= p(s) is very particular. Indeed, it is divided in two fundamental
subcases: if s = λ and if s 6= λ. The first case, where s = λ, is rather simple
and standard. In that case, M |= p(s) if and only if there exists s1, s2 ∈ S and
(q, r) ∈ Σ such that (s1, (q, r), s2) ∈ ρ and p = q. In other words, M satisfies
p(s) if and only if there exists a transition (s1, (q, r), s2) ∈ ρ such that p = q. This
corresponds to the case where, for example, delete(“. . . ”) is one of the labels in the
model and delete is the property to verify.
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The second case, where s 6= λ, is where hybrid analysis can possibly come into
action. But first, it must be verified if it is really necessary to use hybrid analysis.
Indeed, if, by chance, there exists s1, s2 ∈ S such that (s1, (p, s), s2) ∈ ρ in M , then
it is already concluded that M |= p(s) because a transition explicitly labelled by
p(s) (that is, (s1, (p, s), s2)) has been found in M . This corresponds to the example
of subsection 5.4.1.

Otherwise, if there are no s1, s2 ∈ S such that (s1, (p, s), s2) ∈ ρ in M , then it must
still be verified if there exists s3, s4 ∈ S such that (s3, (p, λ), s4) ∈ ρ in M . If this
is not the case, it can already be concluded that M does not satisfy p(s). Indeed,
this would mean that a transition labelled by the abstraction of p(s), that is, p(s)
where s has been abstracted out (simply removed to form p(λ)), could not be found
in M . Adding that to the fact that it is already known that there is no transition
explicitly labelled by p(s) (this conclusion was drawn in the previous paragraph), it
is now certain that M does not satisfy p(s). This corresponds to the case where, for
example, there is no delete in the labels of the model but delete(“. . . ”) is present in
the property to verify.

However, if it is the case that there exists s3, s4 ∈ S such that (s3, (p, λ), s4) ∈ ρ in
M , hybrid analysis must be used. It is now clear that hybrid analysis is used only
when it could help the analysis to provide more precise results, by using some tech-
nique to complement missing information in M (a few examples of such techniques
are presented in section 4). In other words, hybrid analysis uses mathematically
sound techniques to inform the analyst when static analysis is no longer sufficient;
relatively less sound dynamic techniques are then used to complete the analysis
thereby providing more precise results to the analyst. For the sake of comparison,
a standard, conservative static analysis would have been defined with the following
rule instead of the one actually used:

M |= p(s) iff if s = λ then
there exists s1, s2 ∈ S and (q, r) ∈ Σ

such that (s1, (q, r), s2) ∈ ρ and p = q
else if s 6= λ then

there exists s1, s2 ∈ S such that (s1, (p, s), s2) ∈ ρ or
(s1, (p, λ), s2) ∈ ρ

The only difference is in the last part of the rule, where

there exists s1, s2 ∈ S such that (s1, (p, s), s2) ∈ ρ or (s1, (p, λ), s2) ∈ ρ

appears instead of
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there exists s1, s2 ∈ S such that (s1, (p, s), s2) ∈ ρ or
if there exists s3, s4 ∈ S such that (s3, (p, λ), s4) ∈ ρ then

Hybrid Analysis(),

but it makes a big difference. Indeed, the problem with the traditional definition
is that it is so conservative (imprecise) that, most of the time, it will conclude that
M does satisfy p(s) even though in reality, M does not satisfy p(s). However, this
definition is normal and standard. It is due to the fact that there is missing infor-
mation in M to conclude with certainty that M does not satisfy p(s). Therefore, in
order to have a conservative (or sound) static analysis, it must state that M satisfies
p(s). This way of defining static analyses makes conservative but rather imprecise
analyses. Hybrid analysis is a way of defining more precise analyses (see section 6
for a discussion on that matter).3

In order to complete missing information in models, a few hybrid analysis ap-
proaches have already been identified. They are described in the following section.

4 Hybrid Analysis Approaches

Currently, there are a few potential methods for integrating additional informa-
tion into the model during analysis, which result in different hybrid analysis ap-
proaches. They have been given the following names: interactive, parameter-
ized, test-based, and worst-case hybrid analysis. For the sake of completeness,
a statically-supported dynamic analysis has also been hypothesized. The ideas be-
hind all these approaches are presented in the following subsections.

4.1 Interactive Hybrid Analysis

Interactive hybrid analysis aims at posing appropriate questions to the analyst dur-
ing analysis. These questions focus on getting information that is not statically
present in the model. This is the approach investigated in the current framework.

To sum up this approach by a simple example, suppose that a fileopen is modelled
but the file name and location are not known at analysis time. The traditional way

3In pure algorithmic/automatic-deduction/computational theory, 100%-precise static analyses
are impossible in general. It has been indirectly proven by Gödel, in his famous incompleteness
theorem. However, when the analyst can intervene, this is no longer true. If the analyst is consid-
ered as an oracle and if this oracle is perfect, everything is possible, at least in theory. Of course,
in practice, this comes at the price of the time of the analyst passed in front of the analyzer. Hybrid
analysis must therefore be carefully defined in order to limit this cost.
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of coping with this lack of information in the model is to abstract it by some means,
such as using variables, for instance. However, it has been observed, in earlier
projects, that this solution rapidly becomes highly complex and very difficult to
manage. Moreover, as mentioned in subsection 3.2, it leads to imprecise results
in many situations. Therefore, in the presence of temporal logics that consider ex-
ecution paths (which is not the case in the current framework), interactive hybrid
analysis would cope with this situation by asking the analyst to enter the name and
location of a file of interest in order to more precisely verify what happens to it
afterwards. For example, the analyst could choose a file that he knows to be confi-
dential in order to determine if the information contained in this file is dealt with in
a non-secure manner (with respect to a predefined security policy, i.e., a predefined
property). The hybrid analyzer could memorize the various choices of the analyst
and create a verification script that would be useful for future verifications. In the
absence of temporal logics, a clear and detailed situation is presented to the analyst
so that he can assess the risks involved and take appropriate decisions.

By “posing appropriate questions to the analyst”, it is not meant that questions
should be systematically asked each time an action is too abstract (as is currently
the case in the framework). In fact, an analysis should be performed to find which
abstract actions should be refined as a priority, depending on the benefits of refining
them. It is believed, at this stage, that this analysis could be based on traditional
dataflow and dependency analysis techniques.

In other words, questions should be asked optimally, in terms of anticipated benefits
for the analysis and minimal annoyance for the analyst. This provides an interesting
challenge for this approach.

It could also be interesting to find solutions for the following inter-related problems:

1. How can abstract actions be prioritized in order to optimally determine which
ones are needed to be refined first with respect to the property to be verified?

2. How can one identify the smallest set of abstract actions for which refinement
would lead to the verification of a given property?

3. How could information be added into the model without interrupting or disturb-
ing the on-going analysis process?

4. How can refined models be abstracted with respect to the verified property or
the class of this property in order to facilitate the rest of the current verification
process?
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4.2 Parameterized Hybrid Analysis

Parameterized hybrid analysis targets a more automatic hybrid analysis approach
than interactive hybrid analysis. Indeed, in this approach, the analyst is expected to
define resource domains (for example, confidential files, prohibited network usage,
etc.) that the hybrid analyzer will use to populate missing information in appropri-
ate abstract actions (hence the name parameterized hybrid analysis).

This approach is essentially based on interactive hybrid analysis except that it has a
higher degree of independence from the analyst. It could be interesting for analysts
with less background in formal program verification or in contexts where the analyst
who uses the analyzer is not the same as the one who determines what has to be
verified, i.e., the properties and the critical resources. The same problems, identified
in subsection 4.1, would thus also require solutions.

4.3 Test-Based Hybrid Analysis

An addition to parameterized hybrid analysis would be test-based hybrid analysis.
This would require that the analyst produce a set of test cases that would be auto-
matically verified by the analyzer. In this context, resource domains would also be
defined (as for parameterized hybrid analysis) but in addition, expected results with
respect to particular inputs in the resource domains would also be specified. The
goal of the analyzer would then be to verify whether the properties are valid or not
and also to ensure that the results are the expected ones. This, of course, would
necessitate very precise information from the analyst. This testing strategy com-
bined with, for example, “design by contract” specifications for program behaviour
(invariants, pre- and post-conditions), appears to hold promise as a practical test
strategy based on formal methods.

4.4 Worst-Case Hybrid Analysis

Worst-case hybrid analysis would be an effort towards asking as few inputs as pos-
sible of the analyst. Therefore, the analyst would not have to answer interactive
questions or define resource domains and test cases in addition to the properties to
verify. The analysis process would rather use a powerful static analysis in order
to determine the worst-case scenarios, i.e., the most conservative and critical ones,
and would then inform the analyst of its results and conclusions in a way that could
be used to assess the potential damage of the verified program on the system with
respect to the defined properties. Such a verification would certainly be of inter-
est in situations when a preliminary investigation must be conducted on a small
to medium-sized piece of software (under approximately 20K lines of Java source
code).
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4.5 Statically-Supported Dynamic Analysis

The hybrid analysis approaches presented in the previous subsections were all inter-
twined with static analyses (usually, dataflow and dependency analyses) in order to
further investigate the proof of the satisfiability of the properties to be verified. The
following dynamic analysis approach is also intensively supported by static analy-
sis, that is, its dynamic analysis algorithm becomes intertwined with static analysis
(once again, the static analysis used is anticipated to predominantly be dataflow
analysis). This approach has been given the name statically-supported dynamic
analysis.

It essentially consists of the following:

1. Perform a pre-execution static analysis and then, during execution:

(a) Loop
i. Detect and memorize information that can make the static analysis progress
ii. Continue the static analysis with the additional information

It would be of great interest to define how the results of the static analysis could be
represented in order to facilitate the dynamic analysis at runtime.

Moreover, and most importantly, such a statically-supported dynamic analysis could
potentially detect where a property could (or will) be violated in order to react
more rapidly than would have been possible without statically-collected informa-
tion. Therefore, statically-supported dynamic analysis could hypothetically not suf-
fer from too-late diagnosis, as can be the case for traditional dynamic analysis.

This last approach is thus another manner of tackling hybrid analysis. Approaches
based on static analysis are augmented by dynamic analysis principles. On the other
hand, this last approach is dynamic analysis augmented by static analysis principles.

5 Small Case Study

This section presents a small case study in order to concretely illustrate the concepts
and theories explained in this document.

5.1 Java Source Code

Here is the Java source code of a small sample program:

import java.io.*;
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public class Example {
public static void main(String[] args)
throws IOException

{
// Opening file "file1.txt"
BufferedInputStream bis = new BufferedInputStream(

new FileInputStream("file1.txt"));

// Closing file "file1.txt"
bis.close();

// Getting standard input (keyboard)
BufferedReader in = new BufferedReader(

new InputStreamReader(System.in));

// Asking for a filename to "process" (delete)
System.out.print("Please enter a filename to process: ");

// Saving the entered filename
String filename = in.readLine();

// Creating an abstract representation of the file
File file = new File(filename);

// "Processing" (deleting) the file
if (file.delete())
{
System.out.println(filename + " successfully processed.");

}
else
{
System.out.println("Could not process " + filename + ".");

}
}

}

As the trained Java programmer eye can see, this program is very simple. Firstly,
it opens a file named “file1.txt” and immediately closes it. This segment of the
program is going to be used only to discuss what happens when a security-critical
resource like a file is statically present in the code.
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Secondly, the program asks the user to type the name of a file that is going to be
“processed”. In fact, the process performed on the given file is that it is going
to be deleted. This segment of the program is going to be used to discuss what
happens when a security-critical resource is not statically present in the code but
dynamically fetched by the program. Depending on whether the program could
delete the given file or not, it gives appropriate feedback to the user.

5.2 Java Bytecode Instructions

The bytecode instructions of the small example program, as generated by SUN’s
javap tool, are as follows:

public class Example extends java.lang.Object {
public Example();
/* ()V */
/* Stack=1, Locals=1, Args_size=1 */
public static void main(java.lang.String[]) throws java.io.IOException;
/* ([Ljava/lang/String;)V */
/* Stack=5, Locals=5, Args_size=1 */

}

Method Example()
0 aload_0
1 invokespecial #1 <Method java.lang.Object()>
4 return

Method void main(java.lang.String[])
0 new #2 <Class java.io.BufferedInputStream>
3 dup
4 new #3 <Class java.io.FileInputStream>
7 dup
8 ldc #4 <String "file1.txt">
10 invokespecial #5 <Method java.io.FileInputStream(java.lang.String)>
13 invokespecial #6 <Method java.io.BufferedInputStream(java.io.InputStream)>
16 astore_1
17 aload_1
18 invokevirtual #7 <Method void close()>
21 new #8 <Class java.io.BufferedReader>
24 dup
25 new #9 <Class java.io.InputStreamReader>
28 dup
29 getstatic #10 <Field java.io.InputStream in>
32 invokespecial #11 <Method java.io.InputStreamReader(java.io.InputStream)>
35 invokespecial #12 <Method java.io.BufferedReader(java.io.Reader)>
38 astore_2
39 getstatic #13 <Field java.io.PrintStream out>
42 ldc #14 <String "Please enter a filename to process: ">
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44 invokevirtual #15 <Method void print(java.lang.String)>
47 aload_2
48 invokevirtual #16 <Method java.lang.String readLine()>
51 astore_3
52 new #17 <Class java.io.File>
55 dup
56 aload_3
57 invokespecial #18 <Method java.io.File(java.lang.String)>
60 astore 4
62 aload 4
64 invokevirtual #19 <Method boolean delete()>
67 ifeq 98
70 getstatic #13 <Field java.io.PrintStream out>
73 new #20 <Class java.lang.StringBuffer>
76 dup
77 invokespecial #21 <Method java.lang.StringBuffer()>
80 aload_3
81 invokevirtual #22 <Method java.lang.StringBuffer append(java.lang.String)>
84 ldc #23 <String " successfully processed.">
86 invokevirtual #22 <Method java.lang.StringBuffer append(java.lang.String)>
89 invokevirtual #24 <Method java.lang.String toString()>
92 invokevirtual #25 <Method void println(java.lang.String)>
95 goto 128
98 getstatic #13 <Field java.io.PrintStream out>
101 new #20 <Class java.lang.StringBuffer>
104 dup
105 invokespecial #21 <Method java.lang.StringBuffer()>
108 ldc #26 <String "Could not process ">
110 invokevirtual #22 <Method java.lang.StringBuffer append(java.lang.String)>
113 aload_3
114 invokevirtual #22 <Method java.lang.StringBuffer append(java.lang.String)>
117 ldc #27 <String ".">
119 invokevirtual #22 <Method java.lang.StringBuffer append(java.lang.String)>
122 invokevirtual #24 <Method java.lang.String toString()>
125 invokevirtual #25 <Method void println(java.lang.String)>
128 return

The method that is of interest here is the one identified by

Method void main(java.lang.String[]).

The one identified by Method Example() is simply the class default constructor.
It is automatically generated by the compiler.

With these bytecode instructions, it is possible to automatically generate the cor-
responding model, as defined in section 2. Being quite intuitive, this algorithm is
not presented in this document for the sake of brevity. Rather, the model is directly
presented in the following subsection.
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5.3 Model

The model that corresponds to the small example program is formally defined as a
tuple (S, Σ, ρ, ι, F ), where

• S = {s0, s3, s4, s7, . . . , s122, s125, s128, s129},

• Σ = {(new, <Class java.io.BufferedInputStream>),
(dup, λ),
(new, <Class java.io.FileInputStream>),
(ldc, <String "file1.txt">),
(invokespecial, <Method java.io.FileInputStream(java.lang.String)>),
(invokespecial, <Method java.io.BufferedInputStream(java.io.InputStream)>),
(astore_1, λ),
(aload_1, λ),
(invokevirtual, <Method void close()>),
(new, <Class java.io.BufferedReader>),
(new, <Class java.io.InputStreamReader>),
(getstatic, <Field java.io.InputStream in>),
(invokespecial, <Method java.io.InputStreamReader(java.io.InputStream)>),
(invokespecial, <Method java.io.BufferedReader(java.io.Reader)>),
(astore_2, λ),
(getstatic, <Field java.io.PrintStream out>),
(ldc, <String "Please enter a filename to process: ">),
(invokevirtual, <Method void print(java.lang.String)>),
(aload_2, λ),
(invokevirtual, <Method java.lang.String readLine()>),
(astore_3, λ),
(new, <Class java.io.File>),
(aload_3, λ),
(invokespecial, <Method java.io.File(java.lang.String)>),
(astore 4, λ),
(aload 4, λ),
(invokevirtual, <Method boolean delete()>),
(ifeq, s98),
(new, <Class java.lang.StringBuffer>),
(invokespecial, <Method java.lang.StringBuffer()>),
(invokevirtual, <Method java.lang.StringBuffer append(java.lang.String)>),
(ldc, <String " successfully processed.">),
(invokevirtual, <Method java.lang.String toString()>),
(invokevirtual, <Method void println(java.lang.String)>),
(goto, s128),
(ldc, <String "Could not process ">),
(ldc, <String ".">),
(return, λ)},

• ρ = {(s0, (new, <Class java.io.BufferedInputStream>), s3),
(s3, (dup, λ), s4),
(s4, (new, <Class java.io.FileInputStream>), s7),
(s7, (dup, λ), s8),
(s8, (ldc, <String "file1.txt">), s10),
(s10, (invokespecial, <Method java.io.FileInputStream(java.lang.String)>), s13),
(s13, (invokespecial, <Method java.io.BufferedInputStream(java.io.InputStream)>), s16),
(s16, (astore_1, λ), s17),
(s17, (aload_1, λ), s18),
(s18, (invokevirtual, <Method void close()>), s21),
(s21, (new, <Class java.io.BufferedReader>), s24),
(s24, (dup, λ), s25),
(s25, (new, <Class java.io.InputStreamReader>), s28),
(s28, (dup, λ), s29),
(s29, (getstatic, <Field java.io.InputStream in>), s32),
(s32, (invokespecial, <Method java.io.InputStreamReader(java.io.InputStream)>), s35),
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(s35, (invokespecial, <Method java.io.BufferedReader(java.io.Reader)>), s38),
(s38, (astore_2, λ), s39),
(s39, (getstatic, <Field java.io.PrintStream out>), s42),
(s42, (ldc, <String "Please enter a filename to process: ">), s44),
(s44, (invokevirtual, <Method void print(java.lang.String)>), s47),
(s47, (aload_2, λ), s48),
(s48, (invokevirtual, <Method java.lang.String readLine()>), s51),
(s51, (astore_3, λ), s52),
(s52, (new, <Class java.io.File>), s55),
(s55, (dup, λ), s56),
(s56, (aload_3, λ), s57),
(s57, (invokespecial, <Method java.io.File(java.lang.String)>), s60),
(s60, (astore 4, λ), s62),
(s62, (aload 4, λ), s64),
(s64, (invokevirtual, <Method boolean delete()>), s67),
(s67, (ifeq, s98), s70),
(s70, (getstatic, <Field java.io.PrintStream out>), s73),
(s73, (new, <Class java.lang.StringBuffer>), s76),
(s76, (dup, λ), s77),
(s77, (invokespecial, <Method java.lang.StringBuffer()>), s80),
(s80, (aload_3, λ), s81),
(s81, (invokevirtual, <Method java.lang.StringBuffer append(java.lang.String)>), s84),
(s84, (ldc, <String " successfully processed.">), s86),
(s86, (invokevirtual, <Method java.lang.StringBuffer append(java.lang.String)>), s89),
(s89, (invokevirtual, <Method java.lang.String toString()>), s92),
(s92, (invokevirtual, <Method void println(java.lang.String)>), s95),
(s67, (ifeq, s98), s98),
(s98, (getstatic, <Field java.io.PrintStream out>), s101),
(s101, (new, <Class java.lang.StringBuffer>), s104),
(s104, (dup, λ), s105),
(s105, (invokespecial, <Method java.lang.StringBuffer()>), s108),
(s108, (ldc, <String "Could not process ">), s110),
(s110, (invokevirtual, <Method java.lang.StringBuffer append(java.lang.String)>), s113),
(s113, (aload_3, λ), s114),
(s114, (invokevirtual, <Method java.lang.StringBuffer append(java.lang.String)>), s117),
(s117, (ldc, <String ".">), s119),
(s119, (invokevirtual, <Method java.lang.StringBuffer append(java.lang.String)>), s122),
(s122, (invokevirtual, <Method java.lang.String toString()>), s125),
(s125, (invokevirtual, <Method void println(java.lang.String)>), s128),
(s95, (goto, s128), s128),
(s128, (return, λ), s129)},

• ι = s0, and

• F = {s129}.

5.3.1 Remarks

A few remarks concerning this model:

1. Because program points lie between each bytecode instruction of the program,
the states in S are defined from the bytecode instruction offsets, hence S =
{s0, s3, s4, s7, . . . , s122, s125, s128, s129}. The state s129 is necessary because it
models the program exit point.

2. For the sake of simplicity of future processing performed on the model, sym-
bolic pointers to the constant pool are resolved in the model. Therefore, byte-
code instructions like new #2 are translated to
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(new, <Class java.io.BufferedInputStream>).

Tools like SUN’s javap already perform constant pool symbolic pointers resolv-
ing.

3. For the same reason, symbolic pointers to bytecode offsets are also resolved in
terms of the model states. For example, bytecode instructions like ifeq 98 and
goto 128 are translated to (ifeq, s98) and (goto, s128), in the current model.

4. This model contains two interesting functions (in the sense defined in the logic,
see section 3), i.e., bytecode instructions that call security-critical methods.
They are:

(a) (invokespecial, <Method java.io.FileInputStream(java.lang.String)>) and

(b) (invokevirtual, <Method boolean delete()>).

The first one corresponds to the opening of a file and the second one, to the
deletion of a file. It is easy to automatically find these functions of interest
by inspecting the model and comparing it to the list of security-critical meth-
ods listed in AP , which is calculated by the technique explained in subsection
3.1.1. To fit with the theory of section 3, these functions should conceptually be
viewed as openfile(“file1.txt”) and deletefile, respectively. In fact, this model
should pass through an abstraction process that performs such label translations.
For the sake of brevity, this process is not presented in this document.

5.4 Logic

Once the model of the small example program has been generated and abstracted,
it is possible to define properties that can be verified. These properties are defined
by using the logic detailed in section 3. For this small case study, two properties
are defined and explained in the following subsections.

5.4.1 Property #1: Do Not Open File “file1.txt”

Suppose that it is necessary to ensure that the example program does not open the
file named “file1.txt”. Of course, it could be any file and not necessarily “file1.txt”.
This property is expressed as the following formula in the logic:

¬openfile(“file1.txt”),

where openfile is an element of the set AP and “file1.txt”, of R.

DRDC Valcartier TM 2004-060 19



It is now time to verify if the program respects this property. It boils down to
determining if M |= Φ, where M is the model of subsection 5.3 (considering it
abstracted as of remark 4 of subsection 5.3.1) and Φ = ¬openfile(“file1.txt”). The
algorithm used to perform this calculation corresponds to the semantics of the logic,
described in subsection 3.2. The execution trace for the current property is detailed
below:

1. Since Φ is a negation, the following rule is used first:

M |= ¬Φ iff not(M |= Φ)

2. M |= Φ must therefore be calculated. Since this time

Φ = openfile(“file1.txt”)

and openfile is an atomic proposition p, the following rule is used:

M |= p(s) iff if s = λ then
there exists s1, s2 ∈ S and (q, r) ∈ Σ

such that (s1, (q, r), s2) ∈ ρ and p = q
else if s 6= λ then

there exists s1, s2 ∈ S such that (s1, (p, s), s2) ∈ ρ or
if there exists s3, s4 ∈ S

such that (s3, (p, λ), s4) ∈ ρ then
Hybrid Analysis()

3. Here, s 6= λ and there exists s1, s2 ∈ S such that (s1, (p, s), s2) ∈ ρ. Indeed, it
suffices to set s1 = s10 and s2 = s13. Therefore, it is concluded that M |= Φ is
true, where Φ = openfile(“file1.txt”).

4. Finally, going back to the first rule used for M |= Φ, where

Φ = ¬openfile(“file1.txt”),

it is concluded that it is false because not(true) = false.

The verification of this property does not involve hybrid analysis because the atomic
proposition present in the property could be directly found in the model. The fol-
lowing example, however, involves hybrid analysis.
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5.4.2 Property #2: Do Not Delete File “critical.doc”

Suppose again that it is necessary to ensure that the example program does not
delete the file named “critical.doc”. Of course, it could be any file and not nec-
essarily “critical.doc”. This property is expressed as the following formula in the
logic:

¬deletefile(“critical.doc”),

where deletefile is an element of the set AP and “critical.doc”, of R.

It is now time to verify if the program respects this property. It boils down to
determining if M |= Φ, where M is the model of subsection 5.3 (considering it
abstracted as of remark 4 of subsection 5.3.1) and Φ = ¬deletefile(“critical.doc”).
Once again, the algorithm used to perform this calculation corresponds to the se-
mantics of the logic, described in subsection 3.2. The execution trace for the current
property is detailed below:

1. The trace starts exactly like in the previous example. Since Φ is a negation, the
following rule is used first:

M |= ¬Φ iff not(M |= Φ)

2. M |= Φ must therefore be calculated. Since this time

Φ = deletefile(“critical.doc”)

and deletefile is an atomic proposition p, the following rule is used:

M |= p(s) iff if s = λ then
there exists s1, s2 ∈ S and (q, r) ∈ Σ

such that (s1, (q, r), s2) ∈ ρ and p = q
else if s 6= λ then

there exists s1, s2 ∈ S such that (s1, (p, s), s2) ∈ ρ or
if there exists s3, s4 ∈ S

such that (s3, (p, λ), s4) ∈ ρ then
Hybrid Analysis()

3. Here, s 6= λ but there does not exist s1, s2 ∈ S such that (s1, (p, s), s2) ∈
ρ. However, there exists s3, s4 ∈ S such that (s3, (p, λ), s4) ∈ ρ. Indeed,
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it suffices to set s3 = s64 and s4 = s67. In conventional static analysis, the
chances are that this would be sufficient to conclude that M does satisfy Φ,
where Φ = deletefile(“critical.doc”). Therefore, M would not satisfy Φ, when
Φ = ¬deletefile(“critical.doc”). However, as noted before, this result could be
overly imprecise. Indeed, by using one of the approaches suggested in section
4, it could be possible to conclude that, in the current environment, this property
is actually true. Therefore, in the current framework, it is concluded that hybrid
analysis must be used, and thus the help of the analyst, by using interaction or
configuration files, for instance, is needed in order to try to provide more precise
analysis results.

4. The approach to hybrid analysis that is currently being studied is described on
this example in the following subsection.

5.4.3 Generalization of These Properties

The security properties presented in the preceding subsections are purposely very
simple. They are used for the sole purpose of explaining the basic concepts of
the logic. However, this logic offers a rich syntax for constraining applications.
Once the normal extents of network access, process creation/deletion, and so on
are precisely defined and added to the logic, complex properties could be defined.
The potential for malicious or inadvertent erroneous program execution will then
be greatly reduced.

5.5 Hybrid Analysis

As seen in the example of subsection 5.4.2, hybrid analysis is needed where con-
ventional static analysis would normally yield over-approximated results. This sub-
section gives additional details on the approach to hybrid analysis that is currently
being studied by using an example. This approach is a subset of interactive hybrid
analysis, as described in subsection 4.1. What is currently set aside for future study
is the analysis that should be performed to determine which abstract actions should
be refined as a priority, depending on the benefits of refining them. In other words,
questions are not asked optimally, in terms of the anticipated benefits for the anal-
ysis and the minimal annoyance for the analyst. This makes the current approach
less practical but it is used to set the stage for future improvements.

The current hybrid analysis approach follows five main steps, explained in the fol-
lowing subsections:

1. Perform a data dependency analysis on the method that is being analyzed and
for which information is missing,
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2. determine the data source (i.e., keyboard, file, network, etc.) of the missing
information,

3. present the situation to the analyst,

4. ask an appropriate question to the analyst in order to obtain the missing infor-
mation, and

5. use the answer to continue the analysis.

5.5.1 Performing Data Dependency Analysis

In order to be able to present the situation to the analyst and to ask an appropri-
ate question to ascertain missing information, a data dependency analysis must be
performed on the method being analyzed. Such analysis is able to trace the interde-
pendencies between pieces of data in a program and determine from which source
they originate. In the current framework, the data dependency analysis is used to
determine how the missing information is actually obtained by the program at run-
time. This will be of great help when it is time to ask the analyst to play the role of
the program and furnish this missing information.

Data dependency analyses are tailored to specific execution architectures and in-
struction sets. The current analysis targets Java bytecode instructions. This means
that it must take into account the operand stack and registers of the Java virtual
machine and how it makes use of them. Data dependency analysis needs to use
the results of a dataflow analysis performed on the Java bytecode instructions. This
dataflow analysis takes into account the operand stack and registers for the data de-
pendency analysis. Thus, it has to be executed prior to the data dependency analysis
itself.

At the time of writing this document, neither the dataflow nor the data dependency
analyses have been completely defined and formalized for Java bytecode instruc-
tions. Therefore, complete algorithms for these analyses are not presented. How-
ever, the key ideas behind these algorithms are presented in the following subsec-
tions.

5.5.1.1 Dataflow Analysis

The dataflow analysis consists of simulating the flow of data manipulated by the
program. It is first performed on each method individually (this technique is called
intra-procedural dataflow analysis) and then on the entire program (called inter-
procedural dataflow analysis), considering the results obtained during the intra-
procedural dataflow analysis.
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The algorithm of the intra-procedural dataflow analysis follows this general behav-
ior (technical details are intentionally omitted in this document; please refer to [3]
for a more detailed description):

1. Initialization

(a) For each opcode o of the current method

i. Set the modified flag of o to false
ii. Set the dataflow information associated with o to unknown

(b) Set the modified flag of the first opcode of the current method to true

(c) Set the dataflow information associated with the first opcode of the current
method to the information provided by the current method signature

2. Main loop

(a) While there is an opcode o with a modified flag set to true in the current
method

i. Set the modified flag of o to false
ii. Simulate the execution of o on its associated dataflow information. This

consists of consuming the operands of o and producing its output.
iii. For each successor opcode s of o

A. Merge the dataflow information associated with o into the informa-
tion associated with s. Call the resulting dataflow information r.

B. If r is not equal to the dataflow information associated with s

• Set the dataflow information associated with s to r

• Set the modified flag of s to true

At this stage, the general behavior of the inter-procedural dataflow analysis has not
been fully elaborated and will not be presented in this document.

5.5.1.2 Data Dependency Analysis

Once the dataflow analysis has been performed, the operands (at least their types)
of each opcode are known. The data dependency analysis is then able to determine
the dependence graph of these operands. In fact, this dependence graph does not
have to be calculated for all operands but only for the ones of interest, that is, the
operands of the bytecode instructions that call security-critical methods involved
in the property to verify. Note that the difference between a bytecode instruction
parameter and a bytecode instruction operand is that the parameter is statically de-
termined and is present in the bytecode itself. However, the operand is dynamically
determined and is taken at run-time from the operand stack or registers.
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In the example of subsection 5.4.2, the only bytecode instruction is

64 invokevirtual #19 <Method boolean delete()>.

It takes only one operand: the object on which the method is being called. The data
dependency analysis would thus determine where the operand of this instruction
comes from, i.e., its dependence graph up to the point where it is defined by the
program. For the example being studied, the data dependency analysis determines
that the operand is taken from register 4 and that the value in register 4 is in fact the
output of the opcode

57 invokespecial #18 <Method java.io.File(java.lang.String)>.

The analysis also determines that this opcode takes its two operands from the stack
and register 3, and execution continues, until it reaches opcode

29 getstatic #10 <Field java.io.InputStream in>,

where it can conclude that, in fact, the operand of the bytecode instruction of inter-
est (at offset 64) is a file whose name is defined by the user of the program entering
text on the keyboard (the standard input).

In this manner, the data dependency analysis determines the source of the data on
which security-critical methods are called in the program being verified.

5.5.2 Presenting the Situation

The sources of the data on which security-critical methods are called in the program
being verified can now be presented to the analyst in a more readily comprehensible
manner. In fact, at this point, all the gathered information can be presented. That
is:

1. The property being verified is not necessarily true and not necessarily false.

2. The information needed to determine the truth value of the property with cer-
tainty is missing in the program but it is defined at run-time by known sources.

For the example of subsection 5.4.2, this information would be summarized by a
graph (in fact, a sequence in this particular case) illustrating the fact that, at run-
time, the keyboard (or standard input within a command pipe-line) actually defines
the name of the file being deleted.

DRDC Valcartier TM 2004-060 25



5.5.3 Asking the Appropriate Question

Once the analyst has been informed of the situation, it is time to ask questions. This
is the hybrid component of the analysis, that is, the part inspired from dynamic
analysis principles. The particular approach used at this time is mostly inspired
from conventional debugging: interact with the person who is most probably able
to furnish the missing information.

In the current framework, with such an inexpressive logic (it does not even consider
the program execution paths or sequences like temporal and modal logics do), there
are not many questions that can be asked in order to get help from the analyst. In
fact, probably the most reasonable question to ask is:

“Considering the situation and its inherent risks, do you think that the prop-
erty will be satisfied or not?”

However, and most importantly, considering the data sources of the security-critical
method calls implied in the property to verify, the analyst can now judge appropri-
ately whether to execute the program in an environment where these sources are
under control, in a monitored environment, for instance.

Of course, once a property has been determined to be acceptable, another one can
be immediately verified and the hybrid analysis goes on.

6 Discussion

Hybrid analysis, as described in this document, is a new analysis that combines
static and dynamic analysis principles in order to provide more precise results than
conventional static analysis [4]. One could say that this added precision comes at
the price of unsoundness. This is not necessarily true. In fact, in general, it is
believed that hybrid analysis requires a trade-off between precision and soundness
[4]; to some extent, it can be both precise and sound.

It is actually the case for the hybrid analysis described in this document. Indeed,
the “sound part” of this analysis is provided by the semantics of the logic and the
dataflow and dependency algorithms. The “precise part” is provided by the inter-
action with the analyst. Moreover, in other approaches based on parameterized,
test-based, or worst-case hybrid analyses (refer to section 4), the precision could be
even better, with the same sound foundation.

As described in this document, the current framework must be extended in order
to be more practical. First, the model can easily represent non-determinism but it
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cannot model (true) parallelism. Even pseudo-parallelism (interleaving) between a
few processes would make its number of states explode. Therefore, the model will
have to evolve towards using more expressive computational theories in order to be
able to represent realistic programs, such as critical military information systems.
One possible theory under consideration is Abstract State Machines (ASMs). For
the sake of brevity, this theory is not covered in this document (refer to [5] and [6]).

Second, the logic is not expressive enough to define really interesting properties to
verify. As defined in this document, its semantics essentially corresponds to search-
ing through a graph for particular keywords, which are security-critical method
calls in this case. In practice, it should be possible to go further and specify proper-
ties like this one:

“No confidential files are copied.”.

Such properties depend on many security-critical method calls and on their inter-
action. They cannot be specified with the current logic but they can be specified
with temporal (like CTL) or modal logics (like the µ-calculus). Again, the current
framework will evolve towards using such logics in order to be more appropriate
for critical military information systems.

Finally, the approach to hybrid analysis currently investigated in this document also
needs to be extended. Systematically questioning the analyst each time a too ab-
stract security-critical method call is encountered in the model is simply unrealistic
in practice when dealing with large programs and complex properties. Therefore,
while investigating more automated approaches is really attractive (refer to section
4), answering the four questions of subsection 4.1 and performing an analysis to
prioritize the actions that need to be refined are musts for the practicality of the
approach. This is going to be done as future work.

Hybrid analysis appears to hold great promise for improving the quality and the
speed of validation and verification of critical systems. In particular, a thorough
static analysis combined with testing scripts for run-time inputs appears to be a
practically realizable verification strategy. High quality toolkits for generating test
inputs already exist, and combining these with intra- and inter-module static anal-
yses should enable very high assurance level validation and verification for unit
testing and integration testing respectively.

7 Conclusion

Static and dynamic analysis can be combined to create a new analysis technique
called hybrid analysis. This new technique can be seen as both static analysis com-
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plemented by dynamic analysis for improved precision (like in this document) or
dynamic analysis complemented by static analysis for improved generality over
many program executions. It is currently being developed to ensure the security
of Java programs in the context of critical military information systems. By in-
tegrating advanced mechanisms to enforce security policies into one consolidated
analysis and by allowing these mechanisms to communicate and cooperate, hybrid
analysis greatly reduces the chances of executing malicious code.

The approach described in this document is particularly appealing because it defines
a trade-off between soundness and precision that seems to be intuitively correct: use
sound static analysis to determine when it is time to use precise dynamic analysis.

Security policy enforcement for critical military information systems is a very diffi-
cult problem. Subtle interactions between individually secure modules can result in
security anomalies. Intra- and inter-module static analyses combined with testing
scripts can potentially uncover these flaws and facilitate enforcement of information
system security policies.

Future research work in this project promises many interesting challenges. This
should stimulate discussion and encourage academic or governmental collabora-
tion.
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Glossary
Dynamic analysis A set of techniques to analyze software during ex-

ecution.
Formal methods A set of hardware and software analysis methods

that are based on mathematical formalism, sym-
bolism, and logic.

Java Security Manager A component of the Java Virtual Machine that is
responsible to ensure high level security.

Java Virtual Machine The main component of the Java Platform that is
responsible for safely and securely executing Java
programs.

Model checking A technique used to verify that a property holds
on every possible state of a hardware or software
system.

Static analysis A set of techniques to analyze software prior to
execution.

Validation A process that is used to ensure that the design re-
quirements are met in a product being developed.

Verification A process that is used to ensure that a product
being developed meets some predefined quality
standards.
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