
Defence R&D Canada – Atlantic

DEFENCE DÉFENSE
&

C++ classes for representing curves and

surfaces

Part I: Multi-parameter differentiable functions

David Hally

Technical Memorandum

DRDC Atlantic TM 2006-254

January 2007

Copy No. _____

Defence Research and
Development Canada

Recherche et développement
pour la défense Canada

This page intentionally left blank.

C++ classes for representing curves and
surfaces
Part I: Multi-parameter differentiable functions

David Hally

Defence R&D Canada – Atlantic
Technical Memorandum

DRDC Atlantic TM-2006-254

January 2007

Principal Author

Original signed by David Hally

David Hally

Approved by

Original signed by R.Kuwahara

R. Kuwahara
Head/Signatures

Approved for release by

Original signed by K. Foster

K. Foster
Chair/Document Review Panel

c© Her Majesty the Queen in Right of Canada as represented by the Minister of
National Defence, 2007

c© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre
de la Défense nationale, 2007

Abstract

A library of C++ classes for representing multi-parameter differentiable functions is
described. The principal utility of the classes lies in the ability to combine simple
curves in a variety of ways to make complex curves while maintaining the differentia-
bility of the result. This can be done using arithmetic functions, composition, vector
operators (e.g. dot and cross products) and inverse methods.

The classes also include a wide variety of simple curves which can be used as build-
ing blocks, including constants, linear curves, polynomials, exponential functions,
trigonometric functions, hyperbolic functions and Bessel functions.

Résum é

Nous décrivons une bibliothèque de classes C++ servant à représenter des fonctions
différentiables multipraramétriques. L’utilité principale de ces classes repose sur leur
capacité à combiner des courbes simples de plusieurs façons, pour représenter des
courbes complexes différentiables. On y parvient en utilisant des fonctions arithmé-
tiques, la composition de fonctions, des opérations vectorielles (produits vectoriel et
matriciel) et des méthodes d’inversion.

En outre, ces classes comprennent une grande variété de courbes simples que l’on peut
utiliser comme éléments de base : courbes constantes et linéaires, ainsi que fonctions
polynomiales, exponentielles, trigonométriques, hyperboliques et besselliennes.

DRDC Atlantic TM-2006-254 i

This page intentionally left blank.

ii DRDC Atlantic TM-2006-254

Executive summary

C++ classes for representing curves and surfaces:
Part I: Multi-parameter differentiable functions

David Hally; DRDC Atlantic TM-2006-254; Defence R&D Canada – Atlantic;
January 2007.

Background: The flow around ships and propellers affects their performance in
many ways. Defence R&D Canada – Atlantic uses Computational Fluid Dynamics
(CFD) to calculate these flows so that the performance of the hull and propellers
can be evaluated and improved. Before the flow can be calculated, the geometry of
the ship or propeller must be represented in a fashion that can be used by the CFD
applications. The current document describes a library of C++ classes which can be
used for this purpose.

Principal results: A library of C++ classes for representing multi-parameter differ-
entiable functions is described. The principal utility of the classes lies in the ability
to combine simple curves in a variety of ways to make complex curves while maintain-
ing the differentiability of the result. This can be done using arithmetic functions,
composition, vector operators (e.g. dot and cross products) and inverse methods.

The classes also include a wide variety of simple curves which can be used as build-
ing blocks, including constants, linear curves, polynomials, exponential functions,
trigonometric functions, hyperbolic functions and Bessel functions.

Significance: The library of C++ classes provides a useful tool for representing
complex geometry for use in CFD programs. However, their definition is quite general,
so they can be used in a wide variety of applications.

DRDC Atlantic TM-2006-254 iii

Sommaire

C++ classes for representing curves and surfaces:
Part I: Multi-parameter differentiable functions

David Hally ; DRDC Atlantic TM-2006-254 ; R & D pour la défense Canada –
Atlantique ; janvier 2007.

Contexte : L’écoulement de l’eau autour des navires et de leurs hélices influence
leur comportement de différentes manières. R & D pour la défense Canada – At-
lantique utilise la dynamique numérique des fluides pour calculer ces écoulements
et ainsi évaluer et améliorer le comportement des carènes et des hélices. Pour cal-
culer l’écoulement, on doit pouvoir toutefois représenter la géométrie du navire ou
de l’hélice d’une manière compatible avec les logiciels de dynamique numérique des
fluides. Le présent document décrit une bibliothèque de classes C++ que l’on peut
utiliser à cette fin.

Résultats : Nous décrivons une bibliothèque de classes C++ servant à représenter
des fonctions différentiables à plusieurs paramètres. L’utilité principale de ces classes
repose sur leur capacité à combiner des courbes simples de plusieurs façons, pour
représenter des courbes complexes différentiables. On y parvient en utilisant des fonc-
tions arithmétiques, la composition de fonctions, des opérations vectorielles (produits
vectoriel et matriciel) et des méthodes d’inversion. En outre, ces classes comprennent
une grande variété de courbes simples que l’on peut utiliser comme éléments de base :
courbes constantes et linéaires, ainsi que fonctions polynomiales, exponentielles, tri-
gonométriques, hyperboliques et besselliennes.

Importance : La bibliothèque de classes C++ constitue un outil précieux pour
la représentation d’objets à la géométrie complexe dans les logiciels de dynamique
numérique des fluides. Qui plus est, parce que leur définition est très générale, elles
peuvent être appliquées à différents domaines.

iv DRDC Atlantic TM-2006-254

Table of contents

Abstract . i

Résumé . i

Executive summary . iii

Sommaire . iv

Table of contents . v

1 Introduction . 1

2 Base curve classes . 2

3 Exceptions . 5

4 Arithmetic operators for curves . 5

5 Composition of curves . 7

6 Simple curves . 9

6.1 Elementary functions . 9

6.1.1 Trigonometric functions . 10

6.1.2 Exponential functions . 11

6.1.3 Hyperbolic functions . 12

6.1.4 Bessel functions . 13

6.2 Identity curves . 14

6.3 Abs and Unit . 15

6.4 Derivative curves . 15

6.5 Constant parameter curves . 16

6.6 Complex conjugate curves . 17

6.7 Vector curves from scalar curves . 17

6.8 Linear curves . 19

DRDC Atlantic TM-2006-254 v

6.9 Linear transformations of parameters 20

6.10 Polynomials . 21

7 Curves made from vector-valued curves . 22

7.1 Selecting a single component . 22

7.2 Throwing away a vector component 23

7.3 Concatenating vector values . 23

7.4 Reflection in a plane . 24

7.5 Dot products . 25

7.6 Cross products . 25

7.7 Unit vectors . 26

7.8 Projections . 26

7.8.1 Projection to a plane . 27

7.8.2 Projection to a sphere . 28

7.8.3 Projection to a cylinder . 28

8 Surfaces . 29

8.1 Axi-symmetric surfaces . 31

9 Interpolation between boundary curves . 33

9.1 Ruled curves . 33

9.2 Transfinite interpolation . 34

10 Curves with parameter ranges . 37

10.1 Parameter ranges . 37

10.2 Range curves . 38

10.3 Standard range curves . 40

vi DRDC Atlantic TM-2006-254

11 Implicitly defined curves . 40

11.1 Newton-Raphson search . 40

11.2 Implicit curves . 41

11.3 Inverse curves . 45

12 Defining a new curve . 47

13 Concluding remarks . 51

References . 52

Annex A: Concepts . 53

A.1 Arithmetic Object . 53

A.2 Scalar Object . 55

A.3 Comparable Scalar Object 56

A.4 Vector Object . 57

A.5 Absolute Object . 58

Annex B: Prototypes for VecMtx::VecN . 61

B.1 Constructors . 61

B.2 Other member functions . 61

B.3 Other functions . 62

Annex C: Prototypes for VecMtx::MtxN . 65

C.1 Constructors . 65

C.2 Other member functions . 65

C.3 Other functions . 65

Annex D: Prototypes for CurveLib::Derivs . 69

D.1 Constructors . 69

D.2 Other member functions . 69

D.3 Other functions . 70

DRDC Atlantic TM-2006-254 vii

Annex E: Prototypes for class Angle . 71

E.1 Constructors . 71

E.2 Static members . 71

E.3 Member functions for setting and retrieving the angle 71

E.4 Trigonometric functions . 72

Annex F: Prototypes for class Error . 73

F.1 Prototypes for class ProgError 73

Index . 74

viii DRDC Atlantic TM-2006-254

1 Introduction

Many computer applications need to be able to represent differentiable functions of
considerable complexity. This document describes a library of C++ classes for this
purpose. It was originally designed for representing the geometry of complex shapes
(e.g. ship hulls and propellers), so the functions are called curves. In fact, they
are much more general than the name implies. Any multi-valued multi-parameter
differentiable function can be represented by a ‘curve’.

The principal utility of the curve classes lies in the ability to combine simple curves
in a variety of ways to make complex curves. This can be done using arithmetic
functions (Section 4), composition (see Section 5), vector operators (e.g. dot and
cross products: see Section 7) and inverse methods (see Section 11). Each curve so
constructed is fully differentiable.

The curve classes also include a wide variety of simple curves which can be used as
building blocks (see Section 6). These include constants, linear curves, polynomi-
als, exponential functions, trigonometric functions, hyperbolic functions and Bessel
functions.

Because of their importance in geometric applications, two-parameter curves which re-
turn three-dimensional points (i.e. curves which define a surface in three-dimensional
space) are given special treatment. They are described in Section 8.

An important application of curves is interpolation. Basic classes for interpolating
from boundaries are described in Section 9. A companion document[1] describes
classes which implement splines.

Section 10 describes an extension to the basic curve class in which the curves are
given well-defined parameter ranges.

Section 12 describes how to define a new curve class for the cases in which it is
inconvenient, or inefficient, to generate a curve from the basic curve classes. This
section also contains information on how the curve classes are implemented.

There are three other documents which are companions to this one. The first[1]
describes C++ classes for implementing splines. The second[2] describes classes for
saving curves in files in Initial Graphic Exchange Standard (IGES) format[3] or defin-
ing curves from the data in an IGES file. The third[4] describes classes for defining
distributions, differentiable functions which map [0, 1] to [0, 1], which are themselves
important in a wide variety of applications.

DRDC Atlantic TM-2006-254 1

2 Base curve classes

All the curve classes are encapsulated in the namespace CurveLib. Almost all the
classes are templates. To define the attributes required of template arguments we
will use the Standard Template Library[5] notion of a concept. Each class using
a template argument imposes certain requirements on objects of the type of the
template argument. When different classes impose the same set of requirements on a
template argument, it is convenient to give that set of requirements a name; a concept
is the named set of requirements for a template argument. The CurveLib library uses
several different concepts to define the attributes of the template arguments of its
classes. The details of these concepts are defined in Annexes.

Every curve is derived from the template base class Curve<N,V,F>. It represents
a differentiable function having N arguments: f(x1, . . . , xN). The value which the
function returns is of type V and the type of each of the arguments, xi, is F. The
type F must be a model of a Scalar Object: see Annex A.2. Loosely speaking, a
Scalar Object is a floating point number; float, double, std::complex<float> and
std::complex<double> are all models of a Scalar Object. The type V must be a
model of an Arithmetic Object with respect to F: see Annex A.1. This requires it to
have the arithmetic operators one normally expects from scalars, vectors or matrices.

If the template parameter F is omitted from Curve<N,V,F>, it defaults to double

(there is one exception: see Section 6.6). Classes derived from Curve<N,V,F> typically
allow the type of the parameters to be specified by F. Whenever this is the case, F
appears last in the template parameter list and is given the default type double.
Thus, the class Sqrt<double>, whose template argument is the type of both its
parameter and of its returned value, can be represented more simply by Sqrt<>.

The list of parameters is represented by a class Curve<N,V,F>::ParamType. It is
an array of parameter values for which a full set of arithmetic functions is defined
(it is a model of Vector Object with respect to F: see Annex A.4). In the current
implementation ParamType is set using a typedef to the class VecN<N,F> in the
namespace VecMtx. A list of function prototypes for VecN<N,F> is given in Annex B.

The number of derivatives to be taken with respect to each parameter is specified
using an instance of Curve<N,V,F>::DerivType. It is an array of unsigned integers
which give the number of derivatives to be taken with respect to each parameter. In
the current implementation DerivType is set to the class Derivs<N> using a typedef.
A list of function prototypes for Derivs<N> is given in Annex D.

In all curves derived from Curve<N,V,F> the type ValueType is equivalent to the type
of the returned value: i.e. it is simply an alias for V. For example, knowing that the
class Sqrt<F> is derived from Curve<N,V,F> for some N, V and F, one can determine

2 DRDC Atlantic TM-2006-254

the return type using Sqrt<F>::ValueType (it is equivalent to F).

All curves derived from Curve<N,V,F> in the CurveLib library have a default con-
structor: i.e. a constructor having no arguments. For some curves this is sufficient
to define the curve (e.g. Sqrt<F>: see Section 6.1); for others the curve remains
undefined if the default constructor is used. It can later be defined using special-
ized member functions in the derived class or by assignment to another curve. This
paradigm can be useful, for example, if the curve is a member of a class but there is
not enough information available to define the curve when the class is constructed.
It is recommended that all classes derived from Curve<N,V,F> include a default con-
structor.

Since a curve may remain undefined if a default constructor is used, Curve<N,V,F>
provides the following member function for determining whether the curve is defined
or not.

bool is_defined() const
Returns true if the curve has been defined; false if it has not.

An attempt to evaluate an undefined function will cause an Error exception to be
thrown (see Section 3).

An important property of curves is that they are polymorphic, even though the class
Curve<N,V,F> has no virtual functions. For example, suppose a Sqrt<> is assigned
to a Curve<1U,double>:

using namespace CurveLib;

Curve<1U,double> c;

Sqrt<> sqrtx;

c = sqrtx;

When evaluated with the same arguments, c will return the same value as sqrtx.

The function represented by a Curve<N,V,F> may be evaluated using the following
two member functions:

V operator()(const ParamType &p) const

Returns the value of the curve for parameters p.

V operator()(const ParamType &p, const DerivType &d) const

Returns the value of the differentiated curve for parameters p. The number
of derivatives to be taken with respect to each parameter is specified by d. If
all values of d are zero, then this function is equivalent to operator()(const

ParamType &p) const.

DRDC Atlantic TM-2006-254 3

For example, suppose that we defined a curve sqrtx2y2 by

using namespace CurveLib;

FOneParamCurve<2U> x(0), y(1);

Sqrt<> sqrtx;

Curve<2U,double> sqrtx2y2 = sqrtx(x*x+y*y);

It represents the function f(x, y) =
√

x2 + y2: see Sections 6.2 and 6.1 for descriptions
of FOneParamCurve<N,F> and Sqrt<F>. To evaluate f(0.5, 0.8) use

Curve<2U,double>::ParamType p(0.5,0.8);

double value = sqrtx2y2(p);

To evaluate ∂2f
∂y2 (0.5, 0.8) use

Curve<2U,double>::ParamType p(0.5,0.8);

Curve<2U,double>::DerivType d(0,2);

double value = sqrtx2y2(p,d);

One parameter curves are a special case. As well as the two prototypes for operator()
defined above, they also have the following two member functions which are usually
more convenient.

V operator()(F x) const

Returns the value of the curve for parameter x.

V operator()(F x, unsigned int d) const

Returns the value of the curve at x differentiated d times. If d is zero, then this
function is equivalent to operator()(F x) const.

For example,

using namespace CurveLib;

Curve<1U,double> sqrtx = Sqrt<>();

double value = sqrtx(2.0); // value = sqrt(2.0) = 1.414213...

double deriv2 = sqrtx(2.0,2); // deriv2 = the value of sqrt(x)

// differentiated twice at x = 2.0

// i.e. deriv2 = -1/(8*sqrt(2.0))

// = -0.0883883...

4 DRDC Atlantic TM-2006-254

3 Exceptions

All exceptions thrown by CurveLib classes and functions are derived from the base
class Error; it is not in the namespace CurveLib. An Error contains a message
which can be retrieved, appended to, or prepended to. The prototypes of the Error

member functions are listed in Annex F.

It is wise, when using curves, to enclose the body of the code in a try block which
catches an Error. For example:

try {

... // Code which uses CurveLib classes

}

catch (Error &e) {

// Write the error message

std::cerr << e.get_msg() << ’\n’;

}

Another important exception is ProgError, a specialization of Error. It is thrown
when an exception occurs that can clearly be recognized as a programming error
rather than a run-time error. The occurrence of a ProgError is an indication that
the program is faulty. The prototypes of the ProgError member functions are listed
in Annex F.1.

4 Arithmetic operators for curves

One of the most important ways of combining two curves to create a new one is by
using arithmetic operators. For example, if f and g are two curves having the same
number of arguments and the same return type, then f+g is a curve which returns
their sum. Similarly, f*g returns their product, provided that the return type permits
multiplication (however, see the description of the return type of f*g below).

using namespace CurveLib;

Cos<> cosx;

Sin<> sinx;

Curve<1U,double> one = cosx*cosx + sinx*sinx;

The curve one evaluates cos2(x) + sin2(x).

Let f be a curve of type Curve<N,V,F>, g be a curve of type Curve<N,V1,F>, v be
a constant of type V, and s be a constant of type F. Then the following arithmetic
operators are defined:

DRDC Atlantic TM-2006-254 5

-f
A curve which is the negation of f: i.e. for any set of parameters x, (-f)(x) is
equivalent to -(f(x)).

f+g

A curve which returns the sum of f and g: i.e. (f+g)(x) is equivalent to
f(x)+g(x). The return types of f and g must be the same: i.e. V and V1 are
the same.

f+v
A curve which returns the sum of f and v: i.e. (f+v)(x) is equivalent to f(x)+v.

v+f
A curve which returns the sum of v and f: i.e. (v+f)(x) is equivalent to v+f(x).

f-g

A curve which returns the difference of f and g: i.e. (f-g)(x) is equivalent to
f(x)-g(x). The return types of f and g must be the same: i.e. V and V1 are
the same.

f-v
A curve which returns the difference of f and v: i.e. (f-v)(x) is equivalent to
f(x)-v.

v-f
A curve which returns the difference of v and f: i.e. (v-f)(x) is equivalent to
v-f(x).

f*g

A curve which returns the product of f and g: i.e. (f*g)(x) is equivalent to
f(x)*g(x). The product V*V1 must be defined and return a V1. Note that this
allows for the common case in which V is a matrix type and V1 is a vector type,
but not vice versa. Multiplication of a matrix by a vector (i.e. v ·M where v is
a vector and M is a matrix) must be handled by multiplying the vector by the
transpose of the matrix.

Note also that if f returns a vector type and g returns a scalar type, then
f*g will not be defined since the result of the multiplication is a vector but
f*g returns a scalar. Therefore the products of vector-valued and scalar-valued
curves must always be ordered so that the scalar-valued curve comes first.

f*s
A curve which returns the product of f and s: i.e. (f*s)(x) is equivalent to
f(x)*s.

6 DRDC Atlantic TM-2006-254

s*f
A curve which returns the product of s and f: i.e. (s*f)(x) is equivalent to
s*f(x).

f/g

A curve which returns f divided by g: i.e. (f/g)(x) is equivalent to f(x)/g(x).
The return value of g must be a scalar (V = F). There is no checking for divide
by zero.

f/s
A curve which returns f multiplied by 1/s: i.e. (f/s)(x) is equivalent to
f(x)*(1/s). There is no checking for division by zero.

The arithmetic operators +=, *=, etc. are not defined. This is because we do not want
to allow the following type of construction:

using namespace CurveLib;

Sqrt<> sqrtx; // sqrtx(x) = sqrt(x)

Cos<> cosx; // cosx(x) = cos(x)

sqrtx += cosx; // Now sqrtx = sqrt(x) + cos(x); not allowed

A curve of type Sqrt<> should only be allowed to return
√

x.

Instances of the base class Curve<N,V,F> can also be set to return a constant value
by assignment to an instance of V.

f = v
A curve which returns the value v (its derivatives are identically zero).

This construction is not allowed for derived classes.

5 Composition of curves
The composition operator is another important way of combining two curves to
create a new one. Let f(x1, . . . , xN) and g(x1, . . . , xM) be N and M parameter
curves respectively. If g returns a vector of length N , then its value can be used
as the argument list for f . Therefore we can define a new M parameter function
h(x1, . . . , xM) = f

(
g(x1, . . . , xM)

)
. The value returned by h is of the same type as

the value returned by f .

The composition of two functions is supported in the CurveLib library by the class
ComposedCurve<N,M,V,F>. It defines types for the outer curve (f in the example
above) and inner curve (g in the example above):

typedef Curve<M,V,F> OuterCurve;

typedef Curve<N,typename OuterCurve::ParamType,F> InnerCurve;

DRDC Atlantic TM-2006-254 7

The prototype for its constructor is then

ComposedCurve(const OuterCurve &f, const InnerCurve &g)

Construct the composition of curves f and g.

A composed curve is also defined for the case when the outer curve, f, has a single
parameter and the inner curve, g, returns a scalar of type F. The class ComposedCurve
cannot be used in this case because the returned type of g is not the same as the type
of the parameter list of f. For this case the class ComposedCurveFParam<N,V,F> is
used. It defines

typedef Curve<1U,V,F> OuterCurve;

typedef Curve<N,F,F> InnerCurve;

Its constructor then has the prototype

ComposedCurveFParam(const OuterCurve &f, const InnerCurve &g)

Construct the composition of curves f and g.

In practice the use of ComposedCurve and ComposedCurveFParam is rather clumsy.
Instead the class Curve<N,V,F> provides a much more elegant alternative with the
following member function:

template<unsigned M>

Curve<M,V,F> operator()(const Curve<M,ParamType,F> &c) const

Returns the composition of *this with c: i.e. returns a curve equivalent to
(*this)(c(p)) for any set of parameters p.

This function is only defined if template member functions are allowed by the com-
piler. If they are not, then the composition operator is allowed for the cases M equal
to 1, 2 or 3.

For example, let f(x) be a function of the 3-vector x. We wish to shift the origin of
the coordinates to define g(x) = f(x − xo) where xo is the new origin. This can be
done as follows for arbitrary V and F:

using namespace CurveLib;

IdentityCurve<3U,F> x;

typename Curve<3U,V,F>::ParamType xo;

Curve<3U,V,F> f;

// ... define xo and f

Curve<3U,V,F> g = f(x-xo);

Here x-xo is a curve which takes three arguments and returns a 3-vector of type
Curve<3U,V,F>::ParamType (Section 6.2 describes the class IdentityCurve<N,F>).
It is composed with f to define the new curve g.

One parameter curves also have the following member function which allows compo-

8 DRDC Atlantic TM-2006-254

sition with a curve returning a value of type F.

template<unsigned M>

Curve<M,V,F> operator()(const Curve<M,F,F> &c) const

Returns a curve equivalent to (*this)(c(p)) for any parameter p.

For example, in the following code sqcosx is a curve representing the function√
cos(x):

using namespace CurveLib;

Cos<> cosx;

Sqrt<> sqrtx;

Curve<1U,double> sqcosx = sqrtx(cosx);

6 Simple curves
The CurveLib library defines a wide variety of simple curves which can be used as
building blocks for more complicated curves.

6.1 Elementary functions
The CurveLib library defines a large number of fully differentiable elementary func-
tions. Where possible these functions are evaluated using the standard math library
functions sqrt, pow, log, exp, erf, erfc, sin, cos, tan, asin, acos, atan, atan2,
sinh, cosh, tanh, asinh, acosh, atanh, j0, j1, jn, y0, y1 and yn. These functions are
called with arguments of type F and are assumed to return an appropriately accurate
value convertible to an F. It can normally be assumed that all these functions except
atan2 and the Bessel functions (j0, j1, jn, y0, y1 and yn) will be defined for F of
type float, double, std::complex<float> and std::complex<double>. On some
machines they may be defined for F of type long double and std::complex<long

double> as well. The Bessel functions and atan2 are not normally defined for the
complex types.

The first few functions raise their arguments to different powers:

Sqrt<F>

Represents
√

x. It is derived from Curve<1U,F,F>. It has only a default (no
argument) constructor. If F represents a real number, then the value is not
defined when x is negative. If F represents a complex number, z = reiθ for
θ ∈ (−π, π], the value returned is

√
reiθ/2: i.e. there is a branch cut along the

negative real axis.

Pow<F>
A two parameter function which represents f(x, y) = xy; it is derived from

DRDC Atlantic TM-2006-254 9

Curve<2U,F,F>. It has a single default constructor. If x is not positive, the
result returned may vary from machine to machine or for different types F (for
example, on some machines if x = 0 and y = 2, the value returned will be 0.0
if F is double but NaN if F is a std::complex<double>). It is best to assume
that the value of the curve is undefined if x is non-positive.

PowInt<F>
A single parameter function which represents f(x) = xn where n is an integer.
The constructor for PowInt<F> has a single integer argument giving the value
of n. For example, PowInt<F>(-1) is a curve representing f(x) = 1/x.

6.1.1 Trigonometric functions

Classes implementing the six standard trigonometric functions are defined.

Sin<F>
Represents sin(x).

Cos<F>
Represents cos(x).

Tan<F>
Represents tan(x). Evaluation at odd multiples of π/2 is undefined.

Csc<F>
Represents csc(x) = 1/ sin(x). Evaluation at multiples of π is undefined.

Sec<F>
Represents sec(x) = 1/ cos(x). Evaluation at odd multiples of π/2 is undefined.

Cot<F>
Represents cot(x) = 1/ tan(x). Evaluation at multiples of π is undefined.

Each of these functions has a single parameter and returns a scalar of type F; they are
derived from Curve<1U,F,F>. Each has only a default (no argument) constructor.

The following inverse trigonometric functions are also defined. Each has a single
parameter and returns a scalar of type F; they are derived from Curve<1U,F,F>.
Each has only a default (no argument) constructor.

ArcSin<F>
Represents arcsin(x). If F represents a real number, then the returned value is
in the range [−π/2, π/2]. If F represents a complex number (i.e. it is of type

10 DRDC Atlantic TM-2006-254

std::complex<F1> for some F1), then the returned value is computed using:

arcsin(x) = −i ln(
√

1− x2 + ix) (1)

with branch cuts along the real axis outside the range [−1, 1]. It has real part
in the range [−π/2, π/2].

ArcCos<F>
Represents arccos(x). If F represents a real number, then the returned value is
in the range 0 to π. If F represents a complex number, then the returned value
is computed using:

arccos(x) =
π

2
− arcsin(x) (2)

and has real part in the range [0, π].

ArcTan<F>
Represents arctan(x). If F represents a real number, then the returned value is
in the range (−π/2, π/2). If F represents a complex number, then the returned
value is computed using:

arctan(x) = − i

2
ln

(
1 + ix

1− ix

)
(3)

with branch cuts on the imaginary axis outside the range [−i, i]. It has real
part in the range (−π/2, π/2).

The branch cuts for the complex versions of these functions have been chosen to lie
on the real or imaginary axis such that the curve is continuous across the portion of
the real axis where the real version of the function is well-defined.

In addition, the two-argument function ArcTan2<F> is defined if F represents a real
number; it is derived from Curve<2U,F,F>. It represents arctan(y/x), where x is the
first parameter and y is the second parameter. The value returned is in the range
[−π, π]. If both x and y are zero, the value is not defined.

6.1.2 Exponential functions

Classes implementing the following exponential functions are defined. Each has a
single parameter and returns a scalar of type F; they are derived from Curve<1U,F,F>.

Exp<F>

Represents ex. This class has only a default constructor.

Log<F>

Represents logb(x). This class has a one argument constructor whose prototype

DRDC Atlantic TM-2006-254 11

is: Log(F b = F(0)). It constructs a curve which returns the logarithm of its
argument to the base b. For example, the code

using namespace CurveLib;

Log<> log10(10.0);

std::cout << log10(100.0);

would result in the value 2 being printed. If the base b is zero, natural logarithms
(i.e. base e) are assumed. If F represents a real number, then b must be non-
negative. The returned value is not defined if the function parameter, x, is zero
or if F represents a real number and x is negative. If F represents a complex
number, the imaginary part of the returned value is in the range (−π, π]; there
is a branch cut along the negative real axis.

Erf<F>
Represents

erf(x) =
2√
π

∫ x

0

e−t2 dt (4)

The template argument F must represent a real number. This class has only a
default constructor.

Erfc<F>
Represents 1− erf(x). The template argument F must represent a real number.
This class has only a default constructor.

6.1.3 Hyperbolic functions

Classes implementing the six standard hyperbolic functions are defined.

Sinh<F>
Represents sinh(x).

Cosh<F>
Represents cosh(x).

Tanh<F>
Represents tanh(x).

Csch<F>
Represents csch(x) = 1/ sinh(x).

Sech<F>
Represents sech(x) = 1/ cosh(x).

Coth<F>
Represents coth(x) = 1/ tanh(x).

12 DRDC Atlantic TM-2006-254

Each of these functions has a single parameter and returns a scalar of type F; they are
derived from Curve<1U,F,F>. Each has only a default (no argument) constructor.

The following inverse hyperbolic functions are also defined. Each has a single param-
eter and returns a scalar of type F; they are derived from Curve<1U,F,F>. Each has
only a default (no argument) constructor.

ArcSinh<F>
Represents arcsinh(x). If F represents a complex number, then the returned
value is computed using:

arcsinh(x) = −i arcsin(ix) (5)

and has imaginary part in the range [−π/2, π/2]. There is a branch cut on the
imaginary axis outside the range [−i, i].

ArcCosh<F>
Represents arccosh(x). If F represents a real number, then x must equal or
exceed 1 and the returned value will be non-negative. If F represents a complex
number, then the returned value is computed using:

arccosh(x) = ln
(
x +
√

x2 − 1
)

(6)

with a branch cut on the real axis in the range (−1, 1). It has imaginary part
in the range [0, π].

ArcTanh<F>
Represents arctan(x). If F represents a real number, then the returned value is
in the range −π/2 to π/2. If F represents a complex number, then the returned
value is computed using:

arctanh(x) = −i arctan(ix) (7)

and has imaginary part in the range [−π/2, π/2]. There is a branch cut on the
real axis outside the range [−1, 1].

The branch cuts for the complex versions of these functions have been chosen to lie
on the real or imaginary axis such that the curve is continuous across the portion of
the real axis where the real version of the function is well-defined.

6.1.4 Bessel functions

Classes implementing the following Bessel functions are defined. Each of these func-
tions has a single parameter and returns a scalar of type F where F represents a real
number; they are derived from Curve<1U,F,F> where F is a model of a Comparable
Scalar Object.

DRDC Atlantic TM-2006-254 13

BesselJ<F>
Represents the Bessel function of the first kind of integer order n, Jn(x). This
class has the following constructor: BesselJ(int n = 0). The constructor
argument is the order, n. Derivatives are calculated using the relation

2J ′n(x) = Jn−1(x)− Jn+1(x) (8)

BesselY<F>
Represents the Bessel function of the second kind of integer order n, Yn(x). This
class has the following constructor: BesselY(int n = 0). The constructor
argument is the order, n. Derivatives are calculated using the relation

2Y ′
n(x) = Yn−1(x)− Yn+1(x) (9)

6.2 Identity curves
The curve IdentityCurve<N,F> simply returns its parameter as its value. Therefore
both its parameter list and its return value are of type ParamType. It has only the
default and copy constructors.

For example, the function f(x, y, z) = x2 + y2 + z2 could be defined as follows:

using namespace CurveLib;

typedef IdentityCurve<3U>::ValueType VType;

IdentityCurve<3U> x;

Curve<3U,double> f = DotCurve<3U,VType>(x,x);

The class DotCurve<N,V,F> is described in Section 7.5. It returns the dot product
of two vector-valued functions. Section 5 has another example of the use of an
IdentityCurve<N,F>.

An IdentityCurve<1U,F> is a single argument curve which returns its argument as a
ParamType (i.e. a vector of length 1). It is often more convenient to have a single argu-
ment identity curve which returns the argument as a F. The class FIdentityCurve<F>
fulfills this role. FIdentityCurve<F> has only the default and copy constructors.

For example, suppose we wish to define a curve to represent the function sin(2πx).
This can be done easily as follows:

using namespace CurveLib;

Sin<> sinx;

FIdentityCurve<> x;

double twopi = 2.0*3.14159265358979323846;

Curve<1U,double> sin2pix = sinx(twopi*x);

14 DRDC Atlantic TM-2006-254

It is also sometimes useful to be able to extract a single parameter from a parameter
list. The curves OneParamCurve<N,F> and FOneParamCurve<N,F> do this. They
return the parameter as a ParamType (i.e. a vector of length 1) and an F respectively.

OneParamCurve<N,F> has one constructor besides the default and copy constructors.

OneParamCurve(unsigned n)

The argument n is the index of the parameter whose value is to be returned. If
n equals or exceeds N a ProgError exception will be thrown.

The constructors of FOneParamCurve<N,F> are similar.

FOneParamCurve(unsigned n)

The argument n is the index of the parameter whose value is to be returned. If
n equals or exceeds N a ProgError exception will be thrown.

Both OneParamCurve<N,F> and FOneParamCurve<N,F> remain undefined if the de-
fault constructor is used.

See Section 6.4 for an example of the use of FOneParamCurve<N,F>.

6.3 Abs and Unit
The curve Abs<N,F> treats its argument list as a vector and returns its magnitude:
i.e. it represents the function

f(x1, . . . , xN) =
√

x2
0 + · · ·+ x2

N−1 (10)

It is a specialization of Curve<N,F,F> and has only the default and copy constructors.
No additional member functions are defined beyond those inherited from the base
class.

The curve Unit<N,F> treats its argument as a vector and returns the correspond-
ing unit vector. It is a specialization of Curve<N,ParamType,F> and has only the
default and copy constructors. No additional member functions are defined be-
yond those inherited from the base class. An instance of Unit<N,F> is equivalent
to IdentityCurve<N,F>()/Abs<N,F>().

6.4 Derivative curves
The class DerivCurve<N,V,F> represents a curve which is the derivative of another
curve. It has two constructors besides the default and copy constructors:

DerivCurve(const Curve<N,V,F> &c1, const DerivType &d)

Makes a curve equal to the derivatives of curve c as specified by the derivative
specifier d.

DRDC Atlantic TM-2006-254 15

DerivCurve(const Curve<N,V,F> &c, unsigned i)

Makes a curve equal to the single derivative of c with respect to parameter i.

For example,

using namespace CurveLib;

FOneParamCurve<2U> x(0), y(1);

Curve<2U,double> x2y2 = x*x+y*y;

Derivs<2U> d(0,2); // Two derivatives by y

DerivCurve<2U,double> c1(x2y2,d); // c1 = d^2(x2y2)/dy^2 = 2.0

DerivCurve<2U,double> c2(x2y2,1); // c2 = d(x2y2)/dy = 2.0*y

DerivCurve<2U,double> c3(c2,1); // c3 = d(c2)/dy = 2.0

6.5 Constant parameter curves
It is often useful to be able to restrict a multi-parameter curve so that one of its
parameters is held constant. For example, this can be done to define a curve along
the edge of a surface. The class ConstPCurve is used for this purpose.

ConstPCurve has two possible template argument lists, depending on the capabilities
of the compiler. If template arithmetic is allowed, ConstPCurve is defined as follows.

namespace CurveLib {

template<unsigned N, class V, class F = double>

class ConstPCurve: public Curve<N,V,F>

{

public:

ConstPCurve();

ConstPCurve(const Curve<N+1,V,F> &c, unsigned i, F v,

unsigned deriv = 0);

};

}

If the default constructor is used the curve remains undefined. The second constructor
makes the curve from curve c by keeping parameter i fixed at value v. If deriv

is non-zero, it is the derivth derivative of c with respect to parameter i which is
returned.

For example, the function f(x) = x
3
2 could be defined as follows:

using namespace CurveLib;

Curve<1U,F> sqrtx1p5 = ConstPCurve<1U,F>(Pow<>(),1,1.5);

If template arithmetic is not allowed, the following definition is used instead:

16 DRDC Atlantic TM-2006-254

namespace CurveLib {

template<unsigned N, unsigned NP1, class V, class F = double>

class ConstPCurve: public Curve<N,V,F>

{

public:

ConstPCurve();

ConstPCurve(const Curve<NP1,V,F> &c, unsigned i, F v,

unsigned deriv = 0);

};

}

Here NP1 must be equal to N+1. In this case, the example above would have to be
modified to:

using namespace CurveLib;

Curve<1U,F> sqrtx1p5 = ConstPCurve<1U,2U,F>(Pow<>(),1,1.5);

Note that because zero parameter curves are not allowed, it is not possible to hold
the parameter of a one-parameter curve constant. However, since the resulting curve
would have constant value, this rarely causes a problem.

6.6 Complex conjugate curves
When a curve returns a complex value it is often useful to be able to convert the
curve so that it returns the complex conjugate of the value instead. This is done by
the class ComplexConjCurve<N,F1,F>. The template argument N is the number of
parameters of the curve to be converted. The value returned by both curves is of
type std::complex<F1>. The template argument F is the type of each parameter.
The default parameter type if F is omitted is std::complex<F1>, an exception to the
rule that the default type for F is double.

ComplexConjCurve<N,F1,F> has the following constructor in addition to the default
and copy constructors and the assignment operator:

ComplexConjCurve(Curve<N,std::vector<F1>,F> c)

Constructs a curve which returns the complex conjugate of c.

6.7 Vector curves from scalar curves
A MultiCurve<N,M,F> is a curve with N arguments which returns a vector of length
M. Each component of the value of a MultiCurve<N,M,F> is obtained by evaluating
a different scalar-valued curve. All the scalar curves have N arguments.

The type of the return value is the same as the type of a parameter list of an M-
parameter curve: i.e. it is the same as Curve<N,V,F>::ParamType for any V. This

DRDC Atlantic TM-2006-254 17

ensures that the returned value of a MultiCurve<N,M,F> can be used as the param-
eter list for a Curve<M,V,F>. Therefore a Curve<M,V,F> can be composed with a
MultiCurve<N,M,F>. In the current implementation the returned value is actually a
VecMtx::VecN<M,F>.

The type MultiCurve<N,M,F>::CompCurveType is defined to be equivalent to the
type of each component curve (Curve<N,F,F>).

MultiCurve<N,M,F> has one constructor besides the default and copy constructors.

MultiCurve(const std::vector<CompCurveType> &clist)

Makes the curve from the component curves in clist. If the length of clist

is not N a ProgError exception will be thrown.

If the default constructor is used the curve is defined but each of its component curves
remains undefined.

The curve used to evaluate a component of the multi-curve can be set using the
following member function:

void set_curve(unsigned i, const CompCurveType &c)

Sets curve i to be c. If i is equal to or exceeds M a ProgError exception will
be thrown. set_curve can be called even if the curve is undefined; it will be
defined when set_curve returns. Note, however, that by defining the curve in
this way it is possible that the multi-curve will be defined but that one of its
component curves will not be (for example, if set_curve is called only once
while M is two or greater).

The subscript operator can be used to obtain the component curves:

const CurveCurveType& operator[](unsigned i) const;

CurveCurveType& operator[](unsigned i)

Each of these functions returns the ith component curve.

For example, suppose we wish to represent the vector-valued curve f(r, θ) with

fx(r, θ) = r cos θ; fy(r, θ) = r sin θ (11)

The curve xpolar defined below does the trick:

using namespace CurveLib;

FOneParamCurve<2U> r(0), theta(1);

MultiCurve<2U,2U> xpolar;

xpolar.set_curve(0,r*Cos<>()(theta));

xpolar.set_curve(1,r*Sin<>()(theta));

Alternatively we could have used:

18 DRDC Atlantic TM-2006-254

using namespace CurveLib;

FOneParamCurve<2U> r(0), theta(1);

MultiCurve<2U,2U> xpolar;

xpolar[0] = r*Cos<>()(theta);

xpolar[1] = r*Sin<>()(theta);

6.8 Linear curves
A LinearCurve<V,F> is a single argument curve which has constant first derivative.
It can be defined by specifying two points which it must pass through, (x1, y1) and
(x2, y2):

f(x) =
(x2 − x)y1 + (x− x1)y2

x2 − x1

(12)

Alternatively it can be defined by specifying a point, (x1, y1), and a slope, m:

f(x) = y1 + m(x− x1) (13)

LinearCurve has the following constructors besides the default and copy constructors:

LinearCurve(F x1, const V &y1, F x2, const V &y2)

Constructs a curve which interpolates linearly between the points (x1,y1) and
(x2,x2). The curve guarantees that, if evaluated at a parameter exactly equal
to x1, then the exact value y1 will be returned: i.e. there will be no round-off
error. Similarly, the exact value y2 is returned if the curve is evaluated at x2.

LinearCurve(F x1, const V &y1, const V &m)

Constructs a linear curve which passes through the point (p1,v1) (with no
round-off error) and has slope m. In this case the curve guarantees that if the
first derivative of the curve is evaluated, the exact value of m is returned.

The curve remains undefined if the default constructor is used. It can be defined
after construction by assignment to another LinearCurve<V,F> or using the following
member functions:

void define(F x1, const V &y1, F x2, const V &y2)

Modifies the curve so that it interpolates linearly between the points (x1,y1)

and (x2,x2).

void define(F x1, const V &y1, const V &m)

Modifies the curve so that it passes through the point (p1,v1) and has slope m.

A BilinearPatch<V,F> is a two-parameter curve which interpolates linearly between
four corner points. It can also be defined as a ruled curve (see Section 9.1) between

DRDC Atlantic TM-2006-254 19

two linear curves.

f(ξ, η) = f(ξlo, ηlo)
(ξhi − ξ)(ηhi − η)

(ξhi − ξlo)(ηhi − ηlo)
+ f(ξlo, ηhi)

(ξhi − ξ)(η − ηlo)

(ξhi − ξlo)(ηhi − ηlo)
+

f(ξhi, ηlo)
(ξ − ξlo)(ηhi − η)

(ξhi − ξlo)(ηhi − ηlo)
+ f(ξhi, ηhi)

(ξ − ξlo)(η − ηlo)

(ξhi − ξlo)(ηhi − ηlo)
(14)

BilinearPatch<V,F> has a single constructor besides the default and copy construc-
tors:

BilinearPatch(F xi_lo, F xi_hi, F eta_lo, F eta_hi,

const V &v_xilo_etalo, const V &v_xihi_etalo,

const V &v_xihi_etahi, const V &v_xilo_etahi)

Make a bi-linear patch between the four corner points given by v_xilo_etalo,
v_xihi_etalo, v_xihi_etahi and v_xilo_etahi. The values of the parame-
ters at the corners are given by xi_lo, xi_hi, eta_lo and eta_hi. For exam-
ple, when evaluated at (xi_lo,eta_lo) the curve will return v_xilo_etalo.
The curve guarantees that the values at the corner points will be exact (i.e. no
round-off error). Note that the order of the value arguments is counterclockwise
around the patch.

A BilinearPatch<V,F> remains undefined if the default constructor is used. It
can be defined later by assignment to another BilinearPatch<V,F> or by using the
following member function:

void define(F xi_lo, F xi_hi, F eta_lo, F eta_hi,

const V &v_xilo_etalo, const V &v_xihi_etalo,

const V &v_xihi_etahi, const V &v_xilo_etahi)

Sets the bi-linear patch to interpolate between the four corner points given by
v_xilo_etalo, v_xihi_etalo, v_xihi_etahi and v_xilo_etahi. The values
of the parameters at the corners are given by xi_lo, xi_hi, eta_lo and eta_hi.

6.9 Linear transformations of parameters
A LinearParamCurve<N,V,F> is a curve derived from another curve by applying a
linear transformation to its parameters to project them to a different parameter space.

LinearParamCurve<N,V,F> has two constructors besides the default and copy con-
structors:

LinearParamCurve(const Curve<N,V,F> &c,

const ParamType &old_lo, const ParamType &old_hi,

const ParamType &new_lo, const ParamType &new_hi)

Makes the curve from curve c. The parameters old_lo and old_hi of c

are transformed to new_lo and new_hi: i.e. if the new curve is crv, then

20 DRDC Atlantic TM-2006-254

crv(new_lo) is equivalent to c(old_lo) and crv(new_hi) is equivalent to
c(old_hi).

LinearParamCurve(const Curve<N,V,F> &c,

F old_lo, F old_hi, F new_lo, F new_hi)

Makes the curve from curve c. The transformation old_lo to new_lo and
old_hi to new_hi is applied to each argument of c. This constructor is mainly
useful when N is one.

If the default constructor is used the curve remains undefined. It can be defined
later by assignment to another LinearParamCurve<N,V,F> or by using the following
member functions:

void define(const Curve<N,V,F> &c,

const ParamType &old_lo, const ParamType &old_hi,

const ParamType &new_lo, const ParamType &new_hi)

Defines the curve to be equivalent to c with parameters transformed linearly so
that old_lo and old_hi are transformed to new_lo and new_hi.

void define(const Curve<N,V,F> &c,

F old_lo, F old_hi, F new_lo, F new_hi)

Defines the curve to be equivalent to c with parameters transformed linearly.
The transformation old_lo to new_lo and old_hi to new_hi is applied to each
argument of c.

For example, here is an alternative method for defining the function f(x) = sin(2πx)
(see Section 6.2 for another method).

using namespace CurveLib;

double twopi = 2.0*3.14159265358979323846;

Curve<1U,double> sin2pix =

LinearParamCurve<1U,double>(Sin<>(),0.0,twopi,0.0,1.0);

LinearParamCurve<N,V,F> guarantees that when evaluated at new lo or new hi, the
mapping to old lo and old hi is exact: i.e. no round-off errors. This can be very
important if the range of definition of a curve is limited.

6.10 Polynomials
A Polynomial<V,F> is a single parameter polynomial with value of type V. The
coefficients of the polynomial have type F. It is derived from Curve<1U,V,F>. The
polynomial is of the form:

p(x) =
N−1∑
n=0

cn(x− x0)
n (15)

where N is its order.

DRDC Atlantic TM-2006-254 21

Polynomial<V,F> defines the type CoefArray for the array in which the polynomial
coefficients are stored. It is a model of a Standard Template Library Random Access
Container. In the current implementation it is defined to be std::vector<V>.

Polynomial<V,F> has the following member functions in addition to the default and
copy constructors.

Polynomial(const CoefArray &c, F x0 = F(0))

Constructs a polynominal with coefficients c centred around x0.

void define(const CoefArray &coefs, F x0 = F(0))

Defines the polynominal by setting its coefficients to c and the centre point
to x0.

unsigned order() const

Returns the order of the polynomial, N .

unsigned degree() const

Returns the degree of the polynomial, N − 1.

If the default constructor is used, the polynomial is defined to be the zero polynomial:
i.e. it has order one and evaluates to zero.

For example, the following code defines the polynomial p(x) = 1− x2:

using namespace CurveLib;

double c[3] = { 1.0, 0.0, -1.0 };

Polynomial<double>::CoefArray coefs(c,c+3);

Polynomial<double> p(coefs);

7 Curves made from vector-valued curves
This section describes curves that take vector-valued curves and modify their values
in some way. In this section it will be assumed that the template argument V is a
model of a Vector Object with respect to the template argument F: see Annex A.4.
In particular, this means that if v is of type V, then the subscript operator v[i] is
defined and returns component i of vector v; this component has type F.

7.1 Selecting a single component
The curve OneCompCurve<N,V,F> returns a single component of type F from the
value of a vector-valued curve; it is a specialization of Curve<N,F,F>. It has a single
constructor besides the default and copy constructors:

22 DRDC Atlantic TM-2006-254

OneCompCurve(const Curve<N,V,F> &c, unsigned i)

Defines a curve whose value is component i from the value of curve c.

If the default constructor is used, the curve remains undefined.

For example,

using namespace CurveLib;

Curve<N,V,F> crv;

// ... define crv

OneCompCurve<N,V,F> crv0(crv,0); // crv0(x) equals crv(x)[0]

7.2 Throwing away a vector component
The curve ReducedDimCurve<N,M,F> has N parameters and returns a vector with M

components. It is derived from another N-parameter vector-valued curve, c, having
M+1 components, by throwing away one of the components of its returned value.
ReducedDimCurve<N,M,F> is derived from Curve<N,VecMtx::VecN<M,F>,F> and the
curve c must be of type Curve<N,VecMtx::VecN<M+1,F>,F>.

If the compiler does not support template arithmetic, then an additional template
argument must be specified: MP1 equal to M+1. The type of the curve is then
ReducedDimCurve<N,M,MP1,F>.

The type CurveType is defined to be equivalent to the type of the curve c. It will be
Curve<N,VecMtx::VecN<M+1,F>,F> or Curve<N,VecMtx::VecN<MP1,F>,F> depend-
ing on whether the compiler supports template arithmetic.

ReducedDimCurve<N,M,F> has the following constructor in addition to the default
and copy constructors.

ReducedDimCurve(const CurveType &c, unsigned i)

Constructs the curve from curve c such that the value of the curve will be the
same as the value of c except that component i is removed.

7.3 Concatenating vector values
The curve ConcatenatedCurve<N,M1,M2,F> has N parameters and returns a vector
generated by concatenating the vectors returned by two other curves, c1 and c2, hav-
ing M1 and M2 components respectively. ConcatenatedCurve<N,M1,M2,F> is derived
from Curve<N,VecMtx::VecN<M1+M2,F>,F> and the curves c1 and c2 must be of
type Curve<N,VecMtx::VecN<M1,F>,F> and Curve<N,VecMtx::VecN<M2,F>,F> re-
spectively.

If the compiler does not support template arithmetic, then an additional template

DRDC Atlantic TM-2006-254 23

argument must be specified: M1M2 equal to M1+M2. The type of the curve is then
ConcatenatedCurve<N,M1,M2,M1M2,F>.

The type Curve1Type is the type of the curve c1: Curve<N,VecMtx::VecN<M1,F>,F>.
Similarly, Curve2Type is the type of c2: Curve<N,VecMtx::VecN<M2,F>,F>.

ConcatenatedCurve<N,M1,M2,F> has the following constructor in addition to the
default and copy constructors.

ConcatenatedCurve(const Curve1Type &c1, const Curve2Type &c2)

Constructs the curve by concatenating c1 and c2. The first M1 components
of the returned value are the components of the vector returned by c1; the
components from M1 to M1+M2-1 are the components of the vector returned by
c2.

7.4 Reflection in a plane
A ReflectedCurve<N,V,F> negates one of the components of a vector-valued curve.
It has a single constructor besides the default and copy constructors:

ReflectedCurve(const Curve<N,V,F> &c, unsigned i)

Constructs a curve equivalent to c except that component i of the returned
value is negated.

If the default constructor is used the curve remains undefined.

For example,

using namespace CurveLib;

using namespace VecMtx;

Curve<2U,VecN<3U> > srf;

// ... define srf

ReflectedCurve<2U,VecN<3U> > rsrf(srf,1);

The curve rsrf is the surface srf reflected in the xz plane.

Since a curve argument list is a vector type, ReflectedCurve<N,V,F> can be used
to change the sign of a single curve parameter. For example, if crv represents the
function f(x, y, z), then we can represent f(x,−y, z) by the curve rcrv defined as
follows:

using namespace CurveLib;

Curve<3U,V> crv;

// ... define crv

IdentityCurve<3U> xyz;

ReflectedCurve<3U,Curve<3U,V>::ParamType> negy(xyz,1);

Curve<3U,V> rcrv = crv(negy);

24 DRDC Atlantic TM-2006-254

7.5 Dot products
The curve DotCurve<N,V,F> returns the dot-product of two vector valued curves;
the returned value is of type F. If f and g are both of type Curve<N,V,F> where V is
a model of a Vector Object, then the value returned by DotCurve<N,V,F>(f,g) for
parameters x can be calculated as follows:

V v1 = f(x), v2 = g(x);

F sum(0);

for (int i = 0; i < v1.size(); ++i) {

sum += v1[i]*v2[i];

}

return sum;

If F is a real type, then DotCurve<N,V,F>(f,f) can be interpreted as the square of the
magnitude of the vector curve f. However, if F is a complex type, this interpretation
as a vector magnitude does not hold since that would require the dot product of f

with the complex conjugate of f.

DotCurve<N,V,F> has the following constructor in addition to the default and copy
constructors:

DotCurve(const Curve<N,V,F> &c1, const Curve<N,V,F> &c2)

Makes a curve whose value is the dot product of the values of the curves c1 and
c2.

DotCurve(const V &v, const Curve<N,V,F> &c)

Makes a curve which returns the dot product of v and c.

DotCurve(const Curve<N,V,F> &c, const V &v)

Makes a curve which returns the dot product of c and v.

If the default constructor is used the curve remains undefined.

Section 6.2 contains an example of the use of DotCurve<N,V,F>.

7.6 Cross products
The curve CrossProdCurve<N,F> returns the cross-product of two curves whose val-
ues are 3-vectors of type VecMtx::VecN<3U,F>. CrossProdCurve<N,F> also returns
a VecMtx::VecN<3U,F>. The type CrossProdCurve<N,F>::CurveType is defined to
be equivalent to the type of each curve: Curve<N,ValueType,F>.

CrossProdCurve<N,F> has the following constructor in addition to the default and
copy constructors:

DRDC Atlantic TM-2006-254 25

typedef VecMtx::VecN<3U,F> ValueType

The type of the value of the curve.

typedef Curve<N,ValueType,F> CurveType

The type of the curves whose cross-product is to be taken.

CrossProdCurve(const CurveType &c1, const CurveType &c2)

Makes a curve whose value is the cross product of the values of the curves c1

and c2.

CrossProdCurve(const ValueType &v, const CurveType &c)

Makes a curve which returns the cross product of v and c.

CrossProdCurve(const CurveType &c, const ValueType &v)

Makes a curve which returns the cross product of c and v.

If the default constructor is used the curve remains undefined.

7.7 Unit vectors
Suppose that f is a curve whose return value is a model of a Vector Object. Then the
curve UnitCurve<N,V,F>(f) is equivalent to f/Sqrt<F>(DotCurve<N,V,F>(f,f)):
i.e. its value is the value of f normalized using the square root of the dot product
of the value of f with itself. If F is a real type, this curve can be interpreted as
f converted to a unit vector (hence the name) since DotCurve<N,V,F>(f,f) can be
interpreted as the square of the magnitude of the vector curve f. When F is a model of
a complex number, UnitCurve<N,V,F> is well-defined but its interpretation as a unit
vector is not valid, since DotCurve<N,V,F>(f,f) no longer represents the magnitude
of the f: see Section 7.5.

UnitCurve<N,V,F> has the following constructor in addition to the default and copy
constructors:

UnitCurve(const Curve<N,V,F> &c)

Makes a curve whose value is the value of curve c converted to a unit vector.

If the default constructor is used the curve remains undefined.

7.8 Projections
The curves described in this section are each derived by projecting a curve onto a
surface (or a hypersurface if the dimension of the returned value of the original curve
is greater than three).

26 DRDC Atlantic TM-2006-254

7.8.1 Projection to a plane

The curve PlaneProjCurve<N,V,F> is derived from another vector-valued curve by
setting one of the components of the returned value to a constant value.

PlaneProjCurve<N,V,F> has the following constructor in addition to the default and
copy constructors:

PlaneProjCurve(const Curve<N,V,F> &c, unsigned i, F v)

Makes a curve whose value is the value of curve c except that component i is
set to v.

If the default constructor is used the curve remains undefined.

For example,

using namespace CurveLib;

typedef VecMtx::VecN<3U,F> Vec3;

Curve<1U,Vec3,F> crv;

// ... define crv

PlaneProjCurve<1U,Vec3,F> proj_crv(crv,0,0.0);

Here crv is a curve in three-dimensional space. The curve proj crv is the projection
of crv onto the yz plane.

PlaneProjCurve<N,V,F> can only project a curve onto a plane aligned with one of
the coordinate axes; however, it will work in any number of dimensions (i.e. the length
of the vector value is arbitrary). AnyPlaneProjCurve<N,F> will project a curve onto
any arbitrary plane, but it is restricted to 3-vectors. The type of the returned value,
ValueType, is VecMtx::VecN<3U,F>. The type CurveType is defined to be equivalent
to the type of projected curve: Curve<N,ValueType,F>.

AnyPlaneProjCurve(const CurveType &c, const ValueType &p,

const ValueType &n)

Makes a curve whose value is the value of curve c projected onto the plane
defined by the point p and normal n. The normal, n, must not be the zero-
vector.

AnyPlaneProjCurve(const CurveType &c, const ValueType &p1,

const ValueType &p2, const ValueType &p3)

Makes a curve whose value is the value of curve c projected onto the plane
passing through the three points p1, p2 and p3. These points must not be
collinear.

DRDC Atlantic TM-2006-254 27

7.8.2 Projection to a sphere

SphereProjCurve<N,F> is a curve derived from a vector-valued curve by projecting
its values onto a sphere along radial lines: i.e. if the original curve is f(x), then the
projected curve is

R
f(x)

|f(x)|
(16)

where R is the radius of the sphere. The type of the returned value, ValueType, is
VecMtx::VecN<3U,F>. The type CurveType is defined to be equivalent to the type
of the projected curve: Curve<N,ValueType,F>.

SphereProjCurve(const CurveType &c, F r)

Makes a curve whose value is the value of curve c projected onto the sphere of
radius r centred at the origin.

If the default constructor is used the curve remains undefined.

The class UnitCurve<N,V,F> (see Section 7.7) could also be interpreted as a projec-
tion onto the unit hypersphere.

7.8.3 Projection to a cylinder

CylProjCurve<N,F> is a curve derived from a vector-valued curve by projecting its
values onto a cylinder: i.e. if the original curve is f(x), then the projected curve is

p + xa +
r(x− p− xa)

|x− p− xa|
; xa ≡

[
(x− p) · n̂

]
n̂ (17)

where R is the radius of the cylinder and its axis has direction n̂ and passes through
the point p. The type of the returned value, ValueType, is VecMtx::VecN<3U,F>.
The type CurveType is defined to be equivalent to the type of the projected curve:
Curve<N,ValueType,F>.

CylProjCurve(const CurveType &c, F r, unsigned i)

Makes a curve whose value is the value of curve c projected onto the cylinder
of radius r whose axis passes through the origin and is aligned with the ith

coordinate axis.

CylProjCurve(const CurveType &c, F r, const ValueType &p,

const ValueType &n)

Makes a curve whose value is the value of curve c projected onto the cylinder
of radius r whose axis passes through the point p and is parallel to n.

If the default constructor is used the curve remains undefined.

28 DRDC Atlantic TM-2006-254

8 Surfaces
Curves of type Curve<2U,VecMtx::VecN<3U,F>,F> are of particular importance as
they can be used to represent surfaces in three-dimensional space. Therefore they are
useful for describing the geometry of physical objects.

We will use the convention that the two parameters of a surface are ξ and η, repre-
sented in code by xi and eta.

Because of the importance of surfaces, Curve<2U,VecMtx::VecN<3U,F>,F> is treated
as a special case and has extra member functions to ease its use (here ValueType is
an alias for VecMtx::VecN<3U,F>):

ValueType operator()(F xi, F eta) const

Returns the value of the curve at (xi,eta). This is often more convenient than
passing a ParamType.

ValueType operator()(F xi, F eta,

unsigned dxi, unsigned deta) const

Returns the value of the differentiated curve at (xi,eta). The number of
derivatives to be taken with respect to each parameter is specified by dxi and
deta.

ValueType normal(const ParamType &p) const

Returns a unit normal to the surface at p.

ValueType normal(F xi, F eta) const

Returns a unit normal to the surface at (xi,eta).

ValueType normal(const ParamType &p, const DerivType &d) const

Returns the derivatives of the normal to the surface at p. The number of
derivatives to be taken with respect to each parameter is specified by d.

ValueType normal(F xi, F eta, unsigned dxi, unsigned deta) const

Returns the value of the derivatives of the normal at (xi,eta). The number
of derivatives to be taken with respect to each parameter are specified by dxi

and deta.

void get_metrics(const ParamType &p, VecMtx::MtxN<2U,F> &g,

VecMtx::MtxN<2U,F> (&gamma)[2]) const

Returns the metric tensor and Christoffel symbols of the first kind at p.

The 2 × 2 matrix g contains the covariant metric tensor (the matrix class

DRDC Atlantic TM-2006-254 29

VecMtx::MtxN<N,F> is described in Annex C). If the surface is X(ξ, η) then

g00 =
∂X

∂ξ
· ∂X

∂ξ
; g01 = g10 =

∂X

∂ξ
· ∂X

∂η
; g11 =

∂X

∂η
· ∂X

∂η
(18)

The 2× 2× 2 tensor gamma contains the Christoffel symbols:

Γ000 =
∂2X

∂ξ2
· ∂X

∂ξ
; Γ010 = Γ100 =

∂2X

∂ξ∂η
· ∂X

∂ξ
; Γ110 =

∂2X

∂η2
· ∂X

∂ξ

Γ001 =
∂2X

∂ξ2
· ∂X

∂η
; Γ011 = Γ101 =

∂2X

∂ξ∂η
· ∂X

∂η
; Γ111 =

∂2X

∂η2
· ∂X

∂η
(19)

If the compiler allows partial instantiation of templates, these extra member functions
will be defined for any type F. If not, they will be defined only when F is double or
float.

The overloaded normal functions evaluate the unit normal to surface X(ξ, η) as fol-
lows:

n =
∂X

∂ξ
× ∂X

∂η
; n̂ =

n

|n|
(20)

However, this definition fails if the derivative of X with respect to ξ or η is zero. In
this case a NormalNotDefined exception is thrown. Its error message is:

Normal not defined.

For example, the surface of a sphere can be defined as follows:

using namespace CurveLib;

OneParamCurve<2U> xi(0), eta(1);

Cos<> coscrv;

Sin<> sincrv;

MultiCurve<2U,3U> sphere;

sphere[0] = sincrv(xi)*sincrv(eta);

sphere[1] = sincrv(xi)*coscrv(eta);

sphere[2] = -coscrv(xi);

for ξ in [0, π] and η in [0, 2π] (the signs have been chosen to make the normal
to the sphere outward pointing). Since MultiCurve<2U,3U> is a specialization of
Curve<2U,VecMtx::VecN<3U> >, the extra member functions are defined. The code

try {

double pio2 = 0.5*3.14159265358979323846;

std::cout << "Point = " << sphere(pio2,0) << ’\n’;

std::cout << "Normal = " << sphere.normal(pio2,0) << ’\n’;

std::cout << "Point = " << sphere(0,0) << ’\n’;

std::cout << "Normal = " << sphere.normal(0,0) << ’\n’;

30 DRDC Atlantic TM-2006-254

}

catch(NormalNotDefined &n) {

std::cerr << n.get_msg() << ’\n’;

}

generates the following output

Point = 0.000000e+00 1.000000e+00 -6.123234e-17

Normal = -0.000000e+00 1.000000e+00 -6.123234e-17

Point = 0.000000e+00 0.000000e+00 -1.000000e+00

Normal = Normal not defined.

When evaluated at (0, 0), a NormalNotDefined exception was thrown because the
derivative with respect to η vanishes there. As will be seen in the following sec-
tion, classes derived from Curve<2U,VecMtx::VecN<3U,F>,F> may avoid undefined
normals even when one of the derivatives vanishes.

8.1 Axi-symmetric surfaces
Suppose

g(ξ) =

(
gz(ξ)
gr(ξ)

)
(21)

defines a one parameter curve which returns a two-vector and suppose that gr(ξ) ≥ 0.
Then, a surface of revolution about the z axis is defined by.

f(ξ, θ) =

 gr(ξ) sin θ
gr(ξ) cos θ

gz(ξ)

 (22)

From Equations (20) and (22), the unit normal to the axisymmetric surface is:

n̂ =
g′z(ξ)(x̂ sin θ + ŷ cos θ)− g′z(ξ)ẑ√(

g′z(ξ)
)2

+
(
g′r(ξ)

)2
(23)

The unit normal is well-defined unless both g′z(ξ) and g′r(ξ) vanish. Note that if we
had not required gr(ξ) to be non-negative, then the normal would not be well-defined
when gr(ξ) = 0 as the direction of the normal would flip as the value of gr(ξ) changed
from positive to negative.

The class AxisymmetricSurface<F> represents the curve f(ξ, η) but generalizes it so
that the spine curve, g(ξ), can be rotated about any one of the three coordinate axes.

AxisymmetricSurface<F> defines the following aliases:

DRDC Atlantic TM-2006-254 31

ValueType

Equivalent to VecMtx::VecN<3U,F>.

SpineCurveType

Equivalent to Curve<1U,VecMtx::VecN<2U,F>,F>.

It has the following member functions.

AxisymmetricSurface(unsigned a, const SpineCurveType &g)

A constructor makes a surface of revolution by rotating the spine curve g around
the axis specified by a: 0 is the x axis, 1 the y axis, and 2 the z axis. If a is
not 0, 1 or 2 an AxisOutOfBounds exception will be thrown.

unsigned axis() const

Returns the axis of rotation as 0, 1 or 2.

ValueType value(F xi, Angle<F> theta) const

Calculates a point on the surface for parameters (ξ, θ). The class Angle<F> is
described in Annex E.

ValueType value(F xi, Angle<F> theta,

unsigned dxi, unsigned dtheta) const

Calculates a point on the surface, or its derivatives, for parameters (ξ, θ). The
number of derivatives to be taken with respect to ξ is dxi and with respect to
θ is dtheta.

VecMtx::VecN<2U,F> spine_value(F xi) const

Return the value of the spine curve at xi.

VecMtx::VecN<2U,F> spine_value(F xi, unsigned d) const

Returns derivatives of the spine curve at xi. The number of derivatives to be
taken is specified by d.

SpineCurveType spine_curve() const

Returns the spine curve.

If the value of gr(ξ) is zero (i.e. the axisymmetric surface is closed at at least one
end), then the θ derivatives of the surface vanish. However, the normals of the surface
are still well-defined; the AxisymmetricSurface<F> normal functions will return the
correct unit normals in this case; they will not throw a NormalNotDefined exception.

For example, here is another definition of the surface of a sphere, with the same
parameterization as the sphere defined in Section 8. However, this time the normal
is defined everywhere:

32 DRDC Atlantic TM-2006-254

using namespace CurveLib;

MultiCurve<1U,2U> circle;

circle[0] = -Cos<>();

circle[1] = Sin<>();

AxisymmetricSurface<> sphere(2,circle);

Now the code

try {

double pio2 = 0.5*3.14159265358979323846;

std::cout << "Point = " << sphere(pio2,0) << ’\n’;

std::cout << "Normal = " << sphere.normal(pio2,0) << ’\n’;

std::cout << "Point = " << sphere(0,0) << ’\n’;

std::cout << "Normal = " << sphere.normal(0,0) << ’\n’;

}

catch(NormalNotDefined &n) {

std::cerr << n.get_msg() << ’\n’;

}

generates the following output

Point = 0.000000e+00 1.000000e+00 -6.123234e-17

Normal = 0.000000e+00 1.000000e+00 -6.123234e-17

Point = 0.000000e+00 0.000000e+00 -1.000000e+00

Normal = 0.000000e+00 0.000000e+00 -1.000000e+00

Notice that the normal is correctly evaluated at (0, 0) whereas the surface defined in
Section 8 threw a NormalNotDefined exception.

The class AxisymmetricSurface<F> is well-defined even if the radial component of
the spine curve, gr(ξ), returns negative values. However, when gr(ξ) < 0, the normal

member functions will return normals which are opposite in sign from the normals
returned by Curve<2U,VecMtx::VecN<3U,F>,F>.

9 Interpolation between boundary curves
This section describes classes for interpolating between two or more boundary curves.

9.1 Ruled curves
A ruled curve is a curve created by linear interpolation between two boundary
curves with one fewer parameters. For example, suppose the boundary curves are
flo(x1, . . . , xN−1) and fhi(x1, . . . , xN−1). We introduce a new parameter, y, which
governs the interpolation between the two boundary curves. When y = ylo, the value

DRDC Atlantic TM-2006-254 33

of the ruled curve is flo(x1, . . . , xN−1); when y = yhi, the value of the ruled curve is
fhi(x1, . . . , xN−1). The parameter list for the ruled curve is the equal to x1, . . . , xN−1

with y inserted at location k. Therefore

f(x1, . . . , xk−1, y, xk, . . . , xN−1) = (24)

(y − ylo)fhi(x1, . . . , xN−1) + (yhi − y)flo(x1, . . . , xN−1)

yhi − ylo

(25)

Ruled curves are represented by the class RuledCurve which has two possible template
argument lists, depending on the capabilities of the compiler. If template arithmetic
is allowed, RuledCurve has template arguments <N,V,F> where, as usual, N is the
number of parameters, V is the return type and F is the type of each parameter. If
template arithmetic is not allowed, the template arguments are <N,NM1,V,F> where
the unsigned value NM1 is equal to N-1.

The type BdyCurveType is defined to be the same as the type of each boundary curve:
Curve<N-1,V,F> if template arithmetic is allowed, Curve<NM1,V,F> if it is not.

Ruled curves have the following member functions in addition to the default and copy
constructors:

RuledCurve(unsigned k,

const BdyCurveType &bclo, const BdyCurveType &bchi,

F ylo, F yhi)

Makes a ruled curve between the boundary curves bclo and bchi. The ruled
curve has N parameters; parameter k interpolates between the boundary curves.
When parameter k has the value ylo, the value of the curve is equal to the value
of bclo; when parameter k has the value yhi, the value of the curve is equal to
the value of bchi.

BdyCurveType boundary_curve(bool upper) const

Returns one of the boundary curves. If upper is true, the curve bchi is returned;
otherwise bclo is returned.

If the default constructor is used the curve remains undefined.

9.2 Transfinite interpolation
A TransFinite2dCurve<V,F> is two parameter curve produced by transfinite inter-
polation from values on the boundaries. Let f(ξ, η) be the curve we wish to construct.
Let Pξ and Pη be the operators

Pξ(f)(ξ, η) =
(ξ − ξlo)f(ξhi, η) + (ξhi − ξ)f(ξlo, η)

ξhi − ξlo

(26)

34 DRDC Atlantic TM-2006-254

Pη(f)(ξ, η) =
(η − ηlo)f(ξ, ηhi) + (ηhi − η)f(ξ, ηlo)

ηhi − ηlo

(27)

Then:

f(ξ, η) =
[
1− (1− Pξ)(1− Pη)

]
f(ξ, η)

= Pξ(f)(ξ, η) + Pη(f)(ξ, η)− Pξ(Pη(f))(ξ, η) (28)

The first term is a ruled curve between the boundary curves at ξ = ξlo and ξ = ξhi.
The second term is a ruled curve between the boundary curves at η = ηlo and η = ηhi.
The last term is a bilinear patch between the four corner points.

The type BdyCurveType is defined to be equivalent to the type of each boundary
curve: Curve<1U,V,F>.

TransFinite2dCurve<V,F> has the following member functions in addition to the
default and copy constructors:

TransFinite2dCurve(F xi_lo, F xi_hi, F eta_lo, F eta_hi,

const BdyCurveType xi_bndcrvs[2],

const BdyCurveType eta_bndcrvs[2])

Uses transfinite interpolation to make a curve between the boundary curves in
xi bndcrvs and eta bndcrvs. The curves xi bndcrvs[0] and xi bndcrvs[1]

are the curves for which ξ is xi lo and xi hi respectively. Similarly, the argu-
ment eta bndcrvs defines the curves for the edges for which η is eta lo and
eta hi.

BdyCurveType boundary_curve(unsigned dir, bool upper) const

Returns one of the boundary curves. The argument dir gives the direction of
the curve: 0 for a boundary with constant ξ, 1 for a boundary with constant η.
The argument upper indicates whether it is the upper or lower boundary.

If the default constructor is used the curve is undefined.

A TransFinite3dCurve<V,F> is a three parameter curve which uses transfinite inter-
polation in three dimensions. It is a natural extension of its two-dimensional counter-
part, TransFinite2dCurve<V,F>. The boundary curves each have two parameters.
Let f(ξ, η, ζ) be the curve we wish to construct. The curve is defined by

f(ξ, η, ζ) =
[
(Pξ − 1)(Pη − 1)(Pζ − 1) + 1

]
f

=
[
Pξ + Pη + Pζ − PξPη − PξPζ − PηPζ + PξPηPζ

]
f (29)

where Pξ, Pη and Pζ are as defined in Equations (26) and (27).

The type BdyCurveType is defined to be equivalent to the type of each boundary
curve: Curve<2U,V,F>.

DRDC Atlantic TM-2006-254 35

TransFinite3dCurve<V,F> has the following member functions in addition to the
default and copy constructors:

TransFinite3dCurve(F xi_lo, F xi_hi,

F eta_lo, F eta_hi,

F zeta_lo, F zeta_hi,

const BdyCurveType xi_bndcrvs[2],

const BdyCurveType eta_bndcrvs[2],

const BdyCurveType zeta_bndcrvs[2])

Uses transfinite interpolation to make a curve between the boundary curves
in xi bndcrvs, eta bndcrvs and zeta bndcrvs. The curves xi bndcrvs[0]

and xi bndcrvs[1] are the curves for which ξ is xi lo and xi hi respectively.
Similarly, the argument eta bndcrvs defines the curves for the edges for which
η is eta lo and eta hi, and zeta bndcrvs defines the curves for the edges for
which ζ is zeta lo and zeta hi.

Each of the curves in the array xi bndcrvs has arguments (η, ζ); each of
the curves in eta bndcrvs has arguments (ξ, ζ); and each of the curves in
zeta bndcrvs has arguments (ξ, η).

BdyCurveType boundary_curve(unsigned dir, bool upper) const

Returns one of the boundary curves. The argument dir gives the direction of
the curve: 0 for a boundary with constant ξ, 1 for a boundary with constant η,
2 for a boundary with constant η. The argument upper indicates whether it is
the upper or lower boundary.

If the default constructor is used the curve is undefined.

The transfinite curves are well-defined only if the boundary curves give similar val-
ues in the corners of their domains: for example, for a TransFinite2dCurve<V,F>,
xi bndcrv[0](xi lo) and eta bndcrv[0](eta lo) should be the same. In prac-
tice, due to round-off, the best that one can expect is that these two values dif-
fer by a small amount. It would be convenient if TransFinite2dCurve<V,F> and
TransFinite3dCurve<V,F> had member functions that would return the largest mis-
match in the values of the boundary curves at the corners of the domain. However,
to do so would require that the type V have some method of comparing two values
and reducing the difference to an F. Moreover, to find the largest mismatch would
require that F be a model of Less Than Comparable (defined by the Standard Tem-
plate Library). Both these requirements would limit the possible instantiations of
TransFinite2dCurve<V,F> and TransFinite2dCurve<V,F>.

To avoid these problems the function trans_finite_curve_mismatch is provided. It
has a two-dimensional version and a three dimensional version which have arguments
similar to the TransFinite2dCurve<V,F> and TransFinite2dCurve<V,F> construc-
tors:

36 DRDC Atlantic TM-2006-254

F trans_finite_curve_mismatch(

F xi_lo, F xi_hi, F eta_lo, F eta_hi,

const Curve<1U,V,F> xi_bndcrvs[2],

const Curve<1U,V,F> eta_bndcrvs[2])

Returns the maximum mismatch of the points on each boundary curve at the
corners of the domain defined by xi_lo, xi_hi, eta_lo and eta_hi.

F trans_finite_curve_mismatch(

F xi_lo, F xi_hi, F eta_lo, F eta_hi, F zeta_lo, F zeta_hi,

const Curve<2U,V,F> xi_bndcrvs[2],

const Curve<2U,V,F> eta_bndcrvs[2],

const Curve<2U,V,F> zeta_bndcrvs[2])

Returns the maximum mismatch of the points on each boundary curve at the
corners of the domain defined by xi_lo, xi_hi, eta_lo, eta_hi, zeta_lo, and
zeta_hi.

These functions should only be used if V is a model of an Absolute Object with respect
to F (see Annex A.5) and if F is a Comparable Scalar Object (see Annex A.3).

10 Curves with parameter ranges
It is often convenient if a curve knows the range of parameters for which its evaluation
is valid. For example, a curve representing f(x) = arcsin(x) might recognize that its
parameters must lie in the range [0, 1]. Such curves are called range curves and are
represented by the base class RangeCurve<N,V,F> where F is a model of a Comparable
Scalar Object (see Annex A.3) and V is a vector object with respect to F.

10.1 Parameter ranges
Before defining range curves it is necessary to a have a means to represent the ranges
of the parameters of a curve. The class ParamRange<N,F> is used for this purpose.
Its template argument N is an unsigned int giving the number of parameters; the
template argument F is the type of each parameter. If F is missing it defaults to
double.

The type ParamRange<N,F>::ParamType is defined to be the type of the parameter
list of a curve: i.e. it is equivalent to Curve<N,V,F>::ParamType for any V. In the
current implementation it is a VecMtx::VecN<N,F>.

ParamRange<N,F> has the following member functions:

ParamRange(F xlo = F(0), F xhi = F(1))

Makes a ParamRange<N,F> in which each parameter has the range xlo to xhi.

DRDC Atlantic TM-2006-254 37

ParamRange(const ParamType &lo, const ParamType &hi)

Makes a ParamRange<N,F> in which parameter i has range lo[i] to hi[i].

const ParamType& low() const

Return the lower limits of the parameters.

F low(unsigned i) const

Returns the lower limit for parameter i.

const ParamType& high() const

Returns the upper limits of the parameters.

F high(unsigned i) const

Returns the upper limit for parameter i.

void set_range(const ParamType &lo, const ParamType &hi)

Sets the range so that parameter i has range lo[i] to hi[i].

void set_range(unsigned i, F lo, F hi)

Sets the range of parameter i to be lo to hi.

virtual bool in_range(const ParamType &p) const

Returns true if p is in range.

unsigned size() const

Returns the number of parameters.

Two parameter ranges can be compared to see if they are the same using the == and
!= operators. The following function is also defined:

template<unsigned N, class F>

ParamRange<N,F> intersection(const ParamRange<N,F> &r1,

const ParamRange<N,F> &r2)

Returns a range which is the intersection of r1 and r2.

10.2 Range curves
A RangeCurve<N,V,F> is a curve whose parameters have set ranges. It contains a
Curve<N,V,F> and a ParamRange<N,F>. The following constructors are defined in
addition to the default and copy constructors:

RangeCurve(const Curve<N,V,F> &c)

Makes a RangeCurve<N,V,F> from c. The range for each parameter is the

38 DRDC Atlantic TM-2006-254

default: [0, 1].

RangeCurve(const RangeCurve<N,V,F> &c, unsigned i,

FloatType plo, FloatType phi)

Copies c but changes the range of parameter i to [plo,phi].

RangeCurve(const Curve<N,V,F> &c,

const ParamType &plo, const ParamType &phi)

Gives curve c the range defined by plo and phi: i.e. the range of parameter i
is [plo[i],phi[i]].

RangeCurve(const Curve<N,V,F> &c, const RangeType &r)

Gives the curve c the range r.

The following member functions can be used to change the range of an existing range
curve:

void set_range(const ParamType &lo, const ParamType &hi)

Sets the range to have minimum values in lo and maximum values in hi: i.e.
the new range of parameter i will be [lo[i],hi[i]].

void set_range(unsigned i, F lo, F hi)

Set the range of parameter i to be [lo,hi].

The following member functions can be used to determine what the range of a curve
is:

const RangeType& get_range() const

Returns the range of the curve.

const ParamType& low_range() const

Returns the minimum values of the range of each of the parameters.

const ParamType& high_range() const

Returns the maximum values of the range of each of the parameters.

F low_range(unsigned i) const

Returns the minimum allowed value of parameter i.

F high_range(unsigned i) const

Returns the maximum allowed value of parameter i.

The following two functions evaluate the curve at the low and high ends of its pa-
rameter range. It is of most use for one parameter range curves.

DRDC Atlantic TM-2006-254 39

V low_value() const
Returns the value at the low end of the parameter range.

V high_value() const

Returns the value at the high end of the parameter range.

And finally, a function to indicate whether a parameter is in the range of the curve.

bool in_range(const ParamType &p) const

Returns true if p is in the range of the curve.

10.3 Standard range curves
A StandardRangeCurve<N,V,F> is a range curve whose parameters all have the de-
fault range, [0, 1]. It inherits the RangeCurve<N,V,F> member functions, but has the
following constructor:

StandardRangeCurve(const RangeCurve<N,V,F> &c)

Converts the curve c so that its parameters have the standard range. This is
done by applying a linear transformation to each parameter so that the param-
eter range of c is mapped to [0, 1].

11 Implicitly defined curves
This section describes curves whose values are defined implicitly as the zeros of other
defining curves. First we describe the primary search algorithm used by these func-
tions.

11.1 Newton-Raphson search
Suppose f(x) is an N -valued function of N parameters, x = (x1, . . . , xN). Then we
can search for the parameters x for which f(x) = 0. Let ξ be an approximation to x.
A better approximation to x is:

xn = ξn −
N∑

i=1

A−1
ni fi(ξ) for n = 1, . . . , N (30)

with

Ani =
∂fn

∂xi

(ξ) (31)

This algorithm requires an initial guess at the value of x.

40 DRDC Atlantic TM-2006-254

Often there will be more than one possible solution. To ensure that one obtains the
correct solution, the solution vector can be bounded: i.e. two vectors, a and b are
provided such that an ≤ xn ≤ bn for all n. The search algorithm is then modified to
ensure that the solution lies in this range:

Initialization:
for all n, if xn < an or xn > bn then

xn ←− (an + bn)/2
Search:

while |fn(xm)| > ε

δn ←−
∑N

i=1 A−1
ni fi(ξm)

for all n
if xn − δn < an then xn ←− (xn + an)/2
else if xn − δn > bn then xn ←− (xn + bn)/2
else xn ←− xn − δn

If a Newton-Raphson search fails to converge, a FailingSearch exception is thrown.
It is derived from the base error class Error and has the following generic error
message:

Failure in Newton-Raphson search when evaluating an implicit curve.

11.2 Implicit curves
Let fi(xm, yn) be a function of M + N variables for i = 1, . . . ,M , m = 1, . . . ,M and
n = 1, . . . , N . Let gm(yn) be the value of xm for which the function is zero:

fi

(
gm(yn), yn

)
= 0 (32)

We say that the function gm(yn) is defined implicitly by the function fi(xm, yn). The
function fi(xm, yn) is called the defining curve for the implicit curve gm(yn).

Given the N values yn, the value of gm(yn) can be found by a Newton-Raphson search
of the M equations in Equation (32) for the M unknowns gm(yn).

Differentiating Equation (32) by yn one gets

M∑
m=1

∂fi

∂xm

dgm

dyn

+
∂fi

∂yn

= 0 (33)

which can be written
M∑

m=1

Aim
dgm

dyn

= − ∂fi

∂yn

(34)

DRDC Atlantic TM-2006-254 41

where

Aim =
∂fi

∂xm

(
gm(yn), yn

)
(35)

Therefore
dgm

dyn

= −
M∑
i=1

A−1
mi

∂fi

∂yn

(
gm(yn), yn

)
(36)

Implicit curves are represented in CurveLib by the class ImplicitCurve defined in
the header file ImplicitCurve.h. The type of its returned value must be the same
as that of a parameter list of an M-parameter curve. In the current implementation
this is a VecMtx::VecN<M,F>.

If template arithmetic is allowed by the compiler, ImplicitCurve is defined as follows:

namespace CurveLib {

template<unsigned N, unsigned M, class F = double>

class ImplicitCurve: public Curve<N,VecMtx::VecN<M,F>,F>

{

public:

typedef VecMtx::VecN<M,F> ValueType;

// The type of the return value.

typedef Curve<N+M,ValueType,F> DCurveType;

// The type of the defining curve.

...

};

}

Template argument N is the number of parameters in the implicit curve. The return
value is a vector of length M and the defining curve has N+M arguments.

If template arithmetic is not allowed, the following definition is used:

namespace CurveLib {

template<unsigned N, unsigned M, unsigned NPM,

class F = double>

class ImplicitCurve: public Curve<N,VecMtx::VecN<M,F>,F>

{

public:

typedef VecMtx::VecN<M,F> ValueType;

// The type of the return value.

typedef Curve<NPM,ValueType,F> DCurveType;

// The type of the defining curve.

...

};

}

42 DRDC Atlantic TM-2006-254

In this case the template argument NPM must equal N+M.

The evaluation of an ImplicitCurve executes a Newton-Raphson search to find the
zeros of the defining curve. Parameters required to determine convergence of the
iteration are specified using constructor arguments:

ImplicitCurve(const DCurveType &c, F acc = F(1)/F(1000000),

unsigned itmax = 30, F frac = F(0))

Constructs the curve using c as the defining curve. The N parameters of the
implicit curve are the last N parameters of c. Given values for these N param-
eters, the values of the implicit curve are such that when used as the first M

parameters of c, c will return zero.

The Newton-Raphson search used when evaluating the curve is considered con-
verged when the magnitude of the returned value of c is smaller than acc. A
maximum of itmax iterations will be used. The default value for acc is 10−6.
The odd syntax for defining this value is because an int is guaranteed to be
convertible to an F, but a double is not. Therefore using F acc = 1.0e-06 is
not guaranteed to compile.

If frac is non-zero, the derivatives of c used in the Newton-Raphson search will
be evaluated using finite differences. In this case a range must be set to delimit
the solution vector: see set_range below. The separation of the parameters
used for the derivatives will be frac times the full range of the parameter.

The use of finite differences to evaluate the derivatives in the Newton-Raphson search
is normally not necessary, since all defining curves should allow evaluation of their
first derivatives. However, when the defining curve is very complex, evaluation of
the derivative is sometimes much slower than evaluation of finite differences. Typi-
cally the loss of accuracy implicit in the use of finite differences does not affect the
convergence rate significantly.

The range [am, bm] used to limit the search can be set using the following member
function.

void set_range(const ParamRange<M,F> &r)

Sets a range used to limit the Newton-Raphson search: see Section 11.1. The
range may also be used to initialize the parameters if this is the first evaluation
of the curve and initialize has not been called. The range is also used if the
derivatives of the curve are to be evaluated by finite differences.

The Newton-Raphson search requires an initial guess for the values of gm(yn); we
will denote these values by gi

m. ImplicitCurve allows the values of gi
m to be defined

explicitly. At the end of a successful Newton-Raphson search, the values of gi
m will

be set to the value returned by the implicit curve: i.e. the subsequent call to the
implicit curve will be initialized using the value returned by the current call. After
construction of an ImplicitCurve, the values of gi

m are undefined. Also, if a Newton-

DRDC Atlantic TM-2006-254 43

Raphson search is unsuccessful, the values of gi
m become undefined.

Alternatively, an initialization curve, cm(yn), can be specified. If cm(yn) is defined,
it will be used to generate the initial values: gi

m = cm(yn). Clearly, the initialization
curve should be an approximation of the implicit curve itself.

The full algorithm for initializing the Newton-Raphson search is as follows:

if cm(yn) is defined
for all m, gi

m ←− cm(yn)
if gi

m is defined
if the range [am, bm] is defined

for all m, if gi
m < am or gi

m > bm then
gi

m ←− (am + bm)/2
else

if the range [am, bm] is defined
for all m, gi

m ←− (am + bm)/2
else

for all m, gi
m ←− 0

Initialization is controlled using the following member functions:

void initialize(const ValueType &p)

Sets the values of gi
m to p. However, if an initialization curve is defined, when

the search is initialized, these values will be overridden by the values returned
by the initialization curve. Therefore, this call is only effective when there is
no initialization curve.

void set_initialization_curve(Curve<N,ValueType,F> crv)

Sets the initialization curve, cm(yn) to crv.

void reset_initialization_curve()
Throws away the initialization curve, cm(yn). The next evaluation of the curve
will be initialized using the current values of gi

m.

As an example of the use of ImplicitCurve<N,M,F>, consider the curve h(x) =
eax + bx. Let g(a, b) be the positive value of x at which h(x) intersects the unit circle
centred at (0, 1). A defining curve for g(a, b) is:

f(g, a, b) = g2 + (eag + bg − 1)2 − 1 (37)

We can define a curve to represent g(a, b) using an ImplicitCurve<2U,1U> as follows:

using namespace CurveLib;

FOneParamCurve<3U> g(0), a(1), b(2);

Curve<3U,double> hm1 = Exp<>()(a*g) + b*g - 1.0;

44 DRDC Atlantic TM-2006-254

MultiCurve<3U,1U> f;

f[0] = g*g + hm1*hm1 - 1.0;

ImplicitCurve<2U,1U> gcrv(f);

We know the value of g(a, b) always lies in [0, 1] so we can restrict the range of the
returned value:

ParamRange<1U,double> range(0.0,1.0);

gcrv.set_range(range);

Now gcrv can be treated as any other curve. The code

ImplicitCurve<2U,1U>::ParamType p(1.0,2.0);

ImplicitCurve<2U,1U>::DerivType da(1,0), db(0,1);

std::cout << "The value of g(1,2) = " << gcrv(p) << ’\n’

<< "The value of dg/da(1,2) = " << gcrv(p,da) << ’\n’

<< "The value of dg/db(1,2) = " << gcrv(p,db) << ’\n’;

results in

The value of g(1,2) = 3.011131e-01

The value of dg/da(1,2) = -1.109622e-01

The value of dg/db(1,2) = -8.211137e-02

being written to standard output.

Notice that the defining curve, f, must return a 1-vector, not a scalar, so it was
defined using MultiCurve<3U,1U> rather than say

Curve<3U,double> f = g*g + hm1*hm1 - 1.0;

Similarly, gcrv returns a 1-vector, not a double. To convert it so that it returns a
double we could use OneCompCurve<N,V,F>:

OneCompCurve<2U,VecMtx::VecN<1U> > gdouble(gcrv,0);

11.3 Inverse curves
Let h(x) be a function of N variables, xn, which returns a vector of length N . Define
the inverse of h to be the curve, h−1(x), for which

h
(
h−1(x)

)
= x (38)

The class InverseCurve<N,F>, defined in the header file ImplicitCurve.h, repre-
sents the inverse curve h−1(x). The number of parameters, N, must be the same as
the length of the vector returned; therefore, the return type is VecMtx::VecN<N,F>.

InverseCurve<N,F> is implemented as an ImplicitCurve<N,N,F> whose defining
curve, fi(xn, ym), is:

fi(xn, ym) = hi(xn)− yi (39)

DRDC Atlantic TM-2006-254 45

If template arithmetic is not supported by the compiler, InverseCurve has one ex-
tra template argument: InverseCurve<N,N2,F> where N2 must equal 2*N. This is
because ImplicitCurve requires an extra template argument if template arithmetic
is not supported.

Because it is implemented using ImplicitCurve<N,N,F>, the member functions of
InverseCurve<N,F> are similar to those of ImplicitCurve<N,N,F>.

InverseCurve(const CurveType &c, F acc = F(1)/F(1000000),

unsigned itmax = 30, F frac = F(0))

Makes a curve which is the inverse of c. A Newton-Raphson search is used to
evaluate the inverse curve. It is considered converged when the magnitude of
the returned value of c is smaller than acc. A maximum of itmax iterations
will be used.

If frac is non-zero, the derivatives of c used in the Newton-Raphson search
will be evaluated using finite differences. In this case a range must be set to
delimit the solution vector. The separation of each parameter used for the finite
differences will be frac times the full range of the parameter.

void initialize(const ValueType &p)

Sets an initial guess for the next evaluation of the implicit function. However,
if an initialization curve is defined, when the search is initialized, these values
will be overridden by the values returned by the initialization curve. Therefore,
this call is only effective when there is no initialization curve.

void set_initialization_curve(Curve<N,ValueType,F> crv)

Sets the initialization curve to crv.

void reset_initialization_curve()
Throws away the initialization curve. The next evaluation of the curve will be
initialized using the current values of gi

m.

void set_range(const RangeType &r)

Sets a range used to limit the Newton-Raphson search. The range may also be
used to initialize the parameters if this is the first evaluation of the curve and
initialize has not been called. The range is also used if the derivatives of the
curve are to be evaluated by finite differences.

A FailingSearch exception is thrown if there is no convergence when an inverse
curve is evaluated.

The class FInverseCurve<F> is very similar to InverseCurve<N,F> but handles the
case when the defining curve has a single argument and returns a scalar (i.e. an F);
InverseCurve<1U,F> is used if the defining curve has a single argument but returns

46 DRDC Atlantic TM-2006-254

a 1-vector. The member functions of FInverseCurve<F> are very similar to those of
InverseCurve<1U,F>.

FInverseCurve(const CurveType &c, F acc = F(1)/F(1000000),

unsigned itmax = 30, F frac = F(0))

Makes a curve which is the inverse of c.

void initialize(F p)

Sets an initial guess for the next evaluation of the implicit function.

void set_initialization_curve(Curve<1U,F,F> crv)

Sets the initialization curve to crv.

void reset_initialization_curve()
Throws away the initialization curve.

void set_range(F plo, F phi)

Sets a range used to limit the Newton-Raphson search.

For example, the following code could be used to define a curve to represent f(x) =
arcsin(x) (the curve ArcSin<> is much more efficient).

using namespace CurveLib;

Sin<> sin_crv;

FInverseCurve<> arcsin(sin_crv);

double pio2 = 0.5*3.14159265358979323846;

arcsin.set_range(-pio2,pio2);

12 Defining a new curve
Although the classes and functions defined in the previous sections provide powerful
means for generating complex curves from simple ones, there will inevitably be sit-
uations in which you want to define a curve by making a specialization of the class
Curve<N,V,F>. This section describes what you need to know to do that.

A Curve<N,V,F> is really a handle to a representation of the curve (see Stroustrup[6],
Chapter 13.9 for a discussion of handles). Therefore, when defining a new curve one
has two define two new classes: the handle, which is a specialization of Curve<N,V,F>;
and the representation, which is a specialization of CurveRep<N,V,F>. It is the
representation which actually does all the work in evaluating the curve.

A handle contains a pointer to its representation (the pointer is stored in a base
class). Two different handles may share the same representation. The representation
maintains a count of how many handles are sharing it. When that count drops to
zero, the representation is deleted. This scheme has some implications:

DRDC Atlantic TM-2006-254 47

• Representations must always be allocated from the heap.

• A representation should never be deleted explicitly; it will be deleted automat-
ically when no handle is using it. Therefore one never has to worry about the
persistence of a representation (i.e. whether the representation will be deleted
before it is used).

The following member functions are the minimum required for the handle:

1. A constructor which allocates an appropriate representation from the heap.

2. An assignment operator which uses the assignment operator of the base class
Curve<N,V,F>::operator=() to copy the pointer to the representation. This
operator ensures that the reference count of the representation is incremented.
The default assignment operator must not be used. If it were, the pointer to the
representation (stored in the base classes) would be be copied without increasing
its reference count. The reference count will then drop to zero prematurely
causing the representation to be deleted while still being used. It is likely that
an obscure memory allocation error will result.

The representation class must define a virtual destructor as well as the following
virtual member functions.

virtual F value(const ParamType &p) const

Evaluates the curve for parameters p. The argument type ParamType is an alias
for VecMtx::VecN<N,F>: i.e. it is a vector of length N.

virtual F value(const ParamType &p, const DerivType &d) const

Evaluates the derivatives of the curve for parameters p. DerivType is an alias
for Derivs<N>.

virtual Share::HandleRep* copy_self() const

Allocates a new instance of the representation from the heap, copies itself into
the new representation, and then returns a pointer to it. This function is
required by the base class Share::HandleRep which contains the attributes
necessary for representations of handles.

For example, suppose we wish to define a curve which will evaluate f(x) = sin(x)/x
even when x = 0. This cannot be done using the functions and classes described
in earlier sections. Instead we define a new class, SinxOx, and its representation
SinxOxRep. We will assume that the parameters and return value are of type double.

We consider the representation first.

using namespace CurveLib;

class SinxOxRep: public CurveRep<1U,double,double>

{

48 DRDC Atlantic TM-2006-254

public:

SinxOxRep() { }

SinxOxRep(const SinxOxRep &rep)

: CurveRep<1U,double,double>(rep)

{ }

virtual ~SinxOxRep() { }

virtual double value(const ParamType &p) const;

virtual double value(const ParamType &p, const DerivType &d) const;

private:

virtual Share::HandleRep* copy_self() const {

return new SinxOxRep(*this);

}

};

The class has a default constructor and a copy constructor (not strictly necessary
since this is equivalent to the default copy constructor). The virtual destructor must
be present, even though it does nothing explicit. The inherited function copy self

returns a new copy of the class allocated from the heap; the use of the copy constructor
here is typical.

The overloaded value functions are used to evaluate the curve and its derivatives.
They might be defined as follows using the fact that

dn

dxn

(
sin(x)

x

)∣∣∣∣
x→0

=

{
(−1)n/2

n+1
if n is even

0 if n is odd
(40)

double SinxOxRep::value(const ParamType &p) const

{

if (p[0] == 0.0) return 1.0;

else return sin(p[0])/p[0];

}

double SinxOxRep::value(const ParamType &p,

const DerivType &d) const

{

if (d[0] == 0) return value(p);

if (p[0] == 0.0) {

if (d[0]%2 == 1) return 0.0;

if (d[0]%4 == 0) return 1.0/(d[0]+1);

else return -1.0/(d[0]+1);

}

else {

DRDC Atlantic TM-2006-254 49

if (d[0] == 1) {

double x = p[0];

return (x*cos(x)-sin(x))/(x*x);

}

else {

FIdentityCurve<> x;

Curve<1U,double,double> d_sinxox_crv =

(x*Cos<>()-Sin<>())*PowInt<>(-2);

return d_sinxox_crv(p[0],d[0]-1);

}

}

}

When x 6= 0, the first derivative is calculated explicitly but higher derivatives are
calculated by constructing a curve equal to the first derivative, then evaluating the
derivatives of that. This technique for evaluating higher derivatives is typical.

These functions could be improved in several ways. In particular, it would be better
to define a small region around zero in which the curve was evaluated using a Taylor
expansion. Evaluating the higher derivatives would be more efficient if more cases
were handled explicitly and if the curve d sinxox crv were a member.

The curve itself can now be defined as follows.

using namespace CurveLib;

class SinxOx: public Curve<1U,double,double>

{

public:

SinxOx()

: Curve<1U,double,double>(new SinxOxRep())

{ }

SinxOx(const SinxOx &sinxox)

: Curve<1U,double,double>(sinxox)

{ }

~SinxOx() { }

SinxOx& operator=(const SinxOx &sinxox) {

Curve<1U,double,double>::operator=(sinxox);

return *this;

}

};

The first constructor creates a new representation for the curve. It uses a protected
Curve<1U,double,double> constructor to assign this representation to the curve.
The representation must be allocated from the heap using the new operator. If it is
not, obscure memory errors will result.

50 DRDC Atlantic TM-2006-254

Notice that SinOx never explicitly deletes its representation. This is handled by the
base classes Share::Handle and Share::HandleRep which provide the attributes
for handles and their representations. The representations can be shared among
different handles; this happens whenever a curve is copied. The representation stores
a reference count: the number of handles which are currently sharing it. When the
reference count falls to zero, the representation is deleted automatically.

The SinOx copy constructor and destructor are not strictly necessary, but it is usually
a good idea to include them. On the other hand, as discussed above, the assignment
operator must be defined.

13 Concluding remarks
This document has described a library of C++ classes which represent differentiable
multi-parameter functions. Although originally developed for representing complex
geometric shapes, these classes can be used in much wider applications.

The main utility of the classes lies in the ability to generate complex functions from
simple ones using arithmetic operators, composition, vector operators and inverse
methods. The resulting curve is always fully differentiable.

DRDC Atlantic TM-2006-254 51

References
[1] Hally, D. (2006), C++ classes for representing curves and surfaces:

Part II: Splines, (DRDC Atlantic TM 2006-255) Defence R&D Canada –
Atlantic.

[2] Hally, D. (2006), C++ classes for representing curves and surfaces:
Part III: Reading and writing in IGES format, (DRDC Atlantic TM 2006-256)
Defence R&D Canada – Atlantic.

[3] (1988), Initial Graphics Exchange Specification (IGES) Version 4.0, US Dept. of
Commerce, National Bureau of Standards. Document No. NBSIR 88-3813.

[4] Hally, D. (2006), C++ classes for representing curves and surfaces:
Part IV: Distribution functions, (DRDC Atlantic TM 2006-257) Defence R&D
Canada – Atlantic.

[5] Standard Template Library Programmer’s Guide (online), Silicon Graphics, Inc.,
http://www.sgi.com/tech/stl (Access Date: November 2006).

[6] Stroustrup, B. (1991), The C++ Programming Language, 2nd ed,
Addison-Wesley Publishing Co.

[7] (1987), ANSI/IEEE Standard 754-1985, Standard for Binary Floating Point
Arithmetic, ACM SIGPLAN Notices 22(2). Also see:
http://grouper.ieee.org/groups/754.

52 DRDC Atlantic TM-2006-254

http://www.sgi.com/tech/stl
http://grouper.ieee.org/groups/754

Annex A: Concepts
A.1 Arithmetic Object
Description
Arithmetic Object is a concept that is defined in conjuction with the Scalar Object
concept (see Annex A.2). We say that a type V is a model of Arithmetic Object with
respect to the Scalar Object F.

Refinement of
Assignable, Default Constructible, Equality Comparable (these concepts are defined
by the Standard Template Library).

Associated types
Scalar Object

Notation
F A type that is a model of Scalar Object.

V A type that is a model of Arithmetic Object with respect to F.

x Object of type F.

v,w Objects of type V.

Valid expressions
In addition to the expressions defined by the Standard Template Library (STL) con-
cepts Assignable, Default Constructible, and Equality Comparable, the following ex-
pressions must be valid.

Name Expression Return type
Negation -v V

Addition v + w V

Subtraction v - w V

Scaling x*v V

Scaling v*x V

Scaling v/x V

In place addition v += w V&

In place subtraction v -= w V&

In place scaling v *= x V&

In place scaling v /= x V&

Setting to zero zero(v)

DRDC Atlantic TM-2006-254 53

Expression semantics
Name Expression Pre-condition Semantics
Negation -v Returns the negation of v
Addition v + w Adds v and w

Subtraction v - w Subtracts w from v. Equiva-
lent to v + (-w).

Scaling x*v Scales v by x

Scaling v*x Scales v by x

Scaling v/x Scales v by 1/x. Not defined
if x == F(0) is true.

In place addition v += w Adds w to v and returns a
reference to v. Equivalent to
v = v + w.

In place
subtraction

v -= w Subtracts w from v and re-
turns a reference to v. Equiv-
alent to v = v - w.

In place scaling v *= x Scales v by x and returns a
reference to v. Equivalent to
v = v*x.

In place scaling v /= x Scales v by 1/x and returns a
reference to v. Equivalent to
v = v/x.

Setting to zero zero(v) Sets the object to zero.

Invariants
Most models of Scalar Object include exceptional values for which the normal arith-
metic rules do not apply: examples are NaN and Infinity for float or double con-
forming to the IEEE Standard 754 for Floating Point Arithmetic[7]. The following
invariants are required only if no component of v or w is an exceptional value.

x*v == v*x is true.
v*F(0) == -(v*F(0)) is true.
v + w*F(0) == v is true.
v*F(1) == v is true.

Models
float, double, long double, std::complex<float>, std::complex<double> and
std::complex<long double> are all models of Arithmetic Object with respect to
themselves.

VecMtx::VecN<N,F> is a model of Arithmetic Object with respect to F.

Notes
Arithmetic Object has the arithmetic attributes required by scalars, vectors and
matrices. The returned values of curves must model Arithmetic Object with respect

54 DRDC Atlantic TM-2006-254

to the Scalar Object used for the curve parameters.

The CurveLib classes require a means of setting a returned value of a curve to zero.
Unfortunately, there is no means of constructing an Arithmetic Object which ensures
that its value, or the values of its components if it is a Vector Object (see Annex A.4),
are not exceptional values. Otherwise it would be sufficient to construct the Arith-
metic Object and multiply it by F(0). Therefore it is necessary to require an extra
function which handles the assignment. For use in the CurveLib library, it is sufficient
that the function zero(const V&) be defined either in the namespace CurveLib or
in the global namespace.

A.2 Scalar Object
Description
Scalar Object is a concept which reflects the attributes of a floating point number.
Each parameter of a curve must be a Scalar Object.

Refinement of
A Scalar Object is an Arithmetic Object with respect to itself.

Notation
F A type that is a model of Scalar Object.

x,y Objects of type F.

n An object of type int.

Valid expressions
In addition to the expressions defined by the concepts Arithmetic Object, Assignable,
Default Constructible and Equality Comparable, the following expressions must be
valid.

Name Expression Return type
Conversion from int F(n) F

Square root sqrt(x) F

Exponentiation pow(x,n) F

Expression semantics
Name Expression Pre-condition Semantics
Conversion from
int

F(n) Creates a Scalar Object with
value equivalent to n

Square root sqrt(x) Returns the square root of x.
Exponentiation pow(x,n) x != F(0) ||

n != 0

Returns x to the power n

DRDC Atlantic TM-2006-254 55

Invariants
The following invariants are required if x is not an exceptional value (e.g. NaN or
Infinity).

F(0) == -F(0) is true.
x*F(0) == F(0) is true.
x + F(0) == x is true.
x != F(0) && F(0)/x == F(0) is true.
x != F(0) && x/x == F(1) is true.

Models
float, double, long double, std::complex<float>, std::complex<double>,
std::complex<long double>

Notes
It is intended that a Scalar Object is some sort of floating point number but, due
to inaccuracies caused by round-off, it is difficult to specify all the invariants that
would ensure this in a mathematical sense. For example, associativity (x*(y*z) ==

(x*y)*z is true) is required to ensure that a Scalar Object is a mathematical field,
but it cannot be guaranteed in most implementations of floating point numbers.
Moreover, a clear requirement that x*(y*z) - (x*y)*z is small would require a
notion of size and comparability that we cannot give to the Scalar Object concept.

It may seem odd to require the sqrt and pow functions, but no other elementary
functions. The sqrt function is needed for determining the magnitude of vectors
and the pow function is needed for the efficient evaluation of high order derivatives
of some curves (for example, if g(x) = f(ax) then ∂ng(x)/∂xn = an∂nf(ax)/∂(ax)n;
pow is used to evaluate an). This is not wholly satisfactory as it requires providing
a Scalar Object with two functions which it may normally not require (for example,
an Angle<double>, described in Annex E, is not a Scalar Object solely because it
lacks these two functions) but has been adopted as the simplest means of providing
efficient implementations of both scalar and vector valued functions.

A.3 Comparable Scalar Object
Description
Comparable Scalar Object is a concept which reflects the attributes of a floating point
number for which comparison operators are defined. Complex numbers can be Scalar
Objects but not Comparable Scalar Objects.

Refinement of
Comparable Scalar Object is a refinement of both Scalar Object and the STL concept
Less Than Comparable. A Comparable Scalar Object is also an Absolute Object with
respect to itself. It adds no additional syntax to the expressions defined by these
models.

56 DRDC Atlantic TM-2006-254

Expression semantics
Comparable Scalar Object inherits all the expressions of Scalar Object and Less Than
Comparable and adds no new ones. However, it does add a pre-condition to the sqrt
function:

Name Expression Pre-condition Semantics
Square root sqrt(x) x >= F(0) Returns the square root of x.

Invariants
x < x is false
x < y implies !(y > x)

x < y && y < z implies x < z

x*x >= F(0) is true
x >= F(0) && abs(x) == x is true
x <= F(0) && abs(x) == -x is true

Models
float, double, long double

A.4 Vector Object
Description
Vector Object is a concept which reflects the attributes of a vector with arithmetic
operators. Each component of the vector is a Scalar Object.

Refinement of
A Vector Object is an Arithmetic Object with respect to some Scalar Object which
we will denote by F.

Associated types
Scalar Object

Notation
V A type that is a model of Vector Object.

F The type of the components of an object of type V: a model of Scalar Object.

v,w Objects of type V.

x An object of type F.

n An unsigned int.

Valid expressions
In addition to the expressions defined by the concept Arithmetic Object, the following
expressions must be valid.

DRDC Atlantic TM-2006-254 57

Name Expression Return type
Size v.size() unsigned int

Subcripting v[n] F

Expression semantics
Name Expression Pre-condition Semantics
Subcripting v[n] n < v.size() Returns component n. If v

is not const, the returned
value is an l-value: i.e. it is
assignable.

Invariants
The arithmetic operators act component by component. The following invariants are
required if x is not an exceptional value (e.g. NaN or Infinity).

(-v)[i] == -v[i] is true.
(v1+v2)[i] == v1[i]+v2[i] is true.
(v1-v2)[i] == v1[i]-v2[i] is true.
(x*v)[i] == x*v1[i] is true.
x != F(0) && (v/x)[i] == v1[i]/x is true.

Models
VecMtx::VecN<N,F> is a model of Vector Object with respect to F.

Notes
It is intended that a Vector Object is a vector of floating point numbers but, due
to inaccuracies caused by round-off, it is difficult to specify all the invariants that
would ensure this in a mathematical sense. For example, associativity (x+(y+z) ==

(x+y)+z is true) is required to ensure that a Vector Object is a mathematical vector
space, but it cannot be guaranteed in most implementations of floating point numbers.
Moreover, a clear requirement that (x+(y+z)) - ((x+y)+z) is small would require
a notion of size and comparability that we cannot give to the Vector Object concept.

A.5 Absolute Object
Description
An Absolute Object with respect to a Comparable Scalar Object F is one for which
an absolute value of type F can be assigned. If the Absolute Object is a vector type,
the absolute value is considered to be the magnitude of the vector.

Associated types
Scalar Object

58 DRDC Atlantic TM-2006-254

Notation
F A type that is a model of Scalar Object.

A A type that is a model of an Absolute Object with respect to F.

a An object of type A.

Valid expressions
The following expression must be valid.

Name Expression Return type
Absolute value abs(a) F

Expression semantics
Name Expression Pre-condition Semantics
Absolute value abs(a) Returns the absolute value of

a.

Invariants
abs(a) >= F(0) is true.

Models
float, double and long double are Absolute Objects with respect to themselves.

std::complex<F> is an Absolute Object with respect to F for F of type float, double
and long double.

VecMtx::VecN<N,F> is an Absolute Object with respect to F whenever F is a model
of Comparable Scalar Object.

DRDC Atlantic TM-2006-254 59

This page intentionally left blank.

60 DRDC Atlantic TM-2006-254

Annex B: Prototypes for VecMtx::VecN
The parameter list of a curve is represented using the class VecN<N,F> in the name-
space VecMtx. It is a vector of N values each of which has type F. F must be a model
of a Scalar Object: see Annex A.2. If the template parameter F is omitted, it defaults
to double. N is of type unsigned int.

VecN<N,F> is a model of a Vector Object with respect to F (see Annex A.4) and hence
implements a full range of arithemtic operators. It is also suitable for the return value
of a CurveLib::Curve<N,V,F>.

VecN<N,F> is designed for optimal storage: its size is the same as an array of type
F[N] which is typically N*sizeof(F) plus any extra space required for alignment on
word boundaries.

B.1 Constructors
VecN<N,F> has three constructors:

VecN()
The values remain undefined.

explicit VecN(const F[N] v1)

The values in v1 are copied.

VecN(const VecN<N,F> &v1)

Copy constructor: the values in v1 are copied.

The classes VecN<1U,F>, VecN<2U,F> and VecN<3U,F> are special. They each have
an additional constructor which allows its values to be specified by one, two or three
values of type F.

VecN(F x)
An extra constructor for VecN<1U,F> which sets its single element to x.

VecN(F x, F y)

An extra constructor for VecN<2U,F> which sets its two elements to x and y.

VecN(F x, F y, F z)

An extra constructor for VecN<3U,F> which sets its three elements to x, y and z.

B.2 Other member functions
unsigned size() const

Returns the length of the vector.

DRDC Atlantic TM-2006-254 61

F& operator[](unsigned i)

Returns vector element i as an l-value. There is no bounds checking.

F operator[](unsigned i) const

Returns the value of vector element i. There is no bounds checking.

B.3 Other functions
As a model of an Vector Object with respect to F, VecN<N,F> implements a wide
range of arithmetic operators. The following functions are also defined (the class
VecMtx::MtxN<N,F> is described in Annex C):

template<unsigned N, class F>

F dot(const VecN<N,F> &v1, const VecN<N,F> &v2)

Returns the dot product of v1 and v2.

template<class F>

VecN<3U,F> cross_product(const VecN<3U,F> &v1,

const VecN<3U,F> &v2)

Cross product for 3-vectors.

template<unsigned N, class F>

F abs(const VecN<N,F> &v)

Equivalent to sqrt(dot(v,v)). If F is a real type, abs returns the magnitude
of v. If F is a complex type, then, since the returned value is a complex number,
the returned value cannot be interpreted as the magnitude of the vector.

template<unsigned N, class F>

VecN<N,F>& unit(VecN<N,F> &v)

Equivalent to v/abs(v). If F is a real type, unit converts v to a unit vector
and returns a reference to v.

template<unsigned N, class F>

VecN<N,F> prod_by_element(const VecN<N,F> &v1,

const VecN<N,F> &v2)

Returns a vector whose elements are the product of the elements of v1 and v2.

template<unsigned N, class F>

VecN<N,F> operator*(const MtxN<N,F> &m, const VecN<N,F> &v)

Multiplication by a matrix. Returns m*v.

template<unsigned N, class F>

VecN<N,F> operator*(const VecN<N,F> &v, const MtxN<N,F> &m)

Multiplication by a matrix. Returns v*m.

62 DRDC Atlantic TM-2006-254

template<unsigned N, class F>

bool operator==(const VecN<N,F> &v1, const VecN<N,F> &v2)

True if the elements of v1 and v2 are the same.

template<unsigned N, class F>

bool operator!=(const VecN<N,F> &v1, const VecN<N,F> &v2)

True if the elements of v1 and v2 are different.

template<unsigned N, class F>

std::ostream& operator<<(std::ostream &out, const VecN<N,F> &v)

Writes v to out in scientific notation.

template<unsigned N, class F>

std::istream& operator>>(std::istream &in, VecN<N,F> &v)

Reads v from in.

The following functions are also defined for VecN<N,F> provided that the compiler
allows template arithmetic.

template<unsigned N, class F>

VecN<N-1,F> reduce(const VecN<N,F> &v, unsigned k)

Makes a vector of length N-1 by removing element k from v. N must exceed 1.

template<unsigned N, class F>

VecN<N+1,F> extend(const VecN<N,F> &v, unsigned k, F val)

Makes a vector of length N+1 by inserting val into v at element k.

DRDC Atlantic TM-2006-254 63

This page intentionally left blank.

64 DRDC Atlantic TM-2006-254

Annex C: Prototypes for VecMtx::MtxN
A MtxN<N,F> is an N× N matrix whose elements are of type F. F must be a model of
a Scalar Object: see Annex A.2. If the template parameter F is omitted, it defaults
to double. N is of type unsigned int.

MtxN<N,F> is a model of an Arithmetic Object with respect to F (see Annex A.1)
and hence implements a full range of arithemtic operators. It is also suitable for the
return value of a CurveLib::Curve<N,V,F>.

MtxN<N,F> is designed for optimal storage: its size is the same as an array of type
F[N*N] which is typically N*N*sizeof(F) plus any extra space required for alignment
on word boundaries.

C.1 Constructors
Only the default no-argument constructor is defined explicitly. When it returns the
matrix elements are undefined. The default copy constructor can also be used.

The classes MtxN<1U,F>, MtxN<2U,F> and MtxN<3U,F> are special. Their functions
have been defined to be very effcient. MtxN<1U,F> also has an additional constructor:

MtxN(F x)
An extra constructor for MtxN<1U,F> which sets its single element to x.

C.2 Other member functions
unsigned num_rows() const

Returns the number of rows, N.

unsigned num_cols() const

Returns the number of columns, N.

F& operator()(unsigned i,unsigned j)

Returns matrix element (i,j) as an l-value. There is no bounds checking.

F operator()(unsigned i,unsigned j) const

Returns the value of matrix element (i,j). There is no bounds checking.

C.3 Other functions
As a model of an Arithmetic Object with respect to F, MtxN<N,F> implements a wide
range of arithmetic operators. The following functions are also defined (the class
VecMtx::VecN<N,F> is described in Annex B):

DRDC Atlantic TM-2006-254 65

template<unsigned N, class F>

void identity(MtxN<N,F> &m, F d)

Sets the matrix m to the identity times d.

template<unsigned N, class F>

inline void identity(MtxN<N,F> &m)

Sets the matrix m to the identity.

template<unsigned N, class F>

MtxN<N,F>& transpose(MtxN<N,F> &m)

Transposes m, then returns it.

template<unsigned N, class F>

MtxN<N,F>& invert(MtxN<N,F> &m)

Inverts m using Gaussian elimination with pivoting. If the matrix is singular,
a VecMtx::SingularMatrix exception (derived from class Error described in
Annex F) is thrown.

template<unsigned N, class F>

VecN<N,F> operator*(const MtxN<N,F> &m, const VecN<N,F> &v)

Returns m*v.

template<unsigned N, class F>

VecN<N,F> operator*(const VecN<N,F> &v, const MtxN<N,F> &m)

Returns v*m.

template<unsigned N, class F>

MtxN<N,F> operator*(const MtxN<N,F> &m1, const MtxN<N,F> &m2)

Returns m1*m2.

template<unsigned N, class F>

MtxN<N,F>& scale_rows(MtxN<N,F> &m, const VecN<N,F> &v)

For each i from 0 to N-1, scales row i of m by v[i].

template<unsigned N, class F>

MtxN<N,F>& scale_columns(MtxN<N,F> &m, const VecN<N,F> &v)

For each i from 0 to N-1, scales column i of m by v[i].

template<unsigned N, class F>

inline bool operator==(const MtxN<N,F> &m1, const MtxN<N,F> &m2)

Returns true if m1 and m2 are equal.

template<unsigned N, class F>

inline bool operator!=(const MtxN<N,F> &m1, const MtxN<N,F> &m2)

Returns true if m1 and m2 are not equal.

66 DRDC Atlantic TM-2006-254

template<unsigned N, class F>

std::ostream& operator<<(std::ostream &out, const MtxN<N,F> &m)

Writes m to out, one row per line, in scientific notation.

template<unsigned N, class F>

std::istream& operator>>(std::istream &in, MtxN<N,F> &v)

Reads m from in. The first row is read first, then the second row, etc.

DRDC Atlantic TM-2006-254 67

This page intentionally left blank.

68 DRDC Atlantic TM-2006-254

Annex D: Prototypes for CurveLib::Derivs
When a curve is evaluated, the number of derivatives with respect to each parameter
must be specified. This is done using the class Derivs<N> in namespace CurveLib.
N is of type unsigned int.

Derivs<N> is essentially an array of unsigned ints. It uses the standard square
bracket syntax for subscripting. Element n specifies the number of derivatives to be
taken with respect to parameter n.

D.1 Constructors
Derivs<N> has the following constructors:

Derivs()
Default constructor: sets the number of derivatives for each parameter to zero.

Derivs(const Derivs<N> &d)
Copy constructor.

The classes Derivs<1U>, Derivs<2U> and Derivs<3U> are special. They each have
an additional constructor which allows its values to be specified by one, two or three
values of type F.

Derivs(F i)
An extra constructor for Derivs<1U> which sets its single element to i.

Derivs(F i, F j)

An extra constructor for Derivs<2U> which sets its two elements to i and j.

Derivs(F i, F j, F k)

An extra constructor for Derivs<3U> which sets its three elements to i, j and k.

D.2 Other member functions
Derivs<N>& operator=(const Derivs<N> &d)

Assignment operator.

unsigned size() const

Returns the number of parameters.

unsigned total() const

Returns the total number of derivatives to be taken: i.e. the sum of the values
in the array.

DRDC Atlantic TM-2006-254 69

unsigned& operator[](unsigned i)

Returns the number of derivatives for parameter i as an l-value.

unsigned operator[](unsigned i) const

Returns the number of derivatives for parameter i.

D.3 Other functions
The following functions are also defined for Derivs<N> providing that template arith-
metic is allowed by the compiler. If it is not, then reduce functions will only be
defined for N equal to 2 and 3, and extend will only be defined for N equal to 1 or 2.
Both reduce and extend are in the namespace CurveLib.

template<unsigned N>

Derivs<N-1> reduce(const Derivs<N> &d, unsigned k)

Makes a Derivs<N-1> from d by removing element k.

template<unsigned N>

Derivs<N+1> extend(const Derivs<N> &d, unsigned k, unsigned v)

Makes a Derivs<N+1> by inserting v into d at element k.

70 DRDC Atlantic TM-2006-254

Annex E: Prototypes for class Angle
The class Angle<F> represents an angle. The template argument F must be a model
of a Comparable Scalar Object (see Annex A.3).

Angle<F> is a model of an Arithmetic Object with respect to F (see Annex A.1)
and the STL concept Less Than Comparable; hence, it implements a full range of
arithmetic and comparison operators. It is also suitable for the return value of a
CurveLib::Curve<N,V,F>.

Division of an Angle<F> by an Angle<F> is also defined (this is not required by the
Arithmetic Object concept); it returns an F equal to the ratio of the angles.

E.1 Constructors
Angle()

Default constructor: the value of the angle is unspecified.

Angle(F ang_rad)

Makes an angle equivalent to ang_rad radians.

E.2 Static members
static F pi

A representation of π as an F. It is used for converting between radians and
degrees. Explicit representations are provided when F is a float, double or
long double.

static Angle<F> right_angle()

Returns the angle equal to π/2 radians or 90 degrees.

static Angle<F> straight_angle()

Returns the angle equal to π radians or 180 degrees.

static Angle<F> full_circle()

Returns the angle equal to 2π radians or 360 degrees.

E.3 Member functions for setting and retrieving the
angle

void set_degrees(F deg)

Sets the value of the angle in degrees.

DRDC Atlantic TM-2006-254 71

void set_radians(F rad)
Sets the value of the angle in radians.

F degrees() const

Return the value of the angle in degrees.

F radians() const
Returns the value of the angle in radians.

Angle<F>& canonical()

Adjusts the angle to lie in [0, 2π). Returns the new angle.

E.4 Trigonometric functions
The six trigonometric functions sin(Angle<F>), cos(Angle<F>), tan(Angle<F>),
csc(Angle<F>), sec(Angle<F>) and cot(Angle<F>) are defined. They require that
the sin(F), cos(F) and tan(F) are defined and return an F.

72 DRDC Atlantic TM-2006-254

Annex F: Prototypes for class Error
All exceptions in CurveLib are derived from the class Error. Any exceptions thrown
by user-defined classes derived from Curve<N,V,F> or CurveRep<N,V,F> should also
be derived from Error.

An Error stores a message which describes the error which has occurred. Member
functions allow this message to be retrieved, to be appended to, or to be prepended
to.

Error(const std::string &m)

Constructs an error with message m.

Error(const Error &e)
Copy constructor.

void operator=(const Error &e)

Assignment operator: copies the error message.

void append_to_msg(std::string s)

Appends the argument s to the error message.

void prepend_to_msg(std::string s)

Prepends the argument s to the error message.

std::string get_msg() const

Returns the error message.

F.1 Prototypes for class ProgError
ProgError is an exception thrown when an error occurs that can clearly be identified
as a programming error rather than a run-time error. ProgError is derived from
Error and has the following member functions in addition to those defined by Error.

ProgError(const std::string &f, const std::string &m)

Constructs a ProgError for an error in function f. The error message is in m.

const std::string& get_func() const

Returns the string describing the location of the error.

DRDC Atlantic TM-2006-254 73

Index
Abs<N,F>, 15
Absolute Object, 37, 56, 58–59
Angle<F>, 71–72
AnyPlaneProjCurve<N,F>, 27
ArcCos<F>, 11
ArcCosh<F>, 13
ArcSin<F>, 10–11
ArcSinh<F>, 13
ArcTan2<F>, 11
ArcTan<F>, 11
ArcTanh<F>, 13
Arithmetic Object, 2, 53–55, 65, 71
arithmetic operators for curves, 5–7
AxisymmetricSurface<F>, 31–33

Bessel functions, 13–14
BesselJ<F>, 14
BesselY<F>, 14
BilinearPatch<V,F>, 19–20

Christoffel symbols, 29, 30
Comparable Scalar Object, 13, 37,

56–57, 71
complex conjugate curves, 17
ComplexConjCurve<N,F1,F>, 17
ComposedCurve<N,M,V,F>, 7–9
ComposedCurveFParam<N,V,F>, 8–9
composition of curves, 7–9
ConcatenatedCurve<N,M1,M2,F>,

23–24
constant parameter curves, 16–17
ConstPCurve<N,NP1,V,F>, 16–17
ConstPCurve<N,V,F>, 16–17
Cos<F>, 5, 7, 9, 10, 18, 30, 33
Cosh<F>, 12
Cot<F>, 10
Coth<F>, 12
cross product curve, 25–26
CrossProdCurve<N,F>, 25–26
Csc<F>, 10
Csch<F>, 12

Curve<1U,F,F>, 10, 13, 47
Curve<2U,VecMtx::VecN<3U,F>,F>,

29, 31
Curve<N,F,F>, 15
Curve<N,V,F>, 3, 2–4, 5, 7, 8, 15, 18,

25, 27, 38, 47, 61, 65, 71, 73
CurveRep<N,V,F>, 47, 73
CylProjCurve<N,F>, 28

defining new curves, 47–51
DerivCurve<N,V,F>, 15–16
Derivs<N>, 2, 16, 48, 68–70
DerivType, 2, 3, 4, 48, 49
dot product curve, 25
DotCurve<N,V,F>, 14, 25, 25, 26

elementary functions, 9–14
Erf<F>, 12
Erfc<F>, 12
exceptions

Error, 3, 5, 41, 66, 73
FailingSearch, 41, 46
NormalNotDefined, 30–33
ProgError, 5, 15, 18, 73
VecMtx::SingularMatrix, 66

Exp<F>, 11
exponential functions, 11–12

FIdentityCurve<F>, 14
FInverseCurve<F>, 46–47
FOneParamCurve<N,F>, 4, 14–15, 16,

18, 44

header files
ImplicitCurve.h, 42, 45

hyperbolic functions, 12–13

identity curves, 14–15
IdentityCurve<N,F>, 8, 14, 15, 24
implicit curves, 40–47
ImplicitCurve<N,M,F>, 41–45, 45
ImplicitCurve<N,M,NPM,F>, 41–45

74 DRDC Atlantic TM-2006-254

interpolation, 33–37
transfinite, 34–37

inverse curves, 45–47
InverseCurve<N,F>, 45–46, 46

linear curves, 19–20
linear transformations of parameters,

20–21
LinearCurve<V,F>, 19
LinearParamCurve<N,V,F>, 20–21
Log<F>, 11–12

MultiCurve<N,M,F>, 17–19, 30, 33,
44

namespaces
CurveLib, 2, 5, 69
Share, 48, 49, 51
std, 2, 5, 9, 11, 12, 18, 22, 30, 31,

33, 54, 56, 58, 59, 63, 67, 73
VecMtx, 2, 18, 23–29, 31–33, 37,

42, 43, 45, 48, 54, 59, 61–63,
65–67

Newton-Raphson search, 40–41, 43,
44, 46, 47

OneCompCurve<N,V,F>, 22–23, 45
OneParamCurve<N,F>, 14–15, 30

parameter ranges, 37–38
ParamRange<N,F>, 37–38, 38
ParamType, 2, 3, 4, 8, 14, 15, 17, 20,

21, 24, 29, 37–39, 48, 49
PlaneProjCurve<N,V,F>, 27
Polynomial<V,F>, 21, 22
polynomials, 21–22
Pow<F>, 9–10, 16, 17
PowInt<F>, 10
projection to a cylinder, 28
projection to a plane, 27
projection to a sphere, 28

Range curves, 37–40
RangeCurve<N,V,F>, 37, 38–40, 40

ReducedDimCurve<N,M,F>, 23
ReflectedCurve<N,V,F>, 24
ruled curves, 33–34
RuledCurve<N,NM1,V,F>, 33–34
RuledCurve<N,V,F>, 33–34

Scalar Object, 2, 55–56, 61, 65
Sec<F>, 10
Sech<F>, 12
Share classes

Handle, 51
HandleRep, 48, 49, 51

Sin<F>, 5, 10, 14, 18, 21, 30, 33, 47
Sinh<F>, 12
SinxOx, 48–51
SinxOxRep, 48–51
SphereProjCurve<N,F>, 28
Sqrt<>, 3
Sqrt<F>, 2–4, 7, 9, 9
Standard Template Library, 2, 22, 36
StandardRangeCurve<N,V,F>, 40
std classes

cerr, 5, 31, 33
complex<double>, 2, 9, 54, 56, 58
complex<F>, 11, 59
complex<float>, 2, 9, 54, 56, 58
complex<long double>, 9, 54, 56,

58
cout, 12, 30, 33
istream, 63, 67
ostream, 63, 67
string, 73
vector<CompCurveType>, 18
vector<V>, 22

surfaces, 29–33
axisymmetric, 31–33

Tan<F>, 10
Tanh<F>, 12
TransFinite2dCurve<V,F>, 34–37
TransFinite3dCurve<V,F>, 35–37
trigonometric functions, 10–11

DRDC Atlantic TM-2006-254 75

unit vector curves, 26
Unit<N,F>, 15
UnitCurve<N,V,F>, 26, 28

ValueType, 2
VecMtx classes

MtxN<2U,F>, 29
MtxN<N,F>, 62, 65–67
SingularMatrix, 66
VecN<2U,F>, 32
VecN<3U,F>, 24–29, 31–33
VecN<N,F>, 2, 18, 23, 37, 42, 43,

45, 48, 54, 59, 61–63, 65
Vector Object, 2, 22, 25, 26, 57–58,

61, 62
vector valued curves, 22–28

76 DRDC Atlantic TM-2006-254

Distribution list
DRDC Atlantic TM-2006-254

Internal distribution
1 Author

5 Library

Total internal copies: 6

External distribution
Department of National Defence

1 DRDKIM

2 DMSS 2

Others

2 Canadian Acquisitions Division
National Library of Canada
395 Wellington Street
Ottawa, Ontario
K1A ON4
Attn: Government Documents

1 Director-General
Institute for Marine Dynamics
National Research Council of Canada
P.O. Box 12093, Station A
St. John’s, Newfoundland
A1B 3T5

1 Director-General
Institute for Aerospace Research
National Research Council of Canada
Building M-13A
Ottawa, Ontario
K1A OR6

DRDC Atlantic TM-2006-254 77

1 Transport Development Centre
Transport Canada
6th Floor
800 Rene Levesque Blvd, West
Montreal, Que.
H3B 1X9
Attn: Marine R&D Coordinator

1 Canadian Coast Guard
Ship Safety Branch
Canada Building, 11th Floor
344 Slater Street
Ottawa, Ontario
K1A 0N7
Att: Chief, Design and Construction

MOUs

6 Canadian Project Officer ABCA-02-01 (C/SCI, DRDC Atlantic – 3 paper
copies, 3 PDF files on CDROM)

Total external copies: 15

Total copies: 21

78 DRDC Atlantic TM-2006-254

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when document is classified)

1. ORIGINATOR (The name and address of the organization preparing the
document. Organizations for whom the document was prepared, e.g. Centre
sponsoring a contractor’s report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Atlantic
PO Box 1012, Dartmouth NS B2Y 3Z7, Canada

2. SECURITY CLASSIFICATION (Overall
security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S, C or U) in parentheses after the title.)

C++ classes for representing curves and surfaces: Part I: Multi-parameter differentiable func-
tions

4. AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used.)

Hally, D.

5. DATE OF PUBLICATION (Month and year of publication of
document.)

January 2007

6a. NO. OF PAGES (Total
containing information.
Include Annexes,
Appendices, etc.)

90

6b. NO. OF REFS (Total
cited in document.)

7

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter
the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is
covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development –
include address.)

Defence R&D Canada – Atlantic
PO Box 1012, Dartmouth NS B2Y 3Z7, Canada

9a. PROJECT NO. (The applicable research and development
project number under which the document was written.
Please specify whether project or grant.)

11cj18

9b. GRANT OR CONTRACT NO. (If appropriate, the applicable
number under which the document was written.)

10a. ORIGINATOR’S DOCUMENT NUMBER (The official
document number by which the document is identified by the
originating activity. This number must be unique to this
document.)

DRDC Atlantic TM-2006-254

10b. OTHER DOCUMENT NO(s). (Any other numbers which may
be assigned this document either by the originator or by the
sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security
classification.)

(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond
to the Document Availability (11). However, where further distribution (beyond the audience specified in (11)) is possible, a wider
announcement audience may be selected.)

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U). It is
not necessary to include here abstracts in both official languages unless the text is bilingual.)

A library of C++ classes for representing multi-parameter differentiable functions is described.
The principal utility of the classes lies in the ability to combine simple curves in a variety of
ways to make complex curves while maintaining the differentiability of the result. This can be
done using arithmetic functions, composition, vector operators (e.g. dot and cross products) and
inverse methods.

The classes also include a wide variety of simple curves which can be used as building blocks,
including constants, linear curves, polynomials, exponential functions, trigonometric functions,
hyperbolic functions and Bessel functions.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could
be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as
equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords
should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified.
If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

differentiable functions
CurveLib
C++
computer programs

This page intentionally left blank.

	Abstract
	Résumé
	Executive summary
	Sommaire
	Table of contents
	1 Introduction
	2 Base curve classes
	3 Exceptions
	4 Arithmetic operators for curves
	5 Composition of curves
	6 Simple curves
	6.1 Elementary functions
	6.1.1 Trigonometric functions
	6.1.2 Exponential functions
	6.1.3 Hyperbolic functions
	6.1.4 Bessel functions

	6.2 Identity curves
	6.3 Abs and Unit
	6.4 Derivative curves
	6.5 Constant parameter curves
	6.6 Complex conjugate curves
	6.7 Vector curves from scalar curves
	6.8 Linear curves
	6.9 Linear transformations of parameters
	6.10 Polynomials

	7 Curves made from vector-valued curves
	7.1 Selecting a single component
	7.2 Throwing away a vector component
	7.3 Concatenating vector values
	7.4 Reflection in a plane
	7.5 Dot products
	7.6 Cross products
	7.7 Unit vectors
	7.8 Projections
	7.8.1 Projection to a plane
	7.8.2 Projection to a sphere
	7.8.3 Projection to a cylinder

	8 Surfaces
	8.1 Axi-symmetric surfaces

	9 Interpolation between boundary curves
	9.1 Ruled curves
	9.2 Transfinite interpolation

	10 Curves with parameter ranges
	10.1 Parameter ranges
	10.2 Range curves
	10.3 Standard range curves

	11 Implicitly defined curves
	11.1 Newton-Raphson search
	11.2 Implicit curves
	11.3 Inverse curves

	12 Defining a new curve
	13 Concluding remarks
	References
	Annex A Concepts
	A.1 Arithmetic Object
	A.2 Scalar Object
	A.3 Comparable Scalar Object
	A.4 Vector Object
	A.5 Absolute Object

	Annex B Prototypes for VecMtx::VecN
	B.1 Constructors
	B.2 Other member functions
	B.3 Other functions

	Annex C Prototypes for VecMtx::MtxN
	C.1 Constructors
	C.2 Other member functions
	C.3 Other functions

	Annex D Prototypes for CurveLib::Derivs
	D.1 Constructors
	D.2 Other member functions
	D.3 Other functions

	Annex E Prototypes for class Angle
	E.1 Constructors
	E.2 Static members
	E.3 Member functions for setting and retrieving the angle
	E.4 Trigonometric functions

	Annex F Prototypes for class Error
	F.1 Prototypes for class ProgError

	Index

