Copy No.

I* Defence Research and Recherche et développement

Development Canada pour la défense Canada

DEFENCE Bﬁ') DEFENSE

C++ classes for representing curves and
surfaces

Part I: Multi-parameter differentiable functions

David Hally

Defence R&D Canada — Atlantic

Technical Memorandum
DRDC Atlantic TM 2006-254
January 2007

I+l

Canadi

This page intentionally left blank.

C++ classes for representing curves and

surfaces
Part I. Multi-parameter differentiable functions

David Hally

Defence R&D Canada — Atlantic
Technical Memorandum

DRDC Atlantic TM-2006-254

January 2007

Principal Author

Original signed by David Hally

David Hally

Approved by

Original signed by R. Kuwahara

R. Kuwahara
Head/Signatures

Approved for release by

Original signed by K. Foster

K. Foster
Chair/Document Review Panel

(© Her Majesty the Queen in Right of Canada as represented by the Minister of
National Defence, 2007

(© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre
de la Défense nationale, 2007

Abstract

A library of C++ classes for representing multi-parameter differentiable functions is
described. The principal utility of the classes lies in the ability to combine simple
curves in a variety of ways to make complex curves while maintaining the differentia-
bility of the result. This can be done using arithmetic functions, composition, vector
operators (e.g. dot and cross products) and inverse methods.

The classes also include a wide variety of simple curves which can be used as build-
ing blocks, including constants, linear curves, polynomials, exponential functions,
trigonometric functions, hyperbolic functions and Bessel functions.

Résum é

Nous décrivons une bibliotheque de classes C++ servant a représenter des fonctions
différentiables multipraramétriques. L utilité principale de ces classes repose sur leur
capacité a combiner des courbes simples de plusieurs fagons, pour représenter des
courbes complexes différentiables. On y parvient en utilisant des fonctions arithmé-
tiques, la composition de fonctions, des opérations vectorielles (produits vectoriel et
matriciel) et des méthodes d’inversion.

En outre, ces classes comprennent une grande variété de courbes simples que 1’on peut
utiliser comme éléments de base : courbes constantes et linéaires, ainsi que fonctions
polynomiales, exponentielles, trigonométriques, hyperboliques et besselliennes.

DRDC Atlantic TM-2006-254 i

This page intentionally left blank.

DRDC Atlantic TM-2006-254

Executive summary

C++ classes for representing curves and surfaces:
Part I. Multi-parameter differentiable functions

David Hally; DRDC Atlantic TM-2006-254; Defence R&D Canada — Atlantic;
January 2007.

Background: The flow around ships and propellers affects their performance in
many ways. Defence R&D Canada — Atlantic uses Computational Fluid Dynamics
(CFD) to calculate these flows so that the performance of the hull and propellers
can be evaluated and improved. Before the flow can be calculated, the geometry of
the ship or propeller must be represented in a fashion that can be used by the CFD
applications. The current document describes a library of C++ classes which can be
used for this purpose.

Principal results: A library of C++ classes for representing multi-parameter differ-
entiable functions is described. The principal utility of the classes lies in the ability
to combine simple curves in a variety of ways to make complex curves while maintain-
ing the differentiability of the result. This can be done using arithmetic functions,
composition, vector operators (e.g. dot and cross products) and inverse methods.

The classes also include a wide variety of simple curves which can be used as build-
ing blocks, including constants, linear curves, polynomials, exponential functions,
trigonometric functions, hyperbolic functions and Bessel functions.

Significance: The library of C++ classes provides a useful tool for representing
complex geometry for use in CFD programs. However, their definition is quite general,
so they can be used in a wide variety of applications.

DRDC Atlantic TM-2006-254 iii

Sommaire

C++ classes for representing curves and surfaces:
Part I. Multi-parameter differentiable functions

David Hally ; DRDC Atlantic TM-2006-254 ; R & D pour la défense Canada —
Atlantique ; janvier 2007.

Contexte : L’écoulement de I'eau autour des navires et de leurs hélices influence
leur comportement de différentes manieres. R & D pour la défense Canada — At-
lantique utilise la dynamique numérique des fluides pour calculer ces écoulements
et ainsi évaluer et améliorer le comportement des carenes et des hélices. Pour cal-
culer I’écoulement, on doit pouvoir toutefois représenter la géométrie du navire ou
de I'hélice d'une maniere compatible avec les logiciels de dynamique numérique des
fluides. Le présent document décrit une bibliotheque de classes C++ que 'on peut
utiliser a cette fin.

Résultats : Nous décrivons une bibliotheque de classes C++ servant a représenter
des fonctions différentiables a plusieurs parametres. L’utilité principale de ces classes
repose sur leur capacité a combiner des courbes simples de plusieurs fagons, pour
représenter des courbes complexes différentiables. On y parvient en utilisant des fonc-
tions arithmétiques, la composition de fonctions, des opérations vectorielles (produits
vectoriel et matriciel) et des méthodes d’inversion. En outre, ces classes comprennent,
une grande variété de courbes simples que ’on peut utiliser comme éléments de base :
courbes constantes et linéaires, ainsi que fonctions polynomiales, exponentielles, tri-
gonométriques, hyperboliques et besselliennes.

Importance : La bibliotheque de classes C++ constitue un outil précieux pour
la représentation d’objets a la géométrie complexe dans les logiciels de dynamique
numérique des fluides. Qui plus est, parce que leur définition est tres générale, elles
peuvent etre appliquées a différents domaines.

iv DRDC Atlantic TM-2006-254

Table of contents

Abstract L
Résumé
Executive summary Lo
SOMMAITE v o e
Table of contents
1 Introduction
2 Basecurveclasses.o
3 Exceptions.
4 Arithmetic operators for curves00
5 Composition of curves
6 Simple curves
6.1 Elementary functions L.
6.1.1 Trigonometric functions

6.1.2 Exponential functions

6.1.3 Hyperbolic functions

6.1.4 Bessel functions L

6.2 Identity curveso
6.3 Absand Unit.
6.4 Derivative curves Lo
6.5 Constant parameter curves
6.6 Complex conjugate curves L.
6.7 Vector curves from scalar curves
6.8 Linear curves

DRDC Atlantic TM-2006-254

il

v

10

Vi

6.9 Linear transformations of parameters 20

6.10 Polynomials 21
Curves made from vector-valued curves 22
7.1 Selecting a single component 22
7.2 Throwing away a vector component 23
7.3 Concatenating vector values 23
74 Reflectioninaplane L 24
7.5 Dot products 25
7.6 Cross products 25
7.7 Unit vectors L 26
7.8 Projections 26

7.8.1 Projectiontoaplane L. 27

7.8.2 Projection to a sphere oL 28

7.8.3 Projection to a cylinder 28
Surfaceso 29
8.1 Axi-symmetric surfaceso L 31
Interpolation between boundary curveso 33
9.1 Ruledcurves 33
9.2 Transfinite interpolation oL 34
Curves with parameter ranges 37
10.1 Parameter rangeso 37
10.2 Rangecurves 38
10.3 Standard range curves 40

DRDC Atlantic TM-2006-254

11 Implicitly defined curves oL 40

11.1 Newton-Raphson search 40
11.2 Implicit curves L 41
11.3 Inverse curves 45

12 Defining a new curveo A7
13 Concluding remarks o 51
References L 52
Annex A: Concepts 53
A.1 Arithmetic Object 53

A2 Scalar Object 55

A.3 Comparable Scalar Object 56

A4 Vector Object 57

A5 Absolute Object 58

Annex B: Prototypes for VecMtx::VecN o000 61
B.1 Constructors 61

B.2 Other member functions 61

B.3 Other functions 62

Annex C: Prototypes for VecMtx:MtxN 65
C.1 Constructors 65

C.2 Other member functions 65

C.3 Other functions oL 65

Annex D: Prototypes for Curveliib::Derivs L. 69
D.1 Constructors 69

D.2 Other member functions 69

D.3 Other functions oo 70

DRDC Atlantic TM-2006-254 Vii

Annex E: Prototypes for class Angle 71

E.1 Constructors L 71
E.2 Static members Lo 71
E.3 Member functions for setting and retrieving the angle 71
E.4 Trigonometric functions 72
Annex F: Prototypes for class Exrroro 73
F.1 Prototypes for class Progkrror 73
Index o 74
viii DRDC Atlantic TM-2006-254

1 Introduction

Many computer applications need to be able to represent differentiable functions of
considerable complexity. This document describes a library of C++ classes for this
purpose. It was originally designed for representing the geometry of complex shapes
(e.g. ship hulls and propellers), so the functions are called curves. In fact, they
are much more general than the name implies. Any multi-valued multi-parameter
differentiable function can be represented by a ‘curve’.

The principal utility of the curve classes lies in the ability to combine simple curves
in a variety of ways to make complex curves. This can be done using arithmetic
functions (Section 4), composition (see Section 5), vector operators (e.g. dot and
cross products: see Section 7) and inverse methods (see Section 11). Each curve so
constructed is fully differentiable.

The curve classes also include a wide variety of simple curves which can be used as
building blocks (see Section 6). These include constants, linear curves, polynomi-
als, exponential functions, trigonometric functions, hyperbolic functions and Bessel
functions.

Because of their importance in geometric applications, two-parameter curves which re-
turn three-dimensional points (i.e. curves which define a surface in three-dimensional
space) are given special treatment. They are described in Section 8.

An important application of curves is interpolation. Basic classes for interpolating
from boundaries are described in Section 9. A companion document[l] describes
classes which implement splines.

Section 10 describes an extension to the basic curve class in which the curves are
given well-defined parameter ranges.

Section 12 describes how to define a new curve class for the cases in which it is
inconvenient, or inefficient, to generate a curve from the basic curve classes. This
section also contains information on how the curve classes are implemented.

There are three other documents which are companions to this one. The first[1]
describes C++ classes for implementing splines. The second[2] describes classes for
saving curves in files in Initial Graphic Exchange Standard (IGES) format[3] or defin-
ing curves from the data in an IGES file. The third[4] describes classes for defining
distributions, differentiable functions which map [0, 1] to [0, 1], which are themselves
important in a wide variety of applications.

DRDC Atlantic TM-2006-254 1

2 Base curve classes

All the curve classes are encapsulated in the namespace CurveLib. Almost all the
classes are templates. To define the attributes required of template arguments we
will use the Standard Template Library[5] notion of a concept. Each class using
a template argument imposes certain requirements on objects of the type of the
template argument. When different classes impose the same set of requirements on a
template argument, it is convenient to give that set of requirements a name; a concept
is the named set of requirements for a template argument. The CurveLib library uses
several different concepts to define the attributes of the template arguments of its
classes. The details of these concepts are defined in Annexes.

Every curve is derived from the template base class Curve<N,V,F>. It represents
a differentiable function having N arguments: f(z1,...,zy). The value which the
function returns is of type V and the type of each of the arguments, z;, is F. The
type F must be a model of a Scalar Object: see Annex A.2. Loosely speaking, a
Scalar Object is a floating point number; float, double, std: : complex<float> and
std: :complex<double> are all models of a Scalar Object. The type V must be a
model of an Arithmetic Object with respect to F: see Annex A.1. This requires it to
have the arithmetic operators one normally expects from scalars, vectors or matrices.

If the template parameter F is omitted from Curve<N,V,F>, it defaults to double
(there is one exception: see Section 6.6). Classes derived from Curve<N,V,F> typically
allow the type of the parameters to be specified by F. Whenever this is the case, F
appears last in the template parameter list and is given the default type double.
Thus, the class Sqrt<double>, whose template argument is the type of both its
parameter and of its returned value, can be represented more simply by Sqrt<>.

The list of parameters is represented by a class Curve<N,V,F>::ParamType. It is
an array of parameter values for which a full set of arithmetic functions is defined
(it is a model of Vector Object with respect to F: see Annex A.4). In the current
implementation ParamType is set using a typedef to the class VecN<N,F> in the
namespace VecMtx. A list of function prototypes for VecN<N,F> is given in Annex B.

The number of derivatives to be taken with respect to each parameter is specified
using an instance of Curve<N,V,F>::DerivType. It is an array of unsigned integers
which give the number of derivatives to be taken with respect to each parameter. In
the current implementation DerivType is set to the class Derivs<N> using a typedef.
A list of function prototypes for Derivs<N> is given in Annex D.

In all curves derived from Curve<N,V,F> the type ValueType is equivalent to the type
of the returned value: i.e. it is simply an alias for V. For example, knowing that the
class Sqrt<F> is derived from Curve<N,V,F> for some N, V and F, one can determine

2 DRDC Atlantic TM-2006-254

the return type using Sqrt<F>: :ValueType (it is equivalent to F).

All curves derived from Curve<N,V,F> in the CurveLib library have a default con-
structor: i.e. a constructor having no arguments. For some curves this is sufficient
to define the curve (e.g. Sqrt<F>: see Section 6.1); for others the curve remains
undefined if the default constructor is used. It can later be defined using special-
ized member functions in the derived class or by assignment to another curve. This
paradigm can be useful, for example, if the curve is a member of a class but there is
not enough information available to define the curve when the class is constructed.
It is recommended that all classes derived from Curve<N,V,F> include a default con-
structor.

Since a curve may remain undefined if a default constructor is used, Curve<N,V,F>
provides the following member function for determining whether the curve is defined
or not.

bool is_defined() const
Returns true if the curve has been defined; false if it has not.

An attempt to evaluate an undefined function will cause an Error exception to be
thrown (see Section 3).

An important property of curves is that they are polymorphic, even though the class
Curve<N,V,F> has no virtual functions. For example, suppose a Sqrt<> is assigned
to a Curve<1U,double>:

using namespace Curvelib;
Curve<1U,double> c;
Sqrt<> sqrtx;

Cc = sqrtx;

When evaluated with the same arguments, ¢ will return the same value as sqrtx.

The function represented by a Curve<N,V,F> may be evaluated using the following
two member functions:

V operator() (const ParamType &p) const
Returns the value of the curve for parameters p.

V operator() (const ParamType &p, const DerivType &d) const
Returns the value of the differentiated curve for parameters p. The number
of derivatives to be taken with respect to each parameter is specified by d. If
all values of d are zero, then this function is equivalent to operator () (const
ParamType &p) const.

DRDC Atlantic TM-2006-254 3

For example, suppose that we defined a curve sqrtx2y2 by

using namespace Curvelib;
FOneParamCurve<2U> x(0), y(1);

Sqrt<> sqrtx;

Curve<2U,double> sqrtx2y2 = sqrtx(x*x+y*y);

It represents the function f(x,y) = \/x? + y?: see Sections 6.2 and 6.1 for descriptions
of FOneParamCurve<N,F> and Sqrt<F>. To evaluate f(0.5,0.8) use

Curve<2U,double>: :ParamType p(0.5,0.8);
double value = sqrtx2y2(p);

To evaluate %(0.5, 0.8) use
Y

Curve<2U,double>: :ParamType p(0.5,0.8);
Curve<2U,double>: :DerivType d(0,2);
double value = sqrtx2y2(p,d);

One parameter curves are a special case. As well as the two prototypes for operator ()
defined above, they also have the following two member functions which are usually
more convenient.

V operator() (F x) const
Returns the value of the curve for parameter x.

V operator() (F x, unsigned int d) const
Returns the value of the curve at x differentiated d times. If d is zero, then this
function is equivalent to operator () (F x) const.

For example,

using namespace CurveLlib;

Curve<1U,double> sqrtx = Sqrt<>();

double value = sqrtx(2.0); // value = sqrt(2.0) = 1.414213...

double deriv2 = sqrtx(2.0,2); // deriv2 = the value of sqrt(x)
// differentiated twice at x = 2.0
// i.e. deriv2 = -1/(8*sqrt(2.0))
// = -0.0883883. ..

4 DRDC Atlantic TM-2006-254

3 Exceptions

All exceptions thrown by CurveLib classes and functions are derived from the base
class Error; it is not in the namespace CurveLib. An Error contains a message
which can be retrieved, appended to, or prepended to. The prototypes of the Error
member functions are listed in Annex F.

It is wise, when using curves, to enclose the body of the code in a try block which
catches an Error. For example:

try {

... // Code which uses CurveLib classes
t
catch (Error &e) {

// Write the error message

std::cerr << e.get_msg() << ’\n’;

+

Another important exception is ProgError, a specialization of Error. It is thrown
when an exception occurs that can clearly be recognized as a programming error
rather than a run-time error. The occurrence of a ProgError is an indication that
the program is faulty. The prototypes of the ProgError member functions are listed
in Annex F.1.

4 Arithmetic operators for curves

One of the most important ways of combining two curves to create a new one is by
using arithmetic operators. For example, if £ and g are two curves having the same
number of arguments and the same return type, then f+g is a curve which returns
their sum. Similarly, f*g returns their product, provided that the return type permits
multiplication (however, see the description of the return type of £*g below).

using namespace Curvelib;

Cos<> cosx;

Sin<> sinx;

Curve<1U,double> one = cosx*cosx + sinx*sinx;

The curve one evaluates cos?(x) + sin®(x).

Let £ be a curve of type Curve<N,V,F> g be a curve of type Curve<N,V1,F> v be
a constant of type V, and s be a constant of type F. Then the following arithmetic
operators are defined:

DRDC Atlantic TM-2006-254 5

f+g

f+v

v+f

f-g

v-f

fxg

fx*xs

A curve which is the negation of f: i.e. for any set of parameters x, (-f) (x) is
equivalent to - (£ (x)).

A curve which returns the sum of f and g: i.e. (f+g)(x) is equivalent to
f(x)+g(x). The return types of £ and g must be the same: i.e. V. and V1 are
the same.

A curve which returns the sum of £ and v: i.e. (£+v) (x) is equivalent to f (x)+v.

A curve which returns the sum of v and £: i.e. (v+f) (x) is equivalent to v+f (x).

A curve which returns the difference of f and g: i.e. (f-g) (x) is equivalent to
f(x)-g(x). The return types of £ and g must be the same: i.e. V and V1 are
the same.

A curve which returns the difference of £ and v: i.e. (f-v) (x) is equivalent to
f(x)-v.

A curve which returns the difference of v and f: i.e. (v-f) (x) is equivalent to
v-f(x).

A curve which returns the product of £ and g: i.e. (f*g) (x) is equivalent to
f(x)*g(x). The product VxV1 must be defined and return a V1. Note that this
allows for the common case in which V is a matrix type and V1 is a vector type,
but not vice versa. Multiplication of a matrix by a vector (i.e. v-M where v is
a vector and M is a matrix) must be handled by multiplying the vector by the
transpose of the matrix.

Note also that if £ returns a vector type and g returns a scalar type, then
fxg will not be defined since the result of the multiplication is a vector but
f*xg returns a scalar. Therefore the products of vector-valued and scalar-valued
curves must always be ordered so that the scalar-valued curve comes first.

A curve which returns the product of £ and s: i.e. (f*s) (x) is equivalent to
f(x)*s.

DRDC Atlantic TM-2006-254

s*f
A curve which returns the product of s and f: i.e. (s*f) (x) is equivalent to

s*f (x).

f/g
A curve which returns f divided by g: i.e. (£/g) (x) is equivalent to f (x) /g(x).
The return value of g must be a scalar (V = F). There is no checking for divide
by zero.

t/s

A curve which returns f multiplied by 1/s: i.e. (£f/s)(x) is equivalent to
f(x)*(1/s). There is no checking for division by zero.

The arithmetic operators +=, *=, etc. are not defined. This is because we do not want
to allow the following type of construction:

using namespace Curvelib;

Sqrt<> sqrtx; // sqrtx(x) = sqrt(x)

Cos<> cosX; // cosx(x) cos (x)

sqrtx += cosx; // Now sqrtx = sqrt(x) + cos(x); not allowed

A curve of type Sqrt<> should only be allowed to return /.

Instances of the base class Curve<N,V,F> can also be set to return a constant value
by assignment to an instance of V.

f=v
A curve which returns the value v (its derivatives are identically zero).

This construction is not allowed for derived classes.

5 Composition of curves

The composition operator is another important way of combining two curves to
create a new one. Let f(xy,...,zy) and g(z1,...,z5) be N and M parameter
curves respectively. If g returns a vector of length N, then its value can be used
as the argument list for f. Therefore we can define a new M parameter function
My, ..., xy) = f(g(a:l, o ,:CM)). The value returned by h is of the same type as
the value returned by f.

The composition of two functions is supported in the CurveLib library by the class
ComposedCurve<N,M,V,F>. It defines types for the outer curve (f in the example
above) and inner curve (g in the example above):

typedef Curve<M,V,F> OuterCurve;
typedef Curve<N,typename OuterCurve::ParamType,F> InnerCurve;

DRDC Atlantic TM-2006-254 7

The prototype for its constructor is then

ComposedCurve (const OuterCurve &f, const InnerCurve &g)
Construct the composition of curves f and g.

A composed curve is also defined for the case when the outer curve, f, has a single
parameter and the inner curve, g, returns a scalar of type F. The class ComposedCurve
cannot be used in this case because the returned type of g is not the same as the type
of the parameter list of £. For this case the class ComposedCurveFParam<N,V,F> is
used. It defines

typedef Curve<1U,V,F> OuterCurve;
typedef Curve<N,F,F> InnerCurve;

Its constructor then has the prototype

ComposedCurveFParam(const OuterCurve &f, const InnerCurve &g)
Construct the composition of curves f and g.

In practice the use of ComposedCurve and ComposedCurveFParam is rather clumsy.
Instead the class Curve<N,V,F> provides a much more elegant alternative with the
following member function:

template<unsigned M>

Curve<M,V,F> operator() (const Curve<M,ParamType,F> &c) const
Returns the composition of *this with c: i.e. returns a curve equivalent to
(*this) (c(p)) for any set of parameters p.

This function is only defined if template member functions are allowed by the com-
piler. If they are not, then the composition operator is allowed for the cases M equal
to 1, 2 or 3.

For example, let f(x) be a function of the 3-vector x. We wish to shift the origin of
the coordinates to define g(x) = f(x — x,) where %, is the new origin. This can be
done as follows for arbitrary V and F:

using namespace Curvelib;
IdentityCurve<3U,F> x;

typename Curve<3U,V,F>::ParamType xo;
Curve<3Uu,V,F> £;

// ... define xo and f

Curve<3U,V,F> g = f(x-x0);

Here x-xo0 is a curve which takes three arguments and returns a 3-vector of type
Curve<3U,V,F>: :ParamType (Section 6.2 describes the class IdentityCurve<N,F>).
It is composed with f to define the new curve g.

One parameter curves also have the following member function which allows compo-

8 DRDC Atlantic TM-2006-254

sition with a curve returning a value of type F.

template<unsigned M>
Curve<M,V,F> operator() (const Curve<M,F,F> &c) const

Returns a curve equivalent to (*this) (c(p)) for any parameter p.

For example, in the following code sqcosx is a curve representing the function
cos(x):

using namespace Curvelib;

Cos<> cosx;

Sqrt<> sqrtx;

Curve<1U,double> sqcosx = sqrtx(cosx);

6 Simple curves

The CurveLib library defines a wide variety of simple curves which can be used as
building blocks for more complicated curves.

6.1 Elementary functions

The CurveLib library defines a large number of fully differentiable elementary func-
tions. Where possible these functions are evaluated using the standard math library
functions sqrt, pow, log, exp, erf, erfc, sin, cos, tan, asin, acos, atan, atan2,
sinh, cosh, tanh, asinh, acosh, atanh, jO, j1, jn, yO, y1 and yn. These functions are
called with arguments of type F and are assumed to return an appropriately accurate
value convertible to an F. It can normally be assumed that all these functions except
atan2 and the Bessel functions (jO, j1, jn, yO, y1 and yn) will be defined for F of
type float, double, std: :complex<float> and std::complex<double>. On some
machines they may be defined for F of type long double and std::complex<long
double> as well. The Bessel functions and atan2 are not normally defined for the
complex types.

The first few functions raise their arguments to different powers:

Sqrt<F>
Represents y/x. It is derived from Curve<iU,F,F>. It has only a default (no
argument) constructor. If F represents a real number, then the value is not
defined when x is negative. If F represents a complex number, z = re? for
0 € (—m, 7|, the value returned is \/7¢*/2: i.e. there is a branch cut along the
negative real axis.

Pow<F>
A two parameter function which represents f(x,y) = x¥; it is derived from

DRDC Atlantic TM-2006-254 9

Curve<2U,F,F>. It has a single default constructor. If x is not positive, the
result returned may vary from machine to machine or for different types F (for
example, on some machines if z = 0 and y = 2, the value returned will be 0.0
if F is double but NaN if F is a std: :complex<double>). It is best to assume
that the value of the curve is undefined if x is non-positive.

PowInt<F>
A single parameter function which represents f(z) = 2™ where n is an integer.
The constructor for PowInt<F> has a single integer argument giving the value
of n. For example, PowInt<F>(-1) is a curve representing f(x) = 1/x.

6.1.1 Trigonometric functions

Classes implementing the six standard trigonometric functions are defined.

Sin<F>
Represents sin(z).

Cos<F>
Represents cos(x).

Tan<F>
Represents tan(x). Evaluation at odd multiples of 7/2 is undefined.

Csc<F>
Represents csc(z) = 1/sin(x). Evaluation at multiples of 7 is undefined.

Sec<F>
Represents sec(x) = 1/ cos(z). Evaluation at odd multiples of 7/2 is undefined.

Cot<F>
Represents cot(z) = 1/ tan(z). Evaluation at multiples of 7 is undefined.

Each of these functions has a single parameter and returns a scalar of type F; they are
derived from Curve<1U,F,F>. Each has only a default (no argument) constructor.

The following inverse trigonometric functions are also defined. Each has a single
parameter and returns a scalar of type F; they are derived from Curve<1U,F,F>.
Each has only a default (no argument) constructor.

ArcSin<F>
Represents arcsin(z). If F represents a real number, then the returned value is
in the range [—m/2,7/2]. If F represents a complex number (i.e. it is of type

10 DRDC Atlantic TM-2006-254

std: : complex<F1> for some F1), then the returned value is computed using:
arcsin(z) = —iln(v1 — 22 +ix) (1)

with branch cuts along the real axis outside the range [—1,1]. It has real part
in the range [—m/2,7/2].

ArcCos<F>
Represents arccos(z). If F represents a real number, then the returned value is
in the range 0 to 7. If F represents a complex number, then the returned value
is computed using:

arccos(z) = g — arcsin(x) (2)

and has real part in the range [0, 7].

ArcTan<F>
Represents arctan(z). If F represents a real number, then the returned value is
in the range (—7/2,7/2). If F represents a complex number, then the returned
value is computed using:

arctan(s) = — -1 (1 +) 3)

with branch cuts on the imaginary axis outside the range [—i,4|. It has real
part in the range (—m/2,7/2).

The branch cuts for the complex versions of these functions have been chosen to lie
on the real or imaginary axis such that the curve is continuous across the portion of
the real axis where the real version of the function is well-defined.

In addition, the two-argument function ArcTan2<F> is defined if F represents a real
number; it is derived from Curve<2U,F,F>. It represents arctan(y/x), where x is the
first parameter and y is the second parameter. The value returned is in the range
[—m, m]. If both = and y are zero, the value is not defined.

6.1.2 Exponential functions

Classes implementing the following exponential functions are defined. Fach has a
single parameter and returns a scalar of type F; they are derived from Curve<1U,F,F>.

Exp<F>
Represents e®. This class has only a default constructor.

Log<F>
Represents log, (x). This class has a one argument constructor whose prototype

DRDC Atlantic TM-2006-254 11

is: Log(F b = F(0)). It constructs a curve which returns the logarithm of its
argument to the base b. For example, the code

using namespace Curvelib;
Log<> 10g10(10.0);
std: :cout << 1logl0(100.0);

would result in the value 2 being printed. If the base b is zero, natural logarithms
(i.e. base e) are assumed. If F represents a real number, then b must be non-
negative. The returned value is not defined if the function parameter, z, is zero
or if F represents a real number and x is negative. If F represents a complex
number, the imaginary part of the returned value is in the range (—m, 7|; there
is a branch cut along the negative real axis.

Erf<fF>

Represents

erf(z) = % /Ox e dt (4)

The template argument F must represent a real number. This class has only a
default constructor.

Erfc<F>

Represents 1 — erf(x). The template argument F must represent a real number.
This class has only a default constructor.

6.1.3 Hyperbolic functions

Classes implementing the six standard hyperbolic functions are defined.

Sinh<F>

Represents sinh(z).

Cosh<F>

Represents cosh(z).

Tanh<F>

Represents tanh(z).

Csch<F>

Represents csch(z) = 1/ sinh(z).

Sech<F>

Represents sech(z) = 1/ cosh(x).

Coth<F>

12

Represents coth(z) = 1/ tanh(x).

DRDC Atlantic TM-2006-254

Each of these functions has a single parameter and returns a scalar of type F; they are
derived from Curve<1U,F,F>. Each has only a default (n