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Abstract

This document describes C++ classes which implement distribution functions:
strictly increasing differentiable functions which map [0, 1] to [0, 1] and are one-to-one
and onto. A distribution function is useful whenever one wishes to redistribute values
within a given range without changing their order; however, their primary use is in
generating distributions of nodes in grids used for solving differential equations.

The distribution classes are based on the more general CurveLib library for rep-
resenting multi-parameter differentiable functions. From the CurveLib classes they
inherit arithmetic and composition operators that allow the distribution functions to
be combined in complex ways.

Résum é

Le présent document décrit des classes C++ qui intègrent des fonctions de distri-
bution, lesquelles sont des applications différentiables, strictement croissantes et bi-
jectives de [0, 1] à [0, 1]. Ces fonctions sont utiles lorsque l’on veut redistribuer des
valeurs dans un intervalle donné sans changer leur ordre. Toutefois, elles sont surtout
employées pour produire des distributions de nœuds dans des réseaux utilisés pour
la résolution d’équations différentielles.

Les classes de distributions sont fondées sur la bibliothèque plus générale CurveLib
servant à représenter les fonctions différentiables multiparamétriques. Ces classes
héritent des classes CurveLib, des opérateurs arithmétiques et de composition qui
permettent de combiner de façon complexe les fonctions de distribution.
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Executive summary

C++ classes for representing curves and surfaces:
Part IV: Distribution functions

David Hally; DRDC Atlantic TM-2006-257; Defence R&D Canada – Atlantic;
January 2007.

Background: The flow around ships and propellers affects their performance in
many ways. Defence R&D Canada – Atlantic uses Computational Fluid Dynamics
(CFD) to calculate these flows so that the performance of the hull and propellers
can be evaluated and improved. Before the flow can be calculated, computational
grids must be created that conform to the surfaces of the ship hull or propeller. The
current document describes a library of C++ classes which aid in the creation of the
computational grid.

Principal results: A library of C++ classes for representing distribution functions
has been developed. These classes can be used to distribute the nodes along the edges
of a computational grid in a variety of ways. The classes are based on the more general
CurveLib library of classes for representing multi-parameter differentiable functions
(described in a companion report).

Significance: The library of C++ classes provides a useful tool that can be used
when creating computational grids for use in CFD programs. However, their defini-
tion is quite general, so they can also be used in a wide variety of applications. In
particular, they can be used whenever the one wishes to alter the parameterization
of a differentiable function represented using the CurveLib library.

DRDC Atlantic TM-2006-257 iii



Sommaire

C++ classes for representing curves and surfaces:
Part IV: Distribution functions

David Hally ; DRDC Atlantic TM-2006-257 ; R & D pour la défense Canada –
Atlantique ; janvier 2007.

Contexte : L’écoulement de l’eau autour des navires et de leurs hélices influence leur
comportement de différentes manières. R & D pour la défense Canada – Atlantique
utilise la dynamique numérique des fluides pour calculer ces écoulements et ainsi
évaluer et améliorer le comportement des carènes et des hélices. Avant de procéder
au calcul de l’écoulement, on doit créer des réseaux de calcul qui épousent la surface
de la carène ou de l’hélice. Le présent document présente une bibliothèque de classes
C++ qui aideront à la création de ces réseaux.

Résultats : Nous avons élaboré une bibliothèque de classes C++ regroupant les fonc-
tions de distribution. On pourra utiliser ces classes pour distribuer selon différentes
modalités les nœuds le long des arêtes du réseau de calcul. Ces classes ont été pro-
duites à partir de la bibliothèque plus générale de classes C++ CurveLib, qui permet
de représenter des fonctions multiparamétriques continûment différentiables (décrites
dans un rapport connexe).

Importance : Cette bibliothèque de classes C++ est un outil précieux dont on
pourra tirer parti pour créer les réseaux de calcul des logiciels de dynamique numé-
rique des fluides. Puisque la définition de fonctions est très générale, on pourra les ap-
pliquer à de nombreux problèmes. En particulier, on pourra les utiliser pour modifier
la paramétrisation d’une fonction différentiable représentée à l’aide de la bibliothèque
CurveLib.
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1 Introduction

A distribution function is a strictly increasing differentiable function which maps [0, 1]
to [0, 1] and is one-to-one and onto. A distribution is useful whenever one wishes to
redistribute values within a given range without changing their order.

This document describes a library of C++ classes representing various types of dis-
tribution functions. The classes are based on the CurveLib library of classes for
representing differentiable curves[1].

Although distributions are useful for many different applications, the one that has
prompted the current work is the distribution of nodes along an edge in a computa-
tional grid. This application is discussed further in Section 2.

2 Node distribution functions

Distribution functions can be used to distribute the nodes of computational grids
for solvers of differential equations. Suppose N nodes are to be distributed over the
region [a, b]. If f(x) is a distribution, then we define:

xi = a + (b− a)f

(
i

N − 1

)
(1)

where i goes from 0 to N − 1. Because f(x) is strictly increasing, xi < xj if i < j, a
property that is usually necessary for a well-defined computational grid.

2.1 Node spacing

The spacing between two nodes is

xi+1 − xi = (b− a)

[
f

(
i + 1

N − 1

)
− f

(
i

N − 1

)]
≈ b− a

N − 1
f ′
(

i

N − 1

)
(2)

Therefore the derivative of the distribution is roughly proportional to the cell size.
To obtain a node distribution having node spacing h0 at i = 0 and h1 at i = N − 1,
we need a distribution such that

f ′(0) =
(N − 1)h0

b− a
; f ′(1) =

(N − 1)h1

b− a
(3)

DRDC Atlantic TM-2006-257 1



2.2 Growth rate

The ratio of the sizes of neighbouring cells, the growth rate, is given by:

ri ≡
xi+1 − xi

xi − xi−1

=
f
(

i+1
N−1

)
− f

(
i

N−1

)
f
(

i
N−1

)
− f

(
i−1
N−1

) ≈ 1 +
1

(N − 1)

(
f ′′

f ′

)(
i

N − 1

)
(4)

We will call f ′′/f ′ the growth rate function. If it is positive, the cell sizes get pro-
gressively larger; if it is negative, the cell sizes get progressively smaller.

To minimize errors and increase the stability of numerical solutions of differential
equations, it is usually desirable to keep the growth rate as small as possible.

2.3 Reversed distributions

Let g(x) be any distribution. Then

f(x) = 1− g(1− x) (5)

is also a distribution. Notice that

f ′(x) = g′(1− x) (6)

Therefore the spacing of the nodes generated by f(x) is reversed relative to the
spacing of the nodes generated by g(x). In particular, the slopes at the end-points
are reversed:

f ′(0) = g′(1); f ′(1) = g′(0) (7)

A distribution for which the reverse is the same as the original distribution is said to
be invariant under reversal.

Many of the distributions that will be discussed in the following sections are specified
by assigning values of their end slopes, s0 and s1. It is usually very desirable that
when the role of the end slopes is interchanged (i.e. s0 is replaced by s1 and vice versa),
then the distribution is reversed. This implies that both ends of the distribution are
treated in exactly the same way. Distributions with this property are said to have
the reversibility property.

2.4 Inverse distributions

Let f(x) be any distribution and let f (−1)(x) be its inverse: i.e.

f (−1)
(
f(x)

)
= x (8)

2 DRDC Atlantic TM-2006-257



Then f (−1)(x) is also a distribution since f (−1)(0) = 0, f (−1)(1) = 1, and the inverse
of a strictly increasing function is also strictly increasing. When f(x) is used to
distribute nodes according to Equation (1), then f (−1) provides a means of calculating
the node number at a given value of x in [a, b]:

i = (N − 1)f (−1)

(
x− a

b− a

)
(9)

Since

f (−1)′(x) =
1

f ′
(
f (−1)(x)

) (10)

the end slopes of the inverse distribution are the reciprocals of the end slopes of the
original distribution:

f (−1)′(0) =
1

f ′(0)
; f (−1)′(1) =

1

f ′(1)
(11)

If the growth rate function for the original distribution is r(x), then the growth rate
function of the inverse is:

rinv(x) = −r
(
f (−1)(x)

)
f (−1)′(x) (12)

2.5 The composition of distributions

Suppose f(x) and g(x) are distributions. Then (f ◦ g)(x) ≡ f
(
g(x)

)
is a distribution.

The slopes at the end points of (f ◦ g)(x) are:

(f ◦ g)′(0) = f ′(0)g′(0); (f ◦ g)′(1) = f ′(1)g′(1) (13)

Therefore, at the end points, the node spacing obtained from the composition of two
distributions is proportional to the product of the node spacing obtained from each
distribution separately.

The growth rate function of f ◦ g is

rf◦g(x) = rf

(
g(x)

)
g′(x) + rg(x) (14)

where rf (x) denotes the growth rate of distribution f(x).

The inverse of f ◦ g is
(f ◦ g)(−1) = g(−1) ◦ f (−1) (15)

DRDC Atlantic TM-2006-257 3



3 C++ implementation of distributions

Distributions are implemented in C++ using the CurveLib library of classes for rep-
resenting differentiable functions[1]. All classes used to implement distributions are
included in the namespace Distrib.

The class Distribution<F> is a template base class for distributions. Its tem-
plate argument, F, is the type of its parameter. All of the classes derived from
Distribution<F> in namespace Distrib have a similar template argument. Usually
F is either float or double but any type with the following characteristics can be
used:

1. It is a model of a Comparable Scalar Object (see Reference 1, Annex A.3).

2. The elementary functions exp(F), log(F), sqrt(F), pow(F,F), sin(F),
cos(F), tan(F), sinh(F), cosh(F), tanh(F) and atanh(F) are defined. Each
of these functions should return an F.

3. The inserter operator<<(std::ostream&,const F&) is defined and returns a
std::ostream&.

4. std::numeric limits<F> is defined.

If the template argument is omitted, it defaults to double: i.e. Distribution<> is
equivalent to Distribution<double>. The same is true for all the classes derived
from Distribution<F> described in this report.

The class Distribution<F> is derived from the base class Curve<1U,F,F> in names-
pace CurveLib: see Reference 1, Section 2. Instances of Distribution<F> are eval-
uated using standard operator syntax defined by Curve<1U,F,F>.

using namespace Distrib;

Distribution<double> f;

double x = 0.5;

double y = f(x); // Sets y to the value of f at x.

double dy = f(x,1); // Sets y to the 1st derivative of f at x.

double d2y = f(x,2); // Sets y to the 2nd derivative of f at x.

A Distribution<F> can be made by composing two instances of Distribution<F>:

using namespace Distrib;

GeometricDistribution<double> gd(0.1);

TanhDistribution<double> td(0.1,0.2));

Distribution<double> f = gd(td); // f(x) = dg(td(x));

4 DRDC Atlantic TM-2006-257



A Distribution<F> may also be composed with a Curve<1U,V,F> to yield another
curve of the same type. This operation is the normal way to distribute nodes along an
edge of a block. Suppose that edge is an instance of CurveLib::Curve<1U,Vec3,F>
where Vec3 is the type of a three-dimensional vector. As its parameter varies between
0 and 1, edge traces a curve in space. Nodes can be defined by sampling values of
edge:

int n = 11;

std::vector<Vec3> nodes;

for (int i = 0; i < n; ++i) {

F x = i/F(n-1);

Vec3 v = edge(x);

nodes.push_back(v);

}

To redistribute the nodes, we can compose edge with a distribution. For example,
if f is an instance of Distribution<F>, then the redistributed nodes can be defined
by:

CurveLib::Curve<1U,Vec3,F> new_edge = edge(f);

std::vector<Vec3> nodes;

int n = 11;

for (int i = 0; i < n; ++i) {

F x = i/F(n-1);

Vec3 v = new_edge(x);

nodes.push_back(v);

}

The class Distribution<F> and all classes derived from it have default construc-
tors (i.e. constructors with no arguments). When the default constructor is invoked
the normal behaviour is that the distribution remains undefined; attempting to eval-
uate it while it is undefined will result in an Error exception being thrown (see
Reference 1, Annex F for a description of Error exceptions). When describing the
member functions of a distribution class, we will usually omit the default constructor,
the destructor and the assignment operator.

Figure 1 is an inheritance diagram for all the classes in the namespace Distrib

that are derived from Distribution<F>. The inherited classes are described in the
following sections.

Distribution<F> defines the following public member functions in addition to the
default and copy constructors and the assignment operator:

bool is_defined() const
Returns true if the distribution is defined; false otherwise.

DRDC Atlantic TM-2006-257 5



CurveLib::Curve<1U,F,F>

Distribution<F>

GeneratedDistribution<F>

SplicedDistribution<F>

LinearDistribution<F>

AntiSymDistribution<F>

EndSlopeRatioDistribution<F>

OneSidedDistribution<F>

TwoSidedDistribution<F>

MultiDistribution<F>

InteriorDistribution<F>

ContGrowthRateDistribution<F>

ArcLengthDistribution<F>

BiTanhDistribution<F>

AntiSymErfDistribution<F>

AntiSymSinDistribution<F>

AntiSymTanhDistribution<F> QuadraticDistribution<F>

GeometricDistribution<F>

RationalDistribution<F>

OneSidedErfDistribution<F>

OneSidedTanhDistribution<F>

OneSidedSinDistribution<F>

TanhDistribution<F>

BiGeometricDistribution<F>SinDistribution<F>

Figure 1: Inheritance diagram for all classes derived from Distribution<F>
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F operator()(F x) const

Returns the value of the curve at x. The value at 0 is guaranteed to be exactly 0
and the value at 1 is guaranteed to be exactly 1 (i.e. the values at the end-points
are calculated with no round-off error.

F operator()(F x, unsigned d) const

Returns the value of the dth derivative of the distribution at x.

F operator()(const ParamType &p) const

Returns the value of the distribution at p. ParamType is the type of a one ele-
ment vector defined by the base class Curve<1U,F,F> in namespace CurveLib.
This function is equivalent to operator()(p[0]). It is defined because it is
inherited from the base class, but is rarely used because it is so much more
convenient to use the version whose argument is an F.

F operator()(const ParamType &p, const DerivType &d) const

Returns the value of the differentiated curve at p. DerivType is the type of a one
element vector of unsigned integers defined by the base class Curve<1U,F,F>.
This function returns the same value as operator()(p[0],d[0]). It is defined
because it is inherited from the base class, but is rarely used because it is so
much more convenient to use the version whose arguments are of type F and
unsigned.

Distribution<F> operator()(const Distribution<F> &d) const

The composition operator. If the current distribution is f(x), this function
returns a distribution equivalent to f ◦ d.

Distribution<F> reverse() const
Returns the reverse distribution: i.e. if the distribution is f(x), then a distri-
bution equivalent to 1− f(1− x) is returned.

Distribution<F> inverse() const
Returns the inverse distribution. The default implementation of this func-
tion uses FInverseCurve<F> from namespace CurveLib (see Reference 1, Sec-
tion 11.3) to generate the inverse distribution. It will only be accurate to about
10−6: i.e. if the current distribution is f(x), then |f

(
f (−1)(x)

)
− x| is only

guaranteed to be less than 10−6, whereas it should be zero. Derived classes
will often reimplement inverse() to return a more efficient or more accurate
inverted distribution.

An important property of a Distribution<F> is that it is polymorphic, even though
it has no virtual functions. For example, suppose a TanhDistribution<> is assigned
to a Distribution<>:

Distribution<> d;

TanhDistribution<> td(0.1,0.2);

d = td;

DRDC Atlantic TM-2006-257 7



When evaluated with the same arguments, d will return the same value as td. More-
over, both d.inverse() and td.inverse() return an inverse distribution that is
generating using the known properties of the tanh distribution (see Section 11.3).
Similarly with d.reverse() and td.reverse().

4 Linear distribution
The simplest distribution is the linear distribution or identity function:

f(x) = x (16)

Its growth rate is 1.0 and its growth rate function is r(x) = 0. Its reverse and inverse
are both the same as the distribution itself.

The C++ class LinearDistribution<F>, derived from Distribution<F>, is used to
represent a linear distribution. Its only constructor has no arguments. It defines no
new member functions beyond those inherited from Distribution<F>.

5 Generating functions
Suppose that g(x) is a strictly increasing differentiable function. Then

f(x) =
g
(
a + x(b− a)

)
− g(a)

g(b)− g(a)
(17)

is a distribution for any a and b such that [a, b] is in the domain of g(x). The function
g(x) is called a generating function with domain [a, b] for the distribution f . Clearly
each generating function g(x) generates a unique distribution f(x) for each choice
of a and b. However, any distribution can have many different generating functions.
In particular, it is easily verified that any distribution is its own generating function
with the choice a = 0 and b = 1.

Suppose that a sequence of nodes, yi, is generated by sampling g(x) at N points
equally spaced between a and b:

yi = g
(
a + xi(b− a)

)
; xi =

i

N − 1
(18)

The same sequence of nodes is generated using f(x) between g(a) and g(b):

yi = g(a) +
(
g(b)− g(a)

)
f(xi) (19)

The slope of f at x is

f ′(x) =
(b− a)g′

(
a + x(b− a)

)
g(b)− g(a)

(20)

8 DRDC Atlantic TM-2006-257



Notice that in the limit that b approaches a the derivative approaches one everywhere
and the distribution becomes the linear distribution.

The reverse of f(x) is

1− f(1− x) =
g
(
b + x(a− b)

)
− g(b)

g(a)− g(b)
(21)

That is, the reverse of the distribution is obtained by swapping the roles of a and
b; however, since a < b, we cannot say that the reverse is the distribution gen-
erated by g(x) over the domain [b, a]. Nevertheless, if g(x) is antisymmetric (i.e.
g(−x) = −g(x)), then it is true that the reverse is the distribution generated by g(x)
over the domain [−b,−a] and the distribution will have the reversibility property.
For this reason all the generating functions considered in the following sections are
antisymmetric.

The inverse of f(x) is

f (−1)(x) =
g(−1)

(
g(a) + x

(
g(b)− g(a)

))
− a

b− a
(22)

which is the distribution generated by g(−1)(x) on the domain [g(a), g(b)].

When evaluating f(x), care must be taken when a and b are very close to one another
since the numerator and denominator of Equation (17) will both be very close to zero
resulting in a loss of precision. In this case we can use a Taylor expansion about
(a + b)/2. Defining xm = (a + b)/2 and ∆ = b− a we get:

f(x) =
g
(
xm + ∆(x− 1

2
)
)
− g(xm − 1

2
∆)

g(xm + 1
2
∆)− g(xm − 1

2
∆)

= x +
g′′(xm)∆

g′(xm)
x(x− 1) + O

(√
3g′′′(xm)∆2

216g′(xm)

)
(23)

5.1 C++ implementation of generated distributions
The C++ class GeneratedDistribution<F>, derived from Distribution<F>, is used
to represent a generated distribution. It has a single constructor besides the default
constructor.

GeneratedDistribution(const CurveLib::Curve<1U,F,F> &gcrv,

F a, F b)

Makes a generated distribution from the strictly increasing function gcrv be-
tween the values a and b.
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It also defines the following member function which can be used to define the distri-
bution when the default constructor has been used:

void define(const CurveLib::Curve<1U,F,F> &gcrv, F a, F b)

Defines the distribution to have generating function gcrv between the values a
and b.

6 Antisymmetric distributions
An antisymmetric distribution is one which is antisymmetric about the point (1

2
, 1

2
).

The derivative of the distribution is symmetric about x = 1
2

so that if the distribution
is used to generate a series of nodes, the nodes will be symmetrically distributed about
their mid-point.

Suppose g(x) is a generating function with domain [a, b] for the distribution f(x). If
g(−x) = g(x) and if a = −b, then f(x) is an antisymmetric distribution given by:

f(x) =
1

2

[
1 +

g
(
(2x− 1)b

)
g(b)

]
(24)

Antisymmetric distributions have the important property that the slopes at the end-
points are the same:

s ≡ s0 = s1 =
bg′(b)

g(b)
(25)

In fact, it is easily verified that an antisymmetric distribution is invariant under
reversal. Moreover, since the end slopes are the same, it has the reversibility property.

The growth rate of an antisymmetric distribution is

r(x) =
2bg′′

(
(2x− 1)b

)
g′
(
(2x− 1)b

) (26)

and

r(1) = −r(0) =
2bg′′(b)

g′(b)
(27)

For the generating functions that we will consider in the following sections, g′′(x)
does not change sign when x > 0. This implies that when s > 1, the maximum slope
for the distribution occurs at the end points and the minimum slope occurs at x = 1

2
;

similarly if s < 1, the minimum slope occurs at the end points and the maximum
slope occurs at x = 1

2
. The slope at x = 1

2
is

f ′(1
2

)
=

bg′(0)

g(b)
(28)
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Since g(0) = 0, the slope of the straight line between (0, g(0)) and
(
x, g(x)

)
is g(x)/x.

By the intermediate value theorem, this is equal to g′(y) for some y ∈ [0, x]. Now, if
g′′(x) > 0 for all x > 0, then the maximum value of g′(y) for y ∈ [0, x] occurs when
y = x. Therefore, if g′′(x) > 0, then g′(x) ≥ g(x)/x and Equation (25) will only
have a real solution when s ≥ 1. Similarly, if g′′(x) < 0 for all x, Equation (25) will
only have a real solution when s ≤ 1. However, if we admit imaginary values for b,
the Equation (25) will have a solution for any real positive s. For the cases when b
is imaginary we define γ = −ib and h(x) = −ig(ix). Notice that since g is an odd
function of x, h is a real function. Now the distribution becomes:

f(x) =
1

2

[
1 +

h
(
(2x− 1)γ

)
h(γ)

]
(29)

and Equation (25) is

s ≡ s0 = s1 =
γh′(γ)

h(γ)
(30)

In other words, we can simply treat the distribution as being generated by h(x) over
[−γ, γ] instead of g(x) over [−b, b].

6.1 Antisymmetric sin distribution
The antisymmetric sin distribution uses sin(x) as the generating function. Equa-
tion (25) then becomes

tan(b)

b
=

1

s
(31)

If s is specified, this equation can be solved to determine b. However, s cannot exceed
1.0 since tan(x)/x ≥ 1 for all x. An efficient algorithm for solving Equation (31) is
discussed in Annex A.2.

The growth rate function is

r(x) = −b tan
(
(2x− 1)b

)
(32)

If s is very small, b ∼ π/2 and r(0) ≈ π2/4s. Therefore the antisymmetric sin
distribution has a growth rate which can be large when s is very small.

The maximum slope for the antisymmetric sin distribution occurs when x = 1
2
:

smax =
b

sin(b)
(33)

It cannot exceed π/2, though it approaches that value as s → 0 and b → π/2.
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In passing we note that when b = π/2, the sin distribution becomes

f(x) =
1

2

(
1− cos(πx)

)
(34)

which is normally referred to as a cos distribution. In fact, since the slopes at 0 and
1 are both zero, this is not strictly a distribution as defined for the purposes of this
report.

When s > 1, we use −i sin(ix) = sinh(x) as the generating function. In this case
Equation (25) is

tanh(b)

b
=

1

s
(35)

An efficient algorithm for solving Equation (35) is discussed in Annex A.3.

The growth rate function when s > 1 is

r(x) = 2b tanh
(
(2x− 1)b

)
(36)

If s is very large, b ≈ s and r(0) ≈ s. Therefore the growth rate can be large if s is
large.

The minimum slope for the sinh distribution occurs when x = 1
2
:

smin =
b

sinh(b)
(37)

When s is large, smin ≈ se−s. Because the minimum slope is exponentially small, the
sinh distribution is usually a poor choice.

6.2 Antisymmetric tanh distribution
Consider the antisymmetric distribution with the generating function g(x) = tanh(x).
Equation (25) then becomes

sinh(2b)

2b
=

1

s
(38)

Since sinh(x)/x ≥ 1 for all x, this distribution can only be used when s ≤ 1. An
efficient algorithm for solving Equation (38) is discussed in Annex A.5.

The growth rate function is

r(x) = −4b tanh
(
(2x− 1)b

)
(39)

At the end points the growth function can be written:

r(0) = −r(1) = 4b tanh(b) = 2
(√

s2 + 4b2 − s
)

(40)
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If s is very small, b ∼ −1
2
ln(s) and r(0) ∼ −2 ln(s). Therefore the growth rate of the

antisymmetric tanh distribution remains reasonably small even when s is very small.
It is clearly to be preferred over the antisymmetric sin distribution when s1 < 1.

The maximum slope for the tanh distribution is

smax =
b

tanh(b)
= 1

2

(
s +

√
s2 + 4b2

)
(41)

If s is very small, smax ∼ −1
2
ln(s), so that the slope of the distribution is also

reasonably well bounded.

When s > 1, we use −i tanh(ix) = tan(x) as the generating function. In this case
Equation (25) is

sin(2b)

2b
=

1

s
(42)

An efficient algorithm for solving Equation (42) is discussed in Annex A.4.

The growth rate function when s > 1 is

r(x) = 4b tan
(
(2x− 1)b

)
(43)

At the end points the growth rate is

r(1) = −r(0) = 4b tan(b) =

{
2
(
s−

√
s2 − 4b2

)
if s ≤ π/2

2
(
s +

√
s2 − 4b2

)
if s ≥ π/2

(44)

If s is very large, b ∼ π/2 and r(1) ≈ 4s. Therefore the growth rate at the end points
can be large when s is large.

The minimum slope when s > 1, occurring when x = 1
2
, is

smin =
b

tan(b)
(45)

When s is large, smin ≈ π2/4s.

6.3 Antisymmetric erf distribution
The antisymmetric erf distribution uses the error function, erf(x), as the generating
function:

erf(x) =
2√
π

∫ x

0

e−x2

dx (46)

Equation (25) then becomes √
πeb2erf(b)

2b
=

1

s
(47)
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Since the left hand side is greater than 1 for all x, this distribution can only be used
when s ≤ 1. An efficient algorithm for solving this equation is discussed in Annex A.7.

The growth rate function is

r(x) = −4b2(2x− 1) (48)

Therefore the magnitude of the growth rate is strictly bounded by 4b2.

The maximum slope for the erf distribution is

smax =
2b√

π erf(b)
(49)

If s is very small, smax ∼ 2
√
− ln(s)/π, so that the slope of the distribution is also

reasonably well bounded.

When s > 1, we could use

h(x) = −ierf(ix) =
2√
π

∫ x

0

ex2

dx (50)

as the generating function. This distribution has not been implemented in the C++
classes described here due to the lack of a suitable means of evaluating h(x).

6.4 C++ implementation of antisymmetric
distributions

AntiSymDistribution<F> is a base class for classes representing antisymmetric dis-
tributions. It is derived from the base class Distribution<F>. As it has only the
default constructor, it cannot, of itself, be used to define an antisymmetric distribu-
tion.

AntiSymDistribution<F> defines the following member function:

void set_end_deriv(F s)
Sets the derivatives at 0 and 1 to s.

AntiSymDistribution<F> also uses the fact that antisymmetric distributions are
invariant under reversal to reimplement the member function reverse(). The distri-
bution returned by reverse() is equivalent to the distribution itself; it will evaluate
more efficiently than the reverse distribution returned by Distribution<F>.

The antisymmetric sin and sinh distributions are represented in C++ by the single
class AntiSymSinDistribution<F> derived from AntiSymDistribution<F>. It has
the following constructor:
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AntiSymSinDistribution(F s = 1)

Makes a antisymmetric distribution whose end slopes are s. If s is greater
than 1, the generating function will be sinh(x); otherwise it will be sin(x).

All other member functions are inherited from the base classes.

The antisymmetric tanh and tan distributions are represented in C++ by the single
class AntiSymTanhDistribution<F> derived from AntiSymDistribution<F>. It has
the following constructor:

AntiSymTanhDistribution(F s = 1)

Makes a antisymmetric distribution whose end slopes are s. If s is greater
than 1, the generating function will be tan(x); otherwise it will be tanh(x).

All other member functions are inherited from the base classes.

The class AntiSymErfDistribution<F> represents an antisymmetric erf distribution.
It is derived from the base class AntiSymDistribution<F> and has the following
constructor:

AntiSymErfDistribution(F s = 1)

Makes a antisymmetric erf distribution whose end slopes are s; s must not
exceed 1.

All other member functions are inherited from the base classes.

7 End slope ratio distributions
An end slope ratio distribution is a distribution that can be uniquely defined given
the ratio of the slopes at its end points, β ≡ s1/s0. As we shall see in Section 11,
end slope ratio distributions can be used to convert antisymmetric distributions into
distributions which can be specified by setting arbitrary slopes at each end point.

Suppose that f(x) is an end slope distribution with end slope ratio β. Its inverse
has end slopes 1/s0 and 1/s1 (see Section 2.4). Therefore the inverse distribution can
also be considered to be an end slope distribution having end slope ratio 1/β.

For end slope ratio distributions, having the reversibility property implies that the
reverse of the distribution is the same as the distribution specified using end slope
ratio 1/β.

7.1 Quadratic distributions
A quadratic distribution is defined by

f(x) = (1− α)x + αx2 (51)
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for α ∈ (−1, 1). The slopes at the end points of a quadratic distribution are

f ′(0) = 1− α; f ′(1) = 1 + α (52)

They must be in the range (0, 2). Because the range of end slopes is so limited,
quadratic distributions are not very useful as one-sided distributions (distributions
defined by setting the slope at one end: see Section 8). However, they can be used as
end slope ratio distributions since the ratio of end slopes can have unlimited values:

α =
β − 1

β + 1
; β =

1 + α

1− α
(53)

The growth rate function of a quadratic distribution is:

r(x) =
2α

1− α + 2αx
(54)

If α is close to 1, the growth rate is very large near x = 0; conversely, if α is close to
−1, the growth rate is very large near x = 1.

The reverse of a quadratic distribution is

f(x) = (1 + α)x− αx2 (55)

Therefore the reverse distribution is the quadratic distribution with α replaced with
−α or by replacing β with 1/β: the quadratic distribution has the reversibility prop-
erty.

The inverse distribution is

f (−1)(x) =
α− 1 +

√
(1− α)2 + 4αx

2α
(56)

7.2 C++ implementation of end slope ratio
distributions

EndSlopeRatioDistribution<F> is a base class representing end slope ratio distri-
butions. It is derived from Distribution<F>. As it has only the default constructor,
it cannot, of itself, be used to define an end slope ratio distribution.

EndSlopeRatioDistribution<F> defines the following member function:

F get_slope_ratio() const

Returns the end slope ratio β.
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void set_slope_ratio(F beta)

Sets the end slope ratio to beta.

bool has_reversibility_property() const

Returns true if the distribution is known to have the reversibility property. Note
that it is possible that this function will return false even when the distribution
does have the reversibility property.

When the distribution is known to have the reversibility property,
EndSlopeRatioDistribution<F> also uses the fact that the reverse of the
distribution has end slope ratio 1/β to reimplement the member function reverse().
The distribution returned by reverse() will evaluate more efficiently than the
reverse distribution returned by Distribution<F>.

The class QuadraticDistribution<F> represents a quadratic distribution. It is de-
rived from the base class EndSlopeRatioDistribution<F> and has the following
constructor:

QuadraticDistribution(F beta = 1)

Makes a quadratic distribution with end slope ratio beta.

All other member functions are inherited from the base classes.

Sections 9.1 and 10.1 describe other distribution classes derived from the class
EndSlopeRatioDistribution<F>.

8 One-sided distributions
A one-sided distribution is a distribution for which the slope, s, can be set at one end
point but not both. They are useful for generating node distributions in unbounded
domains where the exact cell spacing far from boundaries is not important.

For a one-sided distribution, having the reversibility property implies that the reverse
of the distribution is the same as the distribution obtained by specifying the slope at
the other end point to be s.

Figure 2 plots four different one-sided distributions, their slopes and their growth
rates. For each the slope at 0 is set to 0.1. The distributions are described in the
following sections.
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Figure 2: Four one-sided distributions, their slopes and growth rates:
the slope at 0 is 0.1.

8.1 One-sided distributions from generating functions
A one-sided distribution with slope set at x = 1 can be generated from an antisym-
metric generating function with domain [0, b]:

f(x) =
g(bx)

g(b)
(57)

The slope at x = 1 is

s =
bg′(b)

g(b)
(58)

which must be solved for b; this is the same as Equation (25). The growth rate is

r(x) =
bg′′(bx)

g′(b)
(59)

which is one half Equation (26) with 2x−1 replaced by x. Notice that r(0) = 0 since
g(x) is antisymmetric.

Suppose that h(x) is the antisymmetric distribution which has g(x) as its generating
function over domain [−b, b]. Then

f(x) = 2h
(

1
2
(x + 1)

)
− 1 (60)

Therefore the properties of this distribution are similar to those of the antisymmetric
distribution which uses the same generating function g(x). In particular, when the
specified slope is less than 1, the one-sided distribution derived from the tanh distri-
bution is to be preferred over the one-sided sin distribution if the growth rate is to
be kept small.
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Similarly, we get a one-sided distribution with slope set at x = 0 by using an anti-
symmetric generating function with domain [−b, 0]:

f(x) = 1−
g
(
b(1− x)

)
g(b)

(61)

As should have been expected, this is just the distribution of Equation (57) reversed:
the distribution has the reversibility property. Therefore the equation to be solved
for b is still Equation (58) except that s is now interpreted as the slope at x = 1.
This distribution can be written in terms of the antisymmetric distribution h(x) as

f(x) = 2h
(

1
2
x
)

(62)

8.2 C++ classes implementing one-sided distributions
The C++ class OneSidedDistribution<F> is a base class for one-sided distributions.
It is derived from the base class Distribution<F> and has one constructor other than
the default constructor:

OneSidedDistribution(const AntiSymDistribution<F> &dist,

bool left, F s)

Makes a one-sided distribution from the antisymmetric distribution dist. If
left is true, the derivative at 0 is s; otherwise the derivative at 1 is s.

It also has the following member functions:

void set_deriv_at_start(F s)
Sets the slope at 0 to s.

void set_deriv_at_end(F s)
Sets the slope at 1 to s.

bool has_reversibility_property() const

Returns true if the distribution is known to have the reversibility property. Note
that it is possible that this function will return false even when the distribution
does have the reversibility property.

All other member functions are inherited from the base classes.

The class OneSidedTanhDistribution<F> represents a one-sided distribution whose
generating function is tanh or tan. The former is appropriate when the speci-
fied end-slope is less than or equal to 1, the latter when the end-slope exceeds 1.
OneSidedTanhDistribution<F> has the following constructor in addition to the de-
fault constructor:
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OneSidedTanhDistribution(bool left, F s)

Makes a one-sided distribution from the generating function tan(x) if s ex-
ceeds 1, otherwise from tanh(x). If left is true, the derivative at 0 is s;
otherwise the derivative at 1 is s.

All other member functions are inherited from the base classes.

The class OneSidedSinDistribution<F> is similar but uses the generating function
sin(x) if the end slope is less than or equal to 1 and sinh(x) if it exceeds 1. It has the
following constructor in addition to the default constructor:

OneSidedSinDistribution(bool left, F s)

Makes a one-sided distribution from the generating function sinh(x) if s ex-
ceeds 1, otherwise from sin(x). If left is true, the derivative at 0 is s; otherwise
the derivative at 1 is s.

All other member functions are inherited from the base classes.

The class OneSidedErfDistribution<F> is similar but uses the generating function
erf(x). It has the following constructor in addition to the default constructor:

OneSidedErfDistribution(bool left, F s)

Makes a one-sided distribution from the generating function erf(x). If left is
true, the derivative at 0 is s; otherwise the derivative at 1 is s. The value of s
must not exceed 1.

All other member functions are inherited from the base classes.

Other distribution classes derived from OneSidedDistribution<F> are described in
Sections 9.1 and 10.1.

9 Geometric distribution
A geometric distribution is given by

f(x) =
βx − 1

β − 1
(63)

for some β > 0. Its derivative is

f ′(x) =
βx ln(β)

β − 1
(64)

so that

f ′(0) =
ln(β)

β − 1
≡ q(β); f ′(1) =

β ln(β)

β − 1
= q(1/β) (65)
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and

β =
f ′(1)

f ′(0)
(66)

Therefore a geometric distribution is an end slope ratio distribution.

The slope at either end-point can be set provided that one can evaluate the inverse
of the function q(x). Suppose we wish to set the slope at 0 to s0. Then it is sufficient
to set

β = q(−1)(s0) (67)

An efficient algorithm for evaluating q(−1)(x) is described in Annex A.6. Therefore a
geometric distribution can also be considered a one-sided distribution.

The growth rate of a geometric distribution is constant; the growth rate function is
also constant and is given by:

r(x) = ln(β) (68)

The geometric distribution has the smallest possible growth rate given the ratio of
the two end slopes.

The reverse of a geometric distribution is

f(x) =
(1/β)x − 1

1/β − 1
(69)

Therefore the reverse distribution is the geometric distribution with β replaced with
1/β: the geometric distribution has the reversibility property.

The inverse distribution is

f (−1)(x) = logβ

(
1 + x(β − 1)

)
(70)

When β is very close to 1, there can be loss of accuracy if Equation (63) is evaluated
directly. Instead, the following well-behaved approximation can be used:

f(x) ≈ x +
x(x− 1)

2!
(β − 1)

+
x(x− 1)(x− 2)

3!
(β − 1)2

+
x(x− 1)(x− 2)(x− 3)

4!
(β − 1)3

+
x(x− 1)(x− 2)(x− 3)(x− 4)

5!
(β − 1)4 (71)
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9.1 C++ implementation of geometric distributions
The class GeometricDistribution<F> is used to represent geometric distribu-
tions. It is derived from the base classes EndSlopeRatioDistribution<F> and
OneSidedDistribution<F> and has the following constructor:

GeometricDistribution(F beta = 1)
Makes a geometric distribution having end slope ratio beta.

GeometricDistribution<F> also uses the fact that the reverse of the distribution has
end slope ratio 1/β to reimplement the member function reverse(). The distribution
returned by reverse() will evaluate more efficiently than the reverse distribution
returned by Distribution<F>.

GeometricDistribution<F> also reimplements the member function inverse() so
that it returns an explicit representation of the inverse curve. It will evaluate more
efficiently and more accurately than the reverse distribution returned by the base
class Distribution<F>.

All other member functions are inherited from the base classes.

GeometricDistribution<F> makes use of the class LnxOxm1<F> which evaluates
q(x) = ln(x)/(x− 1). When x is close to 1, it uses the expansion:

q(x) = 1− x− 1

2
+

(x− 1)2

3
− (x− 1)3

4
+ · · · (72)

to avoid inaccuracies due to round-off.

10 Rational distributions
A rational distribution is defined by

f(x) =
x

α + (1− α)x
(73)

for any positive α. Its derivative is

f ′(x) =
α(

α + (1− α)x
)2 (74)

which is always positive since α is positive.

The slopes at the end points of a rational distribution are

f ′(0) =
1

α
; f ′(1) = α (75)
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Therefore a rational distribution can be treated as one-sided distribution. Moreover,
since

α =

√
f ′(1)

f ′(0)
=
√

β (76)

a rational distribution can also be treated as an end slope ratio distribution.

It is easily verified that the rational distribution has the reversibility property: its
reverse is the rational distribution with α replaced with 1/α. The inverse of a rational
distribution is the same as its reverse.

The growth rate function for a rational distribution is

r(x) =
2(α− 1)

α + (1− α)x
(77)

If α < 1, the growth rate decreases monotonically; if α > 1 it increases monotonically.

Rational distributions are normally of little direct use because their growth rate
becomes very large for both small and large α. However, as shown in Section 11.1,
they can be composed with other distributions to generate well-behaved distributions
whose end slopes can be set independently.

10.1 C++ implementation of rational distributions
The C++ class RationalDistribution<F> is used to represent rational distributions.
Since a rational distribution is both an end slope distribution and a one-sided distri-
bution, RationalDistribution<F> is derived from both OneSidedDistribution<F>

and EndSlopeRatioDistribution<F>. It has the following constructor:

RationalDistribution(F beta = 1)
Makes a rational distribution with end slope ratio beta.

It also reimplements the inherited functions inverse() and reverse() to provide
more efficient alternatives than those provided by the base class Distribution<F>.

All other member functions are inherited from the base classes.

11 Two-sided distributions
A two-sided distribution is one for which the slopes at the end points can be set
independently. They are useful for generating node distributions in bounded domains
where the cell spacing at both ends of an edge is important.

Figure 3 plots three different two-sided distributions, their slopes and their growth
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Figure 3: Three two-sided distributions, their slopes and growth
rates: the slope at 0 is 0.1 and the slope at 1 is 0.2.

rates. For each the slope at 0 is set to 0.1 and the slope at 1 is set to 0.2. The
distributions are described in the following sections.

11.1 Composition of end slope ratio and
antisymmetric distributions

Let a(x) be an antisymmetric distribution, e(x) an end slope ratio distribution, and
define a new distribution by f = a ◦ e. Then

s0 = f ′(0) = a′(0)e′(0); s1 = f ′(1) = a′(1)e′(1) (78)

Since a′(0) = a′(1), we have
e′(1)

e′(0)
=

s1

s0

(79)

so that e(x) is uniquely determined given s0 and s1. The antisymmetric distribution
can then be uniquely determined since

a′(0) = a′(1) =
s0

e′(0)
=

s1

e′(1)
(80)

Since the reverse of a is itself, the reverse of f is simply a composed with the reverse
of e. The composed distribution will have the reversibility property if and only if e
has the reversibility property.

Similar expressions also apply if f is defined as e ◦ a.
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11.2 Two-sided sin distribution
The two-sided sin distribution is a distribution generated from sin(x) over the domain
[a, b], where −π/2 < a ≤ b < π/2. The values of a and b must be determined so that
the end slopes are s0 and s1. From Equation (20) this means solving the following
system of equations:

s0 =
(b− a) cos(a)

sin(b)− sin(a)
(81)

s1 =
(b− a) cos(b)

sin(b)− sin(a)
(82)

With the substitutions a = xm − 1
2
∆ and b = xm + 1

2
∆, this can be rewritten

s0 =
1
2
∆

tan(1
2
∆)

+ 1
2
∆ tan(xm) (83)

s1 =
1
2
∆

tan(1
2
∆)

− 1
2
∆ tan(xm) (84)

Therefore
tan(1

2
∆)

1
2
∆

=
2

s0 + s1

(85)

which can be solved for ∆ using the methods described in Annex A.2. Once ∆ is
known, xm is determined from

xm = arctan

(
s0 − s1

∆

)
(86)

When ∆ is close to zero, xm ≈ ±π/2. Since this is a case in which the derivative
of the generating function approaches zero, the distribution is not necessarily linear,
even when ∆ = 0. Substituting Equation (86) into Equation (17) and expanding in
∆ one obtains

f(x) = x + x(1− x)

(
s0 − s1

2
− x(1− x)(s0 − s1)∆

2

24
+

(2x− 1)∆2

12

)
+ O(∆4) (87)

When ∆ = 0 (i.e. when s0 + s1 = 2), the distribution reduces to a quadratic distri-
bution with parameter α = 1− s0 = s1 − 1.

Notice that, since tan(x)/x > 1 for all x, s0 + s1 must not exceed 2. However, if
s0 + s1 does exceed 2, we can replace sin(x) by sinh(x). The expressions for ∆ and
xm are then:

tanh(1
2
∆)

1
2
∆

=
2

s0 + s1

(88)

xm = arctanh

(
s1 − s0

∆

)
(89)
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Figure 4: The region of end slope values (shaded) for which the two-
sided sin distribution is well-defined. For the red region sin is used
as the generating function; for the green region sinh is used.

There is now a requirement that |s1 − s0| < ∆ otherwise xm will not be well-defined.
This restricts the domain of possible values of s0 and s1 for the sin distribution to
the region shown in Figure 4. The fact that the sin distribution is not well-defined
for all possible end slopes, as well as the fact that its growth rate is very high when
the end-slopes are small, mean that the sin distribution is not very useful in practice.

11.3 The tanh distribution
The two-sided tanh distribution (usually simply called a tanh distribution) is a dis-
tribution generated from tanh(x) over the domain [a, b]. The values of a and b must
be determined so that the end slopes are s0 and s1. This distribution is discussed in
detail by Vinokur[2] and is the distribution of choice for many applications.

From Equation (20), the end slopes in terms of a and b are:

s0 =
(b− a)

cosh2(a)
(
tanh(b)− tanh(a)

) =
(b− a) cosh(b)

cosh(a) sinh(b− a)
(90)

s1 =
(b− a)

cosh2(b)
(
tanh(b)− tanh(a)

) =
(b− a) cosh(a)

cosh(b) sinh(b− a)
(91)
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so that

sinh(b− a)

b− a
=

1
√

s0s1

(92)

cosh(a)

cosh(b)
=

√
s1

s0

(93)

With the substitutions a = xm − 1
2
∆ and b = xm + 1

2
∆, these can be rewritten

sinh(∆)

∆
=

1
√

s0s1

(94)

1 + tanh(xm) tanh(1
2
∆)

1− tanh(xm) tanh(1
2
∆)

=

√
s1

s0

(95)

Equation (94) can be solved for ∆ using the methods described in Annex A.5. Once
∆ is known, Equation (95) can be solved for xm:

xm = arctanh


√

s1

s0
− 1

tanh(1
2
∆)
(√

s1

s0
+ 1
)
 (96)

Notice that, since sinh(x)/x > 1 for all x, s0s1 must not exceed 1. However, if s0s1

does exceed 1, we can replace tanh(x) by tan(x). The expressions for ∆ and xm are
then:

sin(∆)

∆
=

1
√

s0s1

(97)

xm = arctan


√

s1

s0
− 1

tan(1
2
∆)
(√

s1

s0
+ 1
)
 (98)

The two-sided tanh distribution can be written

f(x) =
tanh

(
xm + (x− 1

2
)∆
)
− tanh(xm − 1

2
∆)

tanh(xm + 1
2
∆)− tanh(xm − 1

2
∆)

(99)

Using the summation formula

tanh(x + y) =
tanh(x) + tanh(y)

1− tanh(x) tanh(y)
(100)

one gets

f(x) =

(
tanh

(
(x− 1

2
)∆
)

+ tanh
(

1
2
∆
))(

1− tanh(xm) tanh
(

1
2
∆
))

2 tanh
(

1
2
∆
)(

1− tanh(xm) tanh
(
(x− 1

2
)∆
)) (101)
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Now let h(x) be the antisymmetric distribution generated by tanh(x) on [−b, b]:

h(x) =
1

2

[
1 +

tanh
(
(x− 1

2
)∆
)

tanh
(

1
2
∆
) ]

(102)

Then we can write

f(x) =
h(x)

α + (1− α)h(x)
(103)

with

α =
1− tanh(xm) tanh

(
1
2
∆
)

1 + tanh(xm) tanh
(

1
2
∆
) (104)

which shows that f(x) is simply a rational distribution composed with an antisym-
metric tanh distribution. Therefore the two-sided tanh distribution has the interest-
ing property that it can be considered to be a generated distribution with domain
[a, b] given by Equations (94) and (96) or to be the composition of a rational dis-
tribution with an antisymmetric tanh distribution using the procedure described in
Section 11.1.

11.4 C++ classes implementing two-sided
distributions

The class TwoSidedDistribution<F> is a base class for two-sided distributions. It
has one constructor other than the default:

TwoSidedDistribution(EndSlopeRatioDistribution<F> esrd,

AntiSymDistribution<F> asd,

bool esr_outer)

Makes a two-sided distribution by composing the end slope distribution esrd

and the antisymmetric distribution asd. If esr_outer is true, esrd is the outer
distribution and asd is the inner distribution: i.e. the distribution is esrd(asd);
otherwise, asd is the outer distribution: the distribution is asd(esrd).

When this constructor is used, the member function reverse() will return the
reverse of esrd composed with asd. This is more efficient to evaluate than the
default reversed distribution.

Similarly, the member function inverse() will return the inverse of esrd com-
posed with the inverse of asd. This will often be more efficient to evaluate than
the default reversed distribution, but when neither asd nor esrd have efficient
inverses defined, it will be less efficient. This should be taken into account when
deciding whether to reimplement inverse() for derived classes.

TwoSidedDistribution<F> also has the following member function:
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void set_end_derivs(F s0, F s1)

Sets the derivative at 0 to s0 and the derivative at 1 to s1.

TwoSidedDistribution<F> reimplements the member function reverse() so that,
if the distribution is known to have the reversibility property, the returned distri-
bution is generated by swapping the slopes at the end points. This distribution
will be more efficient to evaluate than the default reversed distribution returned by
Distribution<F>.

All other member functions are inherited from the base classes.

The class TanhDistribution<F> represents a tanh distribution. It is derived from the
base class TwoSidedDistribution<F> and has the following constructor in addition
to the default constructor:

TanhDistribution(F slope0 = 1, F slope1 = 1)

Makes a tanh distribution with slope slope0 at 0 and slope slope1 at 1.

All other member functions are inherited from the base classes. It also inherits
the efficient implementations of reverse() and inverse() defined in the base class
TwoSidedDistribution<F>.

The class SinDistribution<F> represents a two-sided sin distribution. It is derived
from the base class TwoSidedDistribution<F>.

SinDistribution<F> has the following constructor in addition to the default con-
structor:

SinDistribution(F s0 = 1, F s1 = 1)

Makes a two-sided sin distribution with slope slope0 at 0 and slope slope1 at 1.
The constructor is not guaranteed to be successful: see Figure 4 for the regions
of allowed values of s0 and s1. If the distribution cannot be constructed, an
Error is thrown.

SinDistribution<F> reimplements the member function inverse() to return an
explicit version of the inverse distribution which is more efficient and more accurate
than the default inverse distribution returned by Distribution<F>.

All other member functions are inherited from the base classes. Since the two-sided
distribution is known to have the reversibility property, it also inherits the efficient
version of reverse() defined by the base class TwoSidedDistribution<F>.

Section 14.1 describes the class BiGeometricDistribution<F> which is also derived
from TwoSidedDistribution<F>.
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12 Interior distributions
In an interior distribution the slope is set at some point, xm, in the interior of the
range [0, 1]. We will denote the value of the distribution at xm by ym and its slope
by sm. The point (xm, ym) is called the cluster point.

In general it is not sufficient to be able to specify the slope at xm. When generating
a node distribution, this allows one to specify the spacing of the nodes at a particular
node number, but not where that node will be on the edge. For the latter we need
also to be able to specify ym. Therefore an interior distribution requires that xm, ym

and sm can all be specified.

The simplest way to create an interior distribution is by splicing two one-sided dis-
tributions: see Section 13.1.

12.1 C++ implementation of interior distributions
The class InteriorDistribution<F> is a base class for interior distributions. It
is derived from the base class Distribution<F> and has the following constructor
besides the default.

InteriorDistribution(const OneSidedDistribution<F> g1,

const OneSidedDistribution<F> g2,

F xm, F ym, F sm)

Make the distribution by splicing g1 and g2 at xm with slope sm and value ym:
see Section 13.1.

It also has the following member functions:

void define_cluster_point(F xm, F ym, F sm)

Sets the value and derivative of the distribution at xm to be ym and sm respec-
tively. Both xm and ym must be in (0,1).

void get_cluster_point(F &xm, F &ym)

Returns the location and value of the distribution at the cluster point in xm

and ym.

void set_slope(F s)

Sets the value of the derivative at the cluster point to s. Does not change the
location of the cluster point or the value of the distribution there.

All other member functions are inherited from the base classes.
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13 Spliced distributions
Any two distribution functions, g1(x) and g2(x), can be combined to generate a new
distribution function by splicing the beginning of the second to the end of the first:

f(x) =


ymg1

(
x

xm

)
for 0 ≤ x ≤ xm

ym + (1− ym)g2

(
x− xm

1− xm

)
for xm ≤ x ≤ 1

(105)

The point (xm, ym) is called the splice point.

To ensure that the node spacing is continuous where the two edges join, it is necessary
that the slope of f(x) is continuous at xm. This yields a relation between the end-
slopes of the two distributions:

ym(1− xm)g′1(1) = (1− ym)xmg′2(0) (106)

If the slopes of g1 and g2 are known at the splice point, we can use this expression to
specify xm given ym, or ym given xm:

ym =
xmg′2(0)

(1− xm)g′1(1) + xmg′2(0)
(107)

xm =
ymg′1(1)

(1− ym)g′2(0) + ymg′1(1)
(108)

The values of xm and ym obtained in this way will always be in the range [0, 1], as
required.

Suppose the slopes of f(x) at 0, xm and 1 are s0, sm and s1 respectively. Then

s0 =
ym

xm

g′1(0) (109)

sm =
ym

xm

g′1(1) =

(
1− ym

1− xm

)
g′2(0) (110)

s1 =
1− ym

1− xm

g′2(1) (111)

and

β1 ≡
g′1(1)

g′1(0)
=

sm

s0

; β2 ≡
g′2(1)

g′2(0)
=

s1

sm

(112)

so that

β ≡ s1

s0

=
g′1(1)

g′1(0)

g′2(1)

g′2(0)
= β1β2 (113)

Therefore the end slope ratio of the spliced distribution is the product of the end
slope ratios of its constituents.
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The reverse of a spliced distribution can be obtained by splicing the reverse of g2(x)
with the reverse of g1(x) at (1− xm, 1− ym).

The inverse of a spliced distribution is the inverse of g1(x) spliced with the inverse of
g2(x) at (ym, xm).

The growth rate function for a spliced distribution is

r(x) =


1

xm

r1

(
x

xm

)
for 0 ≤ x ≤ xm

1

1− xm

r2

(
x− xm

1− xm

)
for xm ≤ x ≤ 1

(114)

where r1(x) and r2(x) are the growth rate functions of g1(x) and g2(x).

Suppose we wish to generate a distribution of nodes on the interval [a, c] such that
N1 nodes are placed on [a, b] and N2 nodes are placed on [b, c]. The total number
of nodes is N = N1 + N2 − 1 since one of the nodes is common to both edges. A
distribution, f(x), for the combined edge is given by Equation (105) with

xm =
N1 − 1

N1 + N2 − 2
; ym =

b− a

c− a
(115)

Notice that for this common application it must be possible to set both xm and ym

independently.

13.1 Interior distributions from spliced one-sided
distributions

Two one-sided distributions can be spliced to form an interior distribution in which
the slope, sm, is specified at the splice point, (xm, ym). From Equation (110) it is
sufficient to set the end slopes of the sub-distributions as follows:

g′1(1) =
xmsm

ym

; g′2(0) =
(1− xm)sm

1− ym

(116)

which is sufficient to specify both g1 and g2.

13.2 Two-sided distributions from spliced one-sided
distributions

Two one-sided distributions can be spliced to form a two-sided distribution. Suppose
that the slopes of the spliced distribution at 0 and 1 are s0 and s1 respectively and
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that xm is known. Now choosing a value for ym will fix the two sub-distributions as
Equations (109) and (111) imply that their end-slopes must satisfy:

g′1(0) =
xms0

ym

; g′2(1) =
(1− xm)s1

1− ym

(117)

Equation (110) is now a constraint that can be solved for ym. Clearly it would also
have been possible to fix ym and solve for xm.

13.3 Spliced two-sided distributions
If the sub-distributions of a spliced distribution are both two-sided, then it is possible
to set xm, ym, s0, sm and s1 independently. The requirements for the end slopes of
the sub-distributions are:

g′1(0) =
xms0

ym

(118)

g′1(1) =
xmsm

ym

(119)

g′2(0) =
(1− xm)sm

1− ym

(120)

g′2(1) =
(1− xm)s1

1− ym

(121)

13.4 Multiple spliced distributions
It is easy to generalize a spliced distribution to many sub-distributions spliced to-
gether at more than one point. Let x0, . . . , xM and y0, . . . , yM be increasing sequences
with x0 = y0 = 0 and xM = yM = 1 and let g1, . . . , gM be distributions. Then

f(x) = ym−1 + (ym − ym−1)gm

(
x− xm−1

xm − xm−1

)
for xm−1 ≤ x ≤ xm (122)

is also a distribution provided that

ym − ym−1

xm − xm−1

g′m(1) =
ym+1 − ym

xm+1 − xm

g′m+1(0) for all m = 1, . . . ,M − 1 (123)

If each gm is two-sided, then all the xm, ym and the slopes at each xm, sm, can be
specified independently. The end slopes of the sub-distributions are:

g′m(0) =
sm(xm − xm−1)

ym − ym−1

(124)

g′m(1) =
sm+1(xm − xm−1)

ym − ym−1

(125)
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13.5 C++ implementation of spliced distributions
The class SplicedDistribution<F> represents a spliced distribution. It is inherited
from the base class Distribution<F> and has the following constructor in addition
to the default:

SplicedDistribution(F xm, F ym,

const Distribution<F> &g1,

const Distribution<F> &g2)

Makes a spliced distribution using sub-distributions g1 and g2. The location
of the splice is (xm,ym). It is up to the calling program to ensure that the
distribution has continuity of slopes at the splice point.

It also has the following member function.

void get_splice_point(F &xm, F &ym)

Returns the location of the splice point in xm and ym.

SplicedDistribution<F> reimplements the member functions reverse() and
inverse() to return distributions generated from the reverse or inverse of the
sub-distributions. These distributions will often be more efficient and more ac-
curate, and certainly will be no worse, than the default distributions returned by
Distribution<F>.

All other member functions are inherited from the base classes.

The class MultiDistribution<F> represents a distribution generated by splicing sev-
eral distributions together at a series of cluster points. It is derived from the base
class Distribution<F> and has the following constructor in addition to the default.

MultiDistribution(const Spline::KnotSeq<F> &xvals,

const Spline::KnotSeq<F> &yvals,

const std::vector<F> &svals,

const OneSidedDistribution<F> &osd =

OneSidedTanhDistribution<F>(),

const TwoSidedDistribution<F> &tsd =

TanhDistribution<F>())

Makes a distribution by splicing distributions on the intervals defined by the
strictly increasing sequence xvals (the first and last values of xvals must be
0 and 1 respectively). The values and slopes of the distribution at the splice
points are given in yvals and svals. Each must be of the same length as
xvals. A copy of tsd is made for each interior interval. Its end slopes are
then adjusted to ensure that the slope of the overall distribution is correct. If
the slopes at 0 and 1 are positive, a similar procedure is used on the first and
last intervals. Otherwise, if the first slope is zero or negative, osd is copied
then its end slope is adjusted so that the slope of the distribution is correct at
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xvals[1]. A similar procedure is used on the last interval if the last slope is
zero or negative.

The class Spline::KnotSeq<F> represents a vector of increasing values; it is
described in Reference 3, Section 3.

MultiDistribution(const OneSidedDistribution<F> &osd,

const TwoSidedDistribution<F> &tsd)

Makes a multi-distribution which will use sub-distributions osd and tsd. The
vectors of cluster points and their slopes must be defined by a call to define()

before the distribution is evaluated.

It also has the following member functions.

void define(const Spline::KnotSeq<F> &xvals,

const Spline::KnotSeq<F> &yvals,

const std::vector<F> &svals,

const OneSidedDistribution<F> &osd,

const TwoSidedDistribution<F> &tsd)

Redefines the distribution. The arguments are similar to those of the first
constructor above.

void define(const OneSidedDistribution<F> &osd,

const TwoSidedDistribution<F> &tsd)

Changes the distributions to be used on each of the segments. The current
cluster points and slopes will be retained.

void define(const Spline::KnotSeq<F> &xvals,

const Spline::KnotSeq<F> &yvals,

const std::vector<F> &svals)

Changes the cluster points and their slopes. The current distributions used on
each of the segments will be retained; if none are defined, a ProgError will be
thrown (see Reference 1, Annex F for a description of ProgError).

All other member functions are inherited from the base classes.

14 Bi-geometric distributions
A bi-geometric distribution is a distribution made by splicing two geometric distribu-
tions together as in Equation (105). Let β1 be the ratio of end slopes for the geometric
distribution g1(x); similarly β2 is the ratio of end slopes for g2(x).

Then

g1(x) =
βx

1 − 1

β1 − 1
; g2(x) =

βx
2 − 1

β2 − 1
; (126)
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and the distribution is

f(x) =


ym

β
x

xm
1 − 1

β1 − 1
for 0 ≤ x ≤ xm

ym + (1− ym)
β

x−xm
1−xm
2 − 1

β2 − 1
for xm ≤ x ≤ 1

(127)

From Equation (113) the requirement for continuity at xm is

s1 = s0β1β2 (128)

Since the two sub-distributions of a bi-geometric distribution are both one-sided dis-
tributions, a bi-geometric distribution can be made into an interior distribution whose
cluster point is at the splice point: see Section 13.1.

We can also make a bi-geometric distribution two-sided by specifying the derivatives
at the end points: see Section 13.2. This yields

s0 =
ym

xm

ln(β1)

β1 − 1
(129)

s1 =

(
1− ym

1− xm

)
β2 ln(β2)

β2 − 1
(130)

With q(x) ≡ ln(x)/(x− 1) we can solve these equations for β1 and β2:

β1 = q(−1)

(
xms0

ym

)
(131)

β2 =

[
q(−1)

(
(1− xm)s1

1− ym

)]−1

(132)

Substituting into Equation (128) we obtain the following equation which, given xm,
s0 and s1, can be solved for ym:

s0 q(−1)

(
xms0

ym

)
= s1 q(−1)

(
(1− xm)s1

1− ym

)
(133)

Annex A.6 describes an efficient algorithm for evaluating q(−1)(x).

Consider the bi-geometric distribution obtained by the following substitutions:

xm → 1− xm; ym → 1− ym; β1 →
1

β2

; β2 →
1

β1

(134)

Then it is easily verified that Equations (128)–(130) are satisfied, that s0 → s1 and
s1 → s0, and that the new distribution is the reverse of the old; therefore the bi-
geometric distribution has the reversibility property.
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A useful alternative for specifying a bi-geometric distribution is to set s0, ym and the
growth rate function over x ∈ [0, xm] (a constant). Call the latter r. Then

r =
ln(β1)

xm

(135)

Substituting into Equation (129) we find

β1 = 1 +
ymr

s0

(136)

Since β1 is now known, xm can be determined from Equation (135):

xm =
ln(β1)

r
(137)

Using Equation (128) to eliminate s1 from Equation (130) gives

β2 = q(−1)

(
s0β1(1− xm)

1− ym

)
(138)

This option is particularly useful for generating node distributions for external bound-
ary layer flows. The nodes can be given a fixed expansion rate until a fixed distance
from the wall is reached. The distribution then changes to a geometric distribution
which expands naturally to the outer wall.

14.1 C++ implementation of bi-geometric distributions
The class BiGeometricDistribution<F> is used to represent bi-geometric distri-
butions. It is derived from the two base classes InteriorDistribution<F> and
TwoSidedDistribution<F> and has the following member functions:

BiGeometricDistribution(F xm, F slope0, F slope1)

Makes a distribution from two geometric distributions spliced at xm. The slopes
at 0 and 1 are slope0 and slope1 respectively.

void define(F xm, F slope0, F slope1)

Sets the splice point to xm and the values of the slopes at 0 and 1 to slope0

and slope1 respectively.

void define_fixed_inner_ratio(F ym, F slope0, F ratio)

Sets the slope at the left end-point to slope0 and the value of the distribution
at the splice point to ym. The growth rate function between 0 and the splice
point is constant; its value is ratio.
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void get_splice_point(F &xm, F &ym)

Returns the splice point in xm and the value of the distribution at the splice
point in ym.

All other member functions are inherited from the base classes.

15 Arclength distributions
An arclength distribution is used to convert the parameter of a curve in space, c(ξ),
so that it approximates the fractional arclength along the curve. Define a(ξ) to be
the fractional arclength along c(ξ) for the parameter range [ξo, ξ1]:

a(ξ) =

∫ ξ

ξ0

√
∂c

∂ξ
· ∂c

∂ξ
dξ

∫ ξ1

ξ0

√
∂c

∂ξ
· ∂c

∂ξ
dξ

(139)

The arclength distribution for c(ξ) for the parameter range [ξo, ξ1] is the inverse of
a(ξ).

f(ξ) = a(−1)(ξ) (140)

The curve
g(x) = c

(
ξ0 + (ξ1 − ξ0)f(x)

)
(141)

traces the same path in space as c, but its parameter, x, represents the fractional
arclength along the curve. Nodes generated along the curve using the arclength
distribution will be equidistant in arclength.

For example, Figure 5 shows the parametric curve

c(ξ) =


(ξ + 3)(13− ξ)

60
1

1 + ξ2

 (142)

for ξ in the range [−3, 3]. On the left are 21 points equally distributed in ξ. On the
right are 21 points equally distributed in the arclength parameter x.

By composing a distribution with an arclength distribution we get a new distribution
which can be used to distribute nodes with respect to fractional arclength rather than
with respect to the curve parameter.
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Figure 5: Nodes on a curve equally spaced in the curve parameter (left) and after an
arclength distribution has been applied.

15.1 C++ implementation of arclength distributions
The C++ class ArcLengthDistribution<V,F> is used to represent arclength distri-
butions. It is derived from the base class Distribution<F>. The template parameter
V is the type of the point in space returned by the curve c(ξ) used to generate the
distribution; it must be a model of an Absolute Object as well as an Arithmetic Ob-
ject: see Reference 1, Annexes A.1 and A.5. As usual, the template parameter F is
the type of the distribution parameter (usually double or float). The type of the
curve c(ξ) is CurveLib::Curve<1U,V,F>: see Reference 1, Section 2.

To calculate the arclength distribution, the arclength along c(ξ) must be approxi-
mated. The curve is sampled at a number of points; the resulting nodes are joined
with straight lines to approximate the arclength. The locations of the sampled points
are stored in a Spline::KnotSeq<F> (see Reference 3, Section 3). The constructors
allow several different methods for determining where the curve is sampled.

Once the fractional arclength has been approximated, a Hermite spline is constructed
(see Reference 3, Section 8 for a description of Hermite splines) which uses the frac-
tional arclengths as the knots and the locations of the sampled points as the values.
This yields the inverse arclength curve that is required for the distribution.

ArcLengthDistribution<V,F> has the following constructors in addition to the de-
fault constructor:
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ArcLengthDistribution(const CurveLib::Curve<1U,V,F> &c,

F pmin, F pmax,

const Spline::KnotSeq<F> &knots)

Makes an arclength distribution for curve c over the parameter range
[pmin,pmax]. The knot sequence knots is used to sample the curve c to ap-
proximate its fractional arclength. The range of the knot sequence must be [0,1].
The sampled points will be pmin+(pmax-pmin)*knots[i] for i between 0 and
knots.size()-1. The class Spline::KnotSeq<F> is described in Reference 3,
Section 3.

ArcLengthDistribution(const CurveLib::Curve<1U,V,F> &c,

F pmin, F pmax, unsigned n)

Makes an arclength distribution for curve c over the parameter range
[pmin,pmax]. To approximate its fractional arclength, the curve is sampled
at n equally spaced parameters in the range [pmin,pmax].

ArcLengthDistribution(const CurveLib::Curve<1U,V,F> &c,

F pmin, F pmax, unsigned nmin,

unsigned nmax, F acc)

Makes an arclength distribution for curve c over the parameter range
[pmin,pmax]. To approximate its fractional arclength, the curve is first sampled
at nmin equally spaced parameters in the range [pmin,pmax]. Extra parame-
ter values are then added until the fractional arclength curve is accurate to acc

or until the total number of knots is nmax. A segment of the curve between
two points is ‘accurate to acc’ if adding a parameter value at the centre of the
segment changes the arclength between the points by less than the factor acc.

16 Concluding remarks
This document has described a library of C++ classes which represent distribution
functions of different types. The distribution classes are based on the more general
CurveLib library for representing multi-parameter differentiable functions. From the
CurveLib classes they inherit arithmetic and composition operators that allow the
distribution functions to be combined in complex ways.

Although the distribution classes were designed for generating distributions of nodes
in grids used for solving differential equations, they have wider applicability. A dis-
tribution function can be used whenever the parameterization of a function is to be
altered without affecting its range. The arclength distribution provides a good ex-
ample of this; it changes the parameterization of a one-parameter curve so that the
parameter is proportional to the fractional arclength along the curve.

40 DRDC Atlantic TM-2006-257



References
[1] Hally, D. (2006), C++ classes for representing curves and surfaces:

Part I: Multi-parameter differentiable functions, (DRDC Atlantic TM 2006-254)
Defence R&D Canada – Atlantic.

[2] Vinokur, M. (1980), On One-Dimensional Stretching Functions for
Finite-Difference Calculations, (Contractor Report 3313) NASA.

[3] Hally, D. (2006), C++ classes for representing curves and surfaces:
Part II: Splines, (DRDC Atlantic TM 2006-255) Defence R&D Canada –
Atlantic.

DRDC Atlantic TM-2006-257 41



This page intentionally left blank.

42 DRDC Atlantic TM-2006-257



Annex A: Implementation of functions to
calculate the end slopes of
distributions

This annex describes efficient means for calculating the functions used when setting
the end-slopes of different distributions. Six functions are described:

1. the inverse of sin(x)/x;

2. the inverse of sinh(x)/x;

3. the inverse of tan(x)/x;

4. the inverse of tanh(x)/x;

5. the inverse of ln(x)/(x− 1); and

6. the inverse of ex2
erf(x)/x.

A.1 Newton-Raphson iterations
In the sections that follow, Newton-Raphson iterations are used to find the value, x,
such that f(x) = y for some continuously differentiable function f(x) and value y.
The Newton-Raphson method for determining x uses the fact that for xn sufficient
close to x, a better approximation to x is given by

xn+1 = xn +
y − f(xn)

f ′(xn)
(A.1)

Let ε be the smallest number such that 1 and 1 + ε have the same representation as
floating point numbers (ε is obtained from std::numeric limits<F>::epsilon(),
where F is the type of the floating point number). Also, let εf be the relative error
in the computed value of f(xn): i.e. the error in f(xn) is f(xn)εf .

The iteration will fail when |xn+1−xn| < ε or if |y−f(xn)| < εf . In the functions that
follow, it can usually be assumed that εf ≈ ε. The iteration is considered converged
when either |xn+1 − xn| or |y − f(xn)| is less than a small multiple of ε.

For x close to a point at which f ′(x) = 0, the Newton-Raphson iteration is not well-
behaved. In the neighbourhood of such points it is more accurate to use a direct
representation of the inverse function. We will assume here that f ′(0) = 0 and that
f(x) is symmetric. The series then has the form:

x =

√
2|y − y0|
|f ′′(0)|

(
1 + an(y − y0) + a2(y − y0)

2 + · · ·
)

(A.2)
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where y0 = f(0). If the series is truncated after n terms, the relative error can be
estimated as |an(y − y0)

n|. The series should be used if this error is smaller than the
error when the Newton-Raphson iteration used:

f(x)ε

f ′(x)
≈ y0ε

xf ′′(0)
≈ y0ε√

2|(y − y0)f ′′(0)|
(A.3)

Therefore, the series should be used if

|y − y0| <

(
|y0|ε

|an|
√

2|f ′′(0)|

) 2
2n+1

(A.4)

A.2 Evaluation of the inverse of tan(x)/x
To specify the slope at the end-points of distributions using sin(x) as a generating
function, it is necessary to be able to solve tan(x)/x = y for x given a value of y ≥ 1.

The following approximation for x is accurate to less than 0.036 for any y > 1:

x0 =


√

3z

(
1− 3z

5
+

93z2

175
− 4513

875
+

34893z4

67375

)
if y ∈ [1, 1.365)

π

2

(
1− 4

π2y − 4

)
if y ≥ 1.365

(A.5)

where z = y − 1. If y > 1 + (0.8ε)2/11, a Newton-Raphson iteration is used to refine
the value of x; for y < 1 + (0.8ε)2/11, the iteration will not improve the accuracy (see
Annex A.1). The iteration is implemented as follows:

repeat {

fn =
tan(xn)

xn

if (|y − fn| < εy) break

xn+1 = xn +
xn(y − fn)

1 + fn(x2
nfn − 1)

} until (|xn+1 − xn| < εx0)

More accurate approximations for the initial value of x have been tried, but they do
not speed up the execution of the whole algorithm.

This algorithm is implemented in the C++ class InvTanxOx<F>, a specialization
of CurveLib::Curve<1U,F,F> where F obeys the same restrictions as the template
argument of a Distribution<F> (see Section 3). InvTanxOx<F> has only the de-
fault constructor and has no member functions other than those inherited from
CurveLib::Curve<1U,F,F>. The accuracy parameter ε in the Newton-Raphson iter-
ation is set to 5*std::numeric limits<F>::epsilon().
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A.3 Evaluation of the inverse of tanh(x)/x
To specify the slope at the end-points of distributions using sinh(x) as a generating
function, it is necessary to be able to solve tanh(x)/x = y for x given a value of
y ∈ [0, 1]. The following approximation for x is accurate to less than 0.17 for any
y ∈ [0, 1] and its relative error (the absolute error divided by the exact value) is less
than 0.0003:

x =



1

y
if y ∈ [0, 0.3)

tanh 1
y

y
if y ∈ [0.3, 0.792)

√
3z

(
1 +

3z

5
+

93z2

175
+

4513

875
+

34893z4

67375

)
if y ≥ 0.792

(A.6)

with z = 1− y. The approximation used when y < 0.3 is no more accurate that that
used in the range [0.3,0.792], but it is faster to calculate. If y > (0.8ε)2/11, a Newton-
Raphson iteration is used to refine the value of x; for y < (0.8ε)2/11, the iteration will
not improve the accuracy (see Annex A.1). The iteration is implemented as follows:

repeat {

fn =
tanh(xn)

xn

if (|y − fn| < εy) break

xn+1 = xn +
xn(y − fn)

1− fn(x2
nfn + 1)

} until (|xn+1 − xn| < εx0)

More accurate approximations for the initial value of x have been tried, but they do
not speed up the execution of the whole algorithm.

This algorithm is implemented in the C++ class InvTanhxOx<F>, a specialization
of CurveLib::Curve<1U,F,F> where F obeys the same restrictions as the template
argument of a Distribution<F> (see Section 3). InvTanhxOx<F> has only the de-
fault constructor and has no member functions other than those inherited from
CurveLib::Curve<1U,F,F>. The accuracy parameter ε in the Newton-Raphson iter-
ation is set to 5*std::numeric limits<F>::epsilon().
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A.4 Evaluation of the inverse of sin(x)/x
To specify the slope at the end-points of distributions using tan(x) as a generating
function, it is necessary to be able to solve sin(x)/x = y for x given a value of
y ∈ [0, 1]. The values returned are in the range [0, π].

For y close to 1, we use the following series expansion to obtain the first approximation
to x:

x0 =
√

6z

(
1 +

3z

20
+

321z2

5600
+

3197z3

112000
+

445617z4

27596800
+ O(z5)

)
; z = 1− y (A.7)

If y > 1− (87ε)2/11, no further refinement with a Newton-Raphson iteration is neces-
sary (see Annex A.1).

Vinokur[2] gives the following approximation for x which is accurate to less than
2.5× 10−4 for any y ∈ [0, 1]:

x0 =


π
(
1− y + y2 − (1 + π2/6)y3 + 6.794732y4

− 13.205501y5 + 11.726095y6
)

if y < 0.26938972

√
6z (1 + 0.15z + 0.057321429z2 + 0.048774238z3

− 0.053337753z4 + 0.075845134z5) otherwise
(A.8)

where z = 1− y. This formula is more accurate than Equation (A.7) for y < 0.6, so
it is used for y ∈ [0, 0.6].

When y < 1 − (87ε)2/11, the value of x is refined using a Newton-Raphson iteration
implemented as follows:

repeat {

fn =
sin(xn)

xn

if (|y − fn| < εy) break

xn+1 = xn +
xn(y − fn)

cos(x)− fn

} until (|xn+1 − xn| < εx0)

This algorithm is implemented in the C++ class InvSinxOx<F>, a specialization
of CurveLib::Curve<1U,F,F> where F obeys the same restrictions as the template
argument of a Distribution<F> (see Section 3). InvSinxOx<F> has only the de-
fault constructor and has no member functions other than those inherited from
CurveLib::Curve<1U,F,F>. The accuracy parameter ε in the Newton-Raphson iter-
ation is set to 3*std::numeric limits<F>::epsilon().
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A.5 Evaluation of the inverse of sinh(x)/x
To specify the slope at the end-points of distributions using tanh(x) as a generating
function, it is necessary to be able to solve sinh(x)/x = y for positive x given a value
of y ≥ 1.

For y close to 1, we use the following series expansion to obtain the first approximation
to x:

x0 =
√

6z

(
1− 3z

20
+

321z2

5600
− 3197z3

112000
+

445617z4

27596800
+ O(z5)

)
; z = y − 1 (A.9)

If y < 1 + (87ε)2/11, no further refinement with a Newton-Raphson iteration is neces-
sary (see Annex A.1).

Vinokur[2] gives the following approximation for x which is accurate to less than
5× 10−4 for any y ≥ 1:

x0 =



√
6z (1− 0.15z + 0.057321429z2 − 0.024907295z3

+ 0.0077424461z4 − 0.0010794123y5) if y < 2.7829681

v +

(
1 +

1

v

)
ln(2v)− 0.02041793 + 0.24902722w

+ 1.9496443w2 − 2.6294547w3 + 8.56795911w4 otherwise
(A.10)

where z = y−1, v = ln(y) and w = 1/y−0.028527431. This formula is more accurate
than Equation (A.9) for y > 1.4.

When y > 1 + (87ε)2/11, the value of x is refined using a Newton-Raphson iteration
implemented as follows:

repeat {

fn =
sinh(xn)

xn

if (|y − fn| < εy) break

xn+1 = xn +
xn(y − fn)

cosh(x)− fn

} until (|xn+1 − xn| < εx0)

This algorithm is implemented in the C++ class InvSinhxOx<F>, a specialization
of CurveLib::Curve<1U,F,F> where F obeys the same restrictions as the template
argument of a Distribution<F> (see Section 3). InvSinhxOx<F> has only the de-
fault constructor and has no member functions other than those inherited from
CurveLib::Curve<1U,F,F>. The accuracy parameter ε in the Newton-Raphson iter-
ation is set to 5*std::numeric limits<F>::epsilon().
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A.6 Evaluation of the inverse of ln(x)/(x-1)
To specify the slope at the end-point of a geometric distribution, it is necessary to be
able to solve ln(x)/(x− 1) = y for x given a value of y. The following approximation
for x is used to initialize a Newton-Raphson iteration to determine x to arbitrary
accuracy.

x =



(
1− ln(y)

y

)(
1.58081− 0.0906588z − 1.70535z2 + 1.80299z3

− 3.69287z4 + 12.4842z5
)

if y < 0.5

1 + 2(1− y) +
8

3
(1− y)2 +

28

9
(1− y)3 +

464

135
(1− y)4

+
1496

405
(1− y)5 +

11072

2835
(1− y)6 if 0.5 ≤ y < 1.3

0.287302− 0.411807p + 0.355619p2 − 0.252477p3

+ 0.164911p4 − 0.103479p5 if 1.3 ≤ y < 2.35

e−y

(
1 + q +

3

2
q2 +

8

3
q3 +

125

24
q4 +

54

5
q5 +

16807

720
q6

)
otherwise

(A.11)
with z = y − 1

4
, p = y − 7

4
and q = ye−y. The iteration is implemented as follows:

repeat {

fn =
ln(xn)

xn − 1
if (|y − fn| < εy) break

xn+1 = xn +
xn(xn − 1)(y − fn)

1− xnfn

} until (|xn+1 − xn| < εxn+1)

This algorithm is implemented in the C++ class InvLnxOxm1<F>, a specialization
of CurveLib::Curve<1U,F,F> where F obeys the same restrictions as the template
argument of a Distribution<F> (see Section 3). InvLnxOxm1<F> has only the de-
fault constructor and has no member functions other than those inherited from
CurveLib::Curve<1U,F,F>. The accuracy parameter ε in the Newton-Raphson iter-
ation is set to 3*std::numeric limits<F>::epsilon().
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A.7 Evaluation of the inverse of e x2
erf(x)/x

To specify the slope at the end-point of an erf distribution, it is necessary to be able
to solve √

πex2
erf(x)

2x
= y (A.12)

for x given a value of y ≥ 1. The following approximation for x is used to initialize
a Newton-Raphson iteration to determine x to arbitrary accuracy.

x =



√
3

2
− 9

10
(y − 1) +

243

350
(y − 1)2 if 1 ≤ y < 1.55

0.954407 + 0.372613(y − 1.9)− 0.183625(y − 1.9)2

+0.114576(y − 1.9)3 if 1.55 ≤ y < 3.06

1.3696 + 0.114073(y − 4)− 0.020196(y − 4)2

+0.00442091(y − 4)3 if 3.06 ≤ y < 7√
ln

(
2yz√

π

)
; z =

√
ln

(
2y√
π

)
y > 7

(A.13)

The iteration is implemented as follows:

repeat {

fn =

√
πex2

nerf(xn)

2xn

if (|y − fn| < εy) break

xn+1 = xn +
(xn − fn)xn

1− fn + 2x2
nfn

} until (|xn+1 − xn| < εxn+1)

This code is implemented in the member function set end deriv() of the class
AntiSymErfDistRep<F>. The value 3*std::numeric limits<F>::epsilon() is used
for the accuracy parameter ε in the Newton-Raphson iteration.
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List of symbols
β The ratio of the end slopes of a distribution: β = s1/s0.

ε The smallest number such that 1 and 1 + ε have the same representation
as floating point numbers.

f, g, h Distribution functions.

q(x) q(x) ≡ ln(x)/(x− 1)

q(−1)(x) The inverse of q(x).

s0 The slope of a distribution at x = 0.

s1 The slope of a distribution at x = 1.
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OneSidedSinDistribution<F>, 20
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SinDistribution<F>, 29
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SplicedDistribution<F>, 34
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tanh distribution, 8, 26–28
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