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1 INTRODUCTION

The contract under which this report has been prepared is entitled “MEMSGPS Integration
Investigation for NAVWAR Applications’ . Its purpose isto “research, design and build a
working prototype of an integrated MEM SGPS system”. GPS has become a dominant
navigation system for defence applications. However, GPSis highly susceptible to jamming
(duetoitslow power signal) and signd loss (due its requirement for line-of-sight satellite
vishility). A missile or aircraft approaching atarget could very well experienceincreasing
defensive GPS jamming noise just asits need for accuracy isincreasing. A soldier fighting in
acanyon —man-made or natural —will have the usefulness of his GPS navigator
compromised or negated by the lack of visible satellites. NAVWAR aimsto mitigate these
vulnerabilities by improving GPS operation in high jamming, high multipath and low signal
strength environments like these. Efforts will be directed in anumber of different directions.

Integration of an Inertia Navigation System (INS) with GPS has been shown to mitigate
NAVWAR problems. the INSis able to bridge GPS outages (and improve GPS signal
tracking in tightly coupled systems); GPS is able to calibrate INS sensor errors (thus
improving performance during GPS outages). However, traditiona inertial systems are too
expensive, too big and too complex to be practical on any but the costliest military platforms.
A GPS-based navigation system that could be carried by a soldier would haveto light and
robust; a system fitted into alarge number of land vehicles would have to be small and
inexpensive; a system mounted in an artillery shell would haveto survive 1000'sof g's
accel eration when fired and be capable of providing the required accuracy after decades of
storage. MEMS inertial sensors are tiny, inexpensive and robust. However, at present, they
are dso very inaccurate. A MEM S/GPS system has the potential provide at least some of the
benefits of INS/GPS integration while making robust navigation practically availableto a
much larger portion of the military in thefield.

This report describes important parts of the Kalman filter that is used to optimally combine
datafrom different navigation sensorsin away that will provide the best navigation solution
in all stuations. The implementation of thisfilter is based on earlier work: the Dud Inertia
Integrated Navigation System (DIINS). Details of the DIINS Kalman filter are presented in
reference [1]. Unless otherwise stated, the theory, algorithms, techniques and models applied
to the MEM S/GPS Kaman filter are the same as those described in ibid.

Rather than repeating all these background details, this report was written as akind of
addendum to reference [1]. That is not to say that the differences are insignificant: the
MEMSGPSfilter has completely different target applications, filter timing has changed from
clock timed to data driven; there are new sensors, and new non-sensor measurements, thereis
acomplementary IMU strapdown navigator running with the filter in a closed-loop fashion;
and new IMU error states were added to try to better model the larger MEMS IMU errors.
The main focus of the sensor integration has a so been modified: in DIINS, the emphasiswas
on failure detection, isolation and reconfiguration; in the MEM SGPS system, the emphasisis
on maintaining navigation accuracy during periods of GPS loss or degradation.



The rest of this report describes the new or modified procedures.

2 FILTER TIMING

The predecessor to the MEM SGPS Kaman filter was clock timed: functions were signalled
to begin at regular preset clock time intervals. The MEMS/GPS Kalman filter is data driven:
filter functions will be run as sensor data arrives. This chapter describes the methods to be
used to control Kalman filter timing on the basis of sensor data arrivals.

2.1 Readinqg Sensor Data

Since sensor timing drivesthis new filter timing approach, it isinstructive to fully understand
how sensor dataisread into the filter task.

The basis of the procedures described below is the assumption that the IMU data rate will be
no less than that from any other sensor. Thisisafairly safe assumption: at the present time,
IMU datarates are one to two orders of magnitude higher than other common sensors (e.g.
100 Hz versus 1 Hz). The IMU strapdown navigator sends datato thefilter at a selectablerate
that can be as high the IMU data rate or can be reduced by integer fractions of the IMU rate.
For example, currently used IMUs output data at rates between 100 Hz and 200 Hz, GPS and
digital compass dataisavailable at 1 Hz, and the strapdown navigator outputs dataat 10 Hz.

All sensor datais sent to bounded (circular) buffers. At every processing cycle of the Kalman
filter, the IMU datarecord isread from its buffer.

Sincethe other sensors' dataisarriving at dower rates, they will not be read at every filter
cycle. To determine whether or not a sensor data record must be extracted, its next expected
time of datais computed and tested against the latest IMU time. To explain the algorithm used
to do this, abrief overview of the process used to pre-process Kaman filter measurementsis
required (details can be found in the next section of this chapter).

When Kaman filter measurements are formed, the aiding sensor dataisinterpolated back to
the latest IMU time. To alow this, aiding sensor data should be read from its buffer only
when IMU data has been read up to but not past the next expected aiding sensor time. In other
words, the aiding sensor should be read when its next expected time lies between the latest
IMU time and next expected IMU time.

2.2 Filter Processing

A discrete Kalman filter like that used in the MEM S/GPS project has anumber of steps that
are generaly occurring at different rates. It is assumed that the reader isfamiliar with Kalman
filter processing. All terms and processes are described in detail in References[1] and [3].



The IMU data arrives at thefilter from the strapdown navigator at afixed rate that should be
greater than or equal to other sensor rates.

1) Atthearriva of every good IMU datarecord, the following steps are executed.

2)

A) Filter matrices are computed:
i) A new dynamics matrix is computed using the new IMU data

i) New diagona eementsfor the system state block of the continuous process noise
spectral density matrix are computed using IMU dataand a set of coefficients. The
Gauss-Markov diagonas are constant and computed once at filter initiaisation.

iii) Theincremental, discretised process noise covariance matrix is computed using
the spectral density matrix and the dynamics matrix.

iv) The system State rows of the incremental transition matrix are computed.
Assuming the dynamics matrix is congtant over the IMU datainterval, the
transition matrix is computed as a Taylor series expansion in terms of the
dynamics matrix and the IMU timeinterval. The Gauss-Markov rows are all
constant: a zero sub-block in the system state columns, and a diagonal sub-block
computed from correlation times and the IMU time interval in the Gauss-Markov
columns.

B) At filter initialisation and immediately after a measurement update, the full transition
and discrete process noise matrices are re-initialised to their incremental counterparts.

C) Between measurement updates, the error models are propagated over the time since
the last measurement update by

i) Pre-multiplying the previous transition matrix by the current incremental matrix,

ii) And adding the current incremental process noise covariance matrix to the
pprevious process Noise covariance matrix.

The second filter “rate” is variable, dependent on the arrival of aiding sensor data or the
signd that the time for non-sensor measurements has arrived. At each of these “update
times,” the following steps are executed.

A) Thefull transition and process noise covariance matrices are used to propagate the
state vector and its covariance matrix from the last update time to the current time.

B) Propagated IMU states are sent to the strapdown navigator for closed |oop error
control. These states are saved for usein Step F).

C) Each Kdman filter measurement corresponding to the new aiding sensor (or non-
sensor) dataisformed and tested. If the statistical test of the measurement’ s residual



passes, the state vector and its covariance matrix are updated. If the test fails, no action
istaken. All measurements are processed before any other steps are processed.

D) The updated state vector is used to correct IMU datato get the best navigation
(position, velocity, attitude) estimates.

E) The corrected navigation data, measurement residual data, and state vector datais sent
to afilefor subsequent analysis.

F) The states sent to the strapdown navigator (saved in Step B) are subtracted from the
updated state vector. This maintains consistency with strapdown navigator: the error
control stateswere used to reduce IMU errors, the filter estimates of those errors (the
IMU states) must be adjusted to account for this reduction.

The update interva is variable in the sense that the time of arrival of datafrom different
sensors and the non-sensor measurement times are not coincident. However, if dataand non-
Sensor measurement rates are constant, there will be arepeatable pattern in the measurement
update times. For example, assume that GPS and compass data and non-sensor measurement
timeintervasareal one second. Further assume that GPS data arrives about time t; ,

compass data arrives about time t. =t; - 0.3, and non-sensor measurement times arrive at
t, =t - 0.1. At each t , GPS measurement updates will be processed. Then 0.3 seconds

later, a compass heading update will be processed. 0.1 seconds | ater, the non-sensor updates
will be processed. Then, 0.6 seconds after that (when the next GPS record arrives), the

process repeats.

Note that the dl filter iming isdriven by IMU time: all actionswill betriggered at an IMU
time of data.

3 FILTER MEASUREMENTS

The MEM S/GPS integrated navigation system is comprised of aMEMS IMU plus additional
aiding sensors, GPS being the primary aid. A main god of the MEM S/GPS project isthe
development of procedures that will alow successful navigation after the loss or degradation
of GPS signals. To thisend, non-GPS Kaman filter measurements have been devel oped.
These are based on

1. Heading from adigital compass (the compassisaso used for initia IMU aignment),
2. Non-sensor datalike

a A fixed height,

b. Zeroveocities.

Future additions to this non-GPS suite of aiding information could include



1. A baro-atimeter to stabilise the IMU vertica channd in the absence of GPS (to
replace or augment the fixed height measurements),

2. Anvehicular odometer to provide direction-of-travel speed (e.g. avelocity
measurement in the body frame),

3. Stride length agorithmsto aid a dismounted soldier’ s persona navigator.

3.1 Overview

This chapter describes the MEM S/GPS current measurement models. GPS measurements are
presented first, followed by al other measurements. Errorsin al MEM SGPS discussions are
defined as true minus approximate. Therefore, measurements are all formed asaid minus
IMU.

For each measurement type described below, the measurement vector and the associated rows
of the (design) H-matrix will be derived. In brief, aKaman filter updatesits states by
combining aweighted residual and its previous state estimates (see e.g. references[1] or [3]
for more details). The H-matrix describes the linear transformation of the state vector into
measurement space. Specifically, thefull residua vector (for all measurements) is

v=2-H

X

The H-matrix can be derived asthe partia differential equation

H=92

oX
The standard practice (used in MEM S/GPS) processes measurements one at atime: this
requiresthat all measurements be uncorrelated. Each row of the H-matrix, corresponding to
one particular measurement type, isthen

Q)
N

h==2 @)

Q)
X

The MEM S/GPS state vector is defined as

X" a" IMU position states WA frame |
X, N, IMU velocity states WA frame
2= X, |_| ¥ [_| IMU attitudestates WA frame )
x5 x5 IMU accel. biasstates body frame
X2 X2 IMU accel. biasstates body frame
| Xao | [ Rap ] LAiding sensor states ]




3.2 Temporal And Spatial Corrections

Kaman filter measurementsin a system such as MEM S/GPS compare IMU quantitieswith
smilar reference values. In some cases, specia congtraints can be used to form measurements
with no reference sensor. For example, when the system is stationary (i.e. with velocity of
zero), IMU velocity can be compared with the known zero velocity to form Kaman filter
measurements. However, most measurements are formed by comparing IMU quantities with
reference va ues from an independent sensor, an example being IMU versus GPS velocity.

In the more common case of sensor-supplied reference data, corrections are often required
before comparisons can be constructed. Firstly, data coming from the two different sensorsto
form ameasurement are not usually synchronized in time. Over “short” differences, when
appropriate rate data is available, data from one sensor (usually the reference) can be
extrapolated to the time-of-validity of the second sensor (usualy the IMU). Further, the two
sensors are not, in general, co-located. Given the vector from one (usualy the IMU) to the
other (usualy the reference) in the vehicle body frame (unless otherwise indicated, all
coordinate frames used in this report are those defined in reference [ 1]) and the appropriate
supplemental information, the data from one sensor can be transferred to the location of the
other. The following sub-sections detail the procedures used in the MEM S/GPS Kalman filter.

321 Notation

The need to add time and relative body positions to a sensor quantity adds to the notational
complexity. The full notation required for the following discussions will be developed here,
starting from base notation.

Let’sstart with atrue velocity vector, v . If the vector is presented in the a coordinate frame, it
iswritten v . If it is an estimated or measured value (any quantity containing errors), ahat is
added - v . Now, if ishas been measured by sensor X , that is added asasubscript - V2 . If
the velocity of sensor X has been transferred to another |ocation on the vehicle, say to the
location of sensor Y, we will write \:/f& . Findly, thetime of validity is added as a suffix:

Vi ()

To summarise, the notation V2, (t. ) represents a velocity vector
In the a coordinate frame,
Measured by sensor X,

Transferred to body location Y,

Vdidfortimet,.



Note that location Y need not be different from location X. If they refer to the same point, and
thereis no chance of confusion, the second (location) subscript may be dropped

V2 (t )= V2 (t ). Thetimeof validity is not necessarily the sensor X time; it could any time
shortly before or after sensor X time.

3.2.2 Temporal Measurement Extrapolation

Let’ sbegin the discussion of adjustmentsin time by assuming that we wish to form avelocity
measurement by comparing an IMU velocity with areference velocity valid at adightly
different time. If the vehicle is moving (specifically, undergoing accelerations), one of the
velocity vectors must be adjusted o it refers to the same point in time asthe other. In generd,
we do not know how the velocity changed over the small timeinterval. However, we do have
enough information to make an estimate: we have a series of previous and current vel ocities,
and we may have acceleration outputs from the IMU (thisisthe casein MEMSGPS).
Extrapolation could be used to estimate a changein velocity forwardsin time. The
extrapolation could use alinear (or higher order) fit to the previous (one or more) velocity
records (requiring that they be stored); or it could use past accel erations. Extrapolation is
generaly risky business; and the noisier the data, and the longer the extrapolation period, the
greater therisk. A safer gpproach would be to interpolate backwardsin time. Linear
interpolations over short periods of time will suffice; more complex models may be required
over longer periods of time. Keep in mind that short and long in terms of time periodsin these
discussons arerelative: higher accelerations require shorter time intervals. In any event, itis
safe to say that the shorter the interpolation or extrapol ation time, the better the expected
resultswill be.

Before continuing, let’ slook at the specifics of the MEM SGPS system. IMU datais
generdly available a higher rates than other sensor data. In the MEM S/GPS strapdown
navigator (reference[2]), any output rate up to the rate of the raw data can be selected. IMU
datarates are typically 100-200 Hz. At present, the strapdown navigator output rateis set at
10 Hz. GPS output is receiver dependent: the Rockwell-Collins DAGR used in 2003 van
testing could output NM EA-standard sentence sets at rates of 0.5 or 1 Hz. Other recaivers
have output rates of 10 Hz and even higher. Additional current and anticipated MEMSGPS
reference sensors can be assumed to have data rates on the order of 1 Hz.

In theory, it doesn’t matter which sensor, the IMU, the reference or both, istime corrected.
There are severa optionsfor setting measurement times. The following list describes the most
likely possibilities and provides some observations that will guide usto the best choice:

1. A measurement rate higher than the lowest sensor rate would be counter-productive
(in Kaman filtering theory, sensor data should be used to form measurements only
once). This statement should be understood to apply to the following discussions.

2. Triggering measurements on the basis of clock time (every second on the second for
example) leads to the possibility of having to adjust sensor times as much as the full
sensor datatime interva (if ameasurement istriggered just before sensor data



arrives). And, of course, both IMU and reference datawould, in genera, haveto be
adjusted.

3. Triggering measurements on the basis of the time-of-data for one sensor eliminates
the need to adjust the times of the selected sensor. However, the possibility of having
to extrapolate the other sensor’ stimes as much asitsfull datatimeinterva remains.

4. |IMU-supplied rate quantities that are not directly used for measurements may be
required for tempora adjustments (e.g. accelerations for vel ocity measurements).
They arerequired for the spatia (lever arm) adjustments described in the next section.
Rather than adjusting all those other IMU quantities to the reference time, one
adjustment of the reference quantity to IMU timeis preferred.

Item 3 above leads to the conclusion that maximum possible extrapolation times will be
minimised by adjusting the times of the sensor with the highest datarate (lowest timeinterval
between data records). In most cases, thisisthe IMU.

On the other hand, item 4 states explicitly that reference sensor times should be adjusted to
IMU times.

If the IMU datarateis|ess than the reference sensor’s, items 3 and 4 both lead to the
conclusion that reference times should be adjusted to IMU time.

Unfortunately, in the more common Situation where IMU data arrives at ahigher rate, thereis
acontradiction. Let’s now try to find the best compromise solution to this problem.

Intuition (along with the preceding discussions) suggests that we should try to abide by the
recommendation of item 4. Doing so should minimise software complexity, adjustment errors,
and computational burden. Let’ s start with the position that reference timeswill be adjusted to
IMU time. Item 3 then tells us that it may be necessary to extrapol ate the other sensor’ stimes
as much asitsfull datatime interval. Methods to minimise the adjustment errors need to be
found.

In general, adjustment errors are reduced when adjustment times are reduced, and when
interpolating rather than extrapolating. A hybrid solution is presented below that meets both
error reduction criteria. Table 1 lists the proposed steps in measurement formation within an
arbitrary measurement interval.

Table 1: Proposed Temporal Measurement Adjustment Process

1. IMU datarecords are received — no measurement activity;

2. A reference datarecord arrives, signaling the start of the measurement process,

3. Rather than extrapolating the IMU timeto the reference time, the reference datais
interpolated back to the previous IMU time;




4. The measurement isformed at the previous IMU time.

Thisisahybrid solution in the sensethat it isthe arrival of reference data that triggers the start
of the measurement process, but the measurement itself isformed at the last IMU time. This
procedure

Usesthe preferred interpolation method,
Limitstheinterpolation time to the (lesser) IMU datainterval,

Appliesto situationswhere the IMU rateis higher or lower than reference data rates.

Itsweaknessesliein the facts that

The reference data interpolation uses data points that are separated in time by the full
reference datainterval (even though the point of interest is as close as possible to one
end point).

The Kaman filter update will be dightly stale by thetimeit isavailable for use
(applicable, asit is, to apoint in the near past).

When appropriate rate datais available (e.g. velocity datafor position measurements), it could
be used for adjustment. However, for practical reasons, this option is not recommended for
MEMS/GPS:

At present (and for the foreseeable future), MEM SIGPS will use only position,
velocity and heading measurements. The corresponding rate data (vel ocity,
acceleration and heading rate) is available only from the IMU (with the exception of
GPS position rate, i.e. velocity).

Using IMU rate data to time shift reference dataiis not recommended.

The added implementation complexities and inconsistency required switching
between the application of rate methods (for GPS position measurements) and
interpolation methods (for all MEM S/GPS measurements) eliminate any potentia
benefit of using rate methods.

GPS velocities computed from carrier phase information is more or less independent
of code-derived positions, drawing into the question the validity of using such
velocities for tempora adjustment of position data. GPS velocities derived from the
numerical differentiation of position data offer little benefit relative to the (perhaps
smpler) recommended interpol ation procedure.




Given the constraintsimposed, Table 1 presents an attractive solution to the problem of
tempora data matching when forming position, velocity and heading measurementsin the
MEMS/GPS Kalman filter.

In mathematical terms, avector of reference measurement datais linearly interpolated to IMU
time asfollows:

where

ty isthe time-of-data for the current reference data record,

tr(j) Isthetime-of-datafor the previous reference datarecord,

M, (t, ) isthe vector of reference measurement data applicabletotime t, .

The above equation isvalid for extrapolation as well asinterpolation.

3.23 Spatial Measurement Corrections

After sensor times have been rationalized, the problem of spatial rationalisation can be
addressed. In this case, general procedures cannot be devel oped. Of the three anticipated
measurement types, only position and velocity correctionswill be developed here. The
reasons for the lack spatial correction of heading measurementswill be clear presently.

Recall that the problem involves the adjustment of measurement data to account for spatial
displacements of the IMU and reference sensors. All displacements are measured in the
(forward, starboard, down) body frame, relative to the navigation reference point. This
reference point isthe origin of the body frame. In many cases (MEM SGPS included), the
navigation point of referenceis near the centre gravity of the vehicle. Often, theIMU is
defined as reference point. But, it doesn't really matter: the spatial corrections are computed in
the same way regardless of the location of the reference point. Aside from the given definition
of the body frame (origin and orientation), the only other constraint required to begin the
derivationsis the assumption that the vehicleisarigid body. This assumption isrequired if
the displacement vectors are to be assumed congtant in the body frame.

3.2.3.1 Heading

This brings us the question of spatia corrections for heading measurements. If therigid body
assumption isvalid, the heading measured by a sensor will have a constant offset from the
heading of the vehicle (defined as the heading of the body frame X-axis) regardless of the
location of the sensor on the vehicle. For example, if the sensor could be perfectly aligned to
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the vehicle heading, it would output the same heading regardless of its location on the vehicle
—front or back, top or bottom. So, comparison of heading from two different sensors does not
require any adjustments to account for differencesin relative location.

3.2.3.2 Positions

Let’ s begin with position measurements. Clearly, positions collected from sensors at different
locations on the vehicle need to be adjusted. Exceptions are made only when the errors
introduced by neglecting the differences are negligible when compared to other position error
sources. if two position sensors are separated by one centimetre and they measure position to
an accuracy of 10 metres, there is nothing to be gained by applying spatial adjustments when
forming measurements.

The vector from the origin of the body frame to the measurement centre of the sensor is
conventionally called the lever arm. The three elements of the vector are measured in body
frame coordinates. Positions in body frame coordinates are of no use — positions are
conventionaly provided in an earth-fixed frame: we generaly need to know wherewe are on
or near the Earth’ s surface. With alever arm in body frame coordinates and positionsin an
earth-fixed frame, amethod of rotating one into the other is required.

Thisis accomplished using the well-known direction cosine matrices (DCMs). Thelever arm
vector in the body frame can be transformed into the local geographic (north, east, down)
frame asfollows:

&0 =Coar?

where C; isDCM from the body frame to local geographic frame. Again, al notation

followsthat of reference[1]. CJ isafunction of therall, pitch and heading angles (details of

itsformation are not given here). A sensor-derived position vector in the local geographic
frame can be trandated to the system reference point as follows:

9 _ 70 g
e =TIg _&;‘

One point of clarification: the local geographic isalocaly leve, topocentric frame whose
origin is attached to the vehicle (coincident with the reference point for convenience). It is
generaly used to represent changes (e.g. velocity) or differences (e.g. the GPS position
velocity equation in the next section).

In summary, the position lever arm correction requires (the one-time) measurement of the
lever arm from the reference point to the measurement centre of the sensor aswell as (on-
going) measurement of vehicleroll, pitch and heading (or equivaent).

11



3.2.3.3 Velocities

Veocity lever arm corrections are dightly more complicated. They describe the vel ocity
measured at the end of the lever arm that can be attributed to rotations of the lever arm relative
to the Earth’ s surface. These rotations are the result of vehicle motions.

WEe Il begin by differentiating the position lever arm transformation equation, using the
locally leve, topocentric wander azimuth frame in place of the local geographic frame:

&" =V =CJ&" +Ca)
Recalling our previous rigid body assumption, we canset &° =0, so that
v'o=ga”
= Cy(@n, x &)

where @., isthe vector of rotations of the body frame with respect to the wander azimuth

frame, expressed in the body frame; it isaby-product of IMU strapdown calculations. The
DCM, C;’ =C;C], where C issmply arotation about thelocal vertical through an angle

known as the wander angle (seereference [1] for details). C,' may aso be available from the
strapdown navigator.

The veocity is corrected by removing the lever arm effects:

w oW

V, = Vg

w

—V
The same equation can be used for thelocal geographic frame:
v8 = Cdlag x &)
The strapdown navigator does not provide the cbgb rotation vector, but c‘ogb can be computed:
Dy, = D, + Y,

where @, describes the rotation of the wander azimuth frame with respect to thelocal
geographic frame, expressed in the body frame. In reference[1], d)gw isderived:

12



Thewander anglerateis

4o v tanjg|

B R +h

where || isthe absolute value of latitude. Is ¢ significant? At 89 degrees latitude (zero
height), assuming a maximum velocity of 50 metres per second (180 kmv/hr),

& < -45x10" rad/s

Assuming amaximum lever arm of 10 metres, the lever arm vel ocity due to the wander angle
rateislessthan 5 millimetres per second. Even with these extreme limits, thisis negligible. At
latitudes above 89 degrees, or when velocities are much higher (aircraft speeds), the wander
angle rate effects should be added.

3.3 GPS Measurements

GPS position and velocity measurement models are described below.

3.3.1 GPS Position Measurements

GPS positions expressed as latitude, longitude and height in the WGS84 geodetic system are
used to form position measurements according to the following development.

3.3.1.1 The Measurements

Sincethe MEMSGPS IMU system (navigation) states are dl defined inthe locd level
wander azimuth coordinate frame, the GPS position measurements are d'so formed in aloca
level frame, the loca geographic:

| (¢?GPS - ¢?IMU XRE + ﬁGPS)

Zg — (/iGPS - j“|MU XRE + FIGPs )COS(;GPS

A

thu - hGPS

Notes:

A spherica earth mode is used in the horizontal measurements.
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Height is positive up while the local geographic z-axisis positive down — leading to the
sign change in the z-measurement.

Strictly speaking, the right-hand side of the equation produces arcs while the left-hand
components are chords. However, the differenceisingignificant in this application.

In the radius estimates, GPS height is used to approximate true height. Similarly, GPS
latitude is used to estimate true latitude. In the closed-loop formulation used in
MEMS/GPS, GPS, IMU and filtered positions should all be close enough to one another
that they are interchangeable when estimating these radii.

3.3.1.2 The Model

The corresponding rows of the H-matrix are derived using equation (1). To easethe
differentiation, expand the first row of the measurement equation asfollows

(écps - ¢;|MU XRE + ﬁcps) = [(¢ - 5¢eps)_ (¢ - 5¢wlu )](RE + ﬁGPS)
= (5¢|Mu — 0Peps )(RE + hGPS)

= &lﬁ/luy - aﬁ(gPsX
Similarly,
(JZIMU — Oeps )(RE + ﬁGPS )Coséeps = &I%AUY - &gps(

&]GPS_&IMU :&I%/IUZ _&gp%
Now,
2} = &‘II?IIU _&:G%’S = Cv%amu _&:G%’S

GPs

The 3 row by number-of-states column GPS position measurement matrix is derived through
the partial differentiation of this equation:

H, =% e 00 0 0 -1.]
%5 OX

The 3 by 3 non-zero blocksfal inthe IMU position error state and (optiona) GPS error
position error state columns, respectively. Columns corresponding to all other error states are
zero.

TheDCM C; rotatesthe IMU position error states from the IMU (computer) wander
azimuth frame into the GPS loca geographic frame:
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cosa,,, -—Shea,, O
=|-snea,,, -cosa,, O 3
0 0 -1

C

9
w

where a,,,, isthewander angleat IMU longitude.

Note that thisDCM is gtrictly correct only when IMU and GPS longitudes are the same
(changesin wander angle being strictly afunction of change in longitude). If there were
significant differences (on the order of tens of kilometres) in longitude, it would be more
correct to include the earth-centred rotation from the IMU to the GPS position. In
MEMS/GPS, large IMU position errors will only occur when the IMU is unaided, and this
problem will occur when GPS positions are re-acquired after a period of accumulating IMU
longitude error. However, sincethisisreally a second order affect, the IMU longitude will
quickly converge to GPS longitude after reacquisition, even when ignoring the IMU to GPS
rotation.

3.3.2 GPS Velocity Measurements

GPS velocity, expressed in the loca geographic frame, is used to form vel ocity measurements
according to the following development.

3.3.2.1 The Measurements

In principle, GPS velocity is computed in an earth-centred, earth-fixed coordinate frame, asa
function of line-of-sight velocitiesto individual satellites. Thenit isrotated into the local
geographic frame at the GPS-computed position. Therefore, like positions, the GPS vel ocity
measurements will be formed in the local geographic frame at the GPS-computed position -

Véps -
The MEM S/GPS strapdown navigator provides IMU velocity in the wander azimuth frame.

A Kaman filter measurement formed using GPS and IMU velocities requires a common
coordinate frame. The loca geographic coordinate frame at the GPS-computed position has
been selected as the measurement frame. This means that the IMU vel ocity must be rotated
into this frame. Using the wander azimuth to local geographic DCM at the IMU-computed
position, the GPS velocity measurement is:

50 _g9 _ C9gW
Z,.. = Vops CaVimu

cosa,,, -—Sneg,, O
where C,)=|-snea,, -cosq,, O

0 0 -1

9
w
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3.3.2.2 The Model

Identifying Kalman filter state dependencies of the measurement equation is somewhat more
complex than it was for position measurements. Inthe -angle error formulation used in
MEMS/GPS, IMU veocities are assumed provided in the “platform” frame (anominally

local level wander azimuth frame centred at the IMU-computed position) - V2, . Al
coordinate frames and their transformations are defined in reference [1].

The DCM used to form the measurements does not completely describe the transformation to
the GPS local geographic frame:

C?¢ describes asingle rotation about the locdl level at the IMU position —it is more

properly written C2(IMU ), from the “computer” frame to the local geographic frame
at the IMU-computed position.

The DCM from the platform frame to the computer frameisafunction of the -
angles. C¢ = | + (7 x), using small angle approximations.

Thelocal level at the IMU position is rotated with respect to loca leve at the GPS
position because of earth curvature. The rotations are described (in standard notation)

by the ¢6 -angles. The ¢6 -angles are dependent on IMU position errors (that are
estimated using GPS positions).

The measurement equation can now be expanded to
g(GPS) ~W(GPS)~cS p
ps ~ Cu(aps) Ce CoVimu
g(GPS)~t~CcSp
ps ~ Cuars) CcCpVimu

9(GPS) 2] 7% P
PS CW(GPS) (I + 060 XX' + l//X)VIMU

=9
ZVGPs

<> <b
Da Da

Il
>
g

Further expansion and eimination of second order error terms gives
20, = Vo ~ CUSE|1 + (00 )+ )i,
Thisisthe most complete form, required for open-loop INS/GPS filtering systems.

MEMSGPSis a closed-loop system: whenever GPS datais available, the IMU strapdown
navigator is continuoudly corrected with filter error estimates. This meansthat (whenever
GPS datais avallable) IMU postion, velocity, and attitude errors remain small. For this
reason, this complete model is not required for MEM SGPS GPS vel ocity measurements. The
GPS vel ocity measurement model based on the complete moddl isderived in APPENDIX A.
A hybrid model will be developed below.
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The hybrid model will be devel oped by examining the relative sizes of the two error termsin
the complete modd, ¢6 and y . Theformer depends on IMU position errors. On aspherical

earth, the ¢6 -angles are an inverse function of the mean earth radius:

_ ér
R: +h

where ¢r isthe position error. An error aslarge as 10 kilometres produces an angle of only
about 5.5 arc minutes.

08

On the other hand, ¥ -angletilt errors are expected to be somewhat larger that 5 arc minutes
even when al measurements are available.

The hybrid GPS vel ocity measurement model assumes position errorsintroduce negligible tilt
relativeto the y -angles:

59 —~ 39 g(GPS) N

L. =Veps— CW(GPS) [l + (W ><) IMU
~ g9 agp 9 (77 Y P
= Veps — CWVIMU - Cw (‘// ><)VlMu

Note that position errors produce wander angle changes at about the same rate astilts. This
allows usto use any wander azimuth to local geographic DCM.

At this point, the velocity errors will be introduced. Restricting ourselvesto thefirst two
terms,

Vars —CoViny = (vcgps - &gps)_ Co (vlrr)vlu — &My )
= CVE\]I&IR/IU - &gps
where C? isgiven by equation (3), for convenience.

This expression is dependent only on IMU and GPS velocity errors. The partid differential
equations needed to extract these dependencies are:

a(Cv%&I’K/IU — &(gps)

=C?
My,

a(Cv%&I?/IU _ &(gPS) =
RNps

Note: GPS velocity error states are often not included in afilter such asthis.

Thethird termis bit more complicated. A very smilar expression was derived in APPENDIX
A. Those results will be modified for the present purposes:
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p p i p p
oSy (_ l//zVu\/luY + Wyleuz )_ SN,y (l//zVIMUX - l//xVIMUZ )
977 )oP  — 1 p p p P
Cw (‘// ><)Vn\/lu = —SnNy (_ l//zVIMUY + ‘//yleuz )_ COSa\y (l//zVIMUX - l//xVIMUZ )
p p
l//yVIMUX - WXVIMUY

Note that al velocity errorsin thisterm will be second order and would be neglected asusual.
The measured IMU velocity will be used here.

Once again neglecting second order effects, this expression is dependent only onthe ¢ -
angles. The partia differential equation needed to extract these dependenciesis:

p i p p i p
( Cg(é )_ ) _VIMUZ SNy _VIMUZ COSc\y V||v|uX SNy +VIMUY COSc\y
— p p ; p p ;
Y - _VIMU COS\y VIMU SNy VIMUX COSa,\y _VIMUV SNy
4 vh -V 0
IMUy IMU

This can be smplified by writing the  , column in terms of local geographic velocity:

p ; p g
_VIMUZ SNy _VIMUZ COSayy VIMUY

A Co@x)id)
0

p p i g
v - _VIMUZ COS y V||v|uZ SNy VIMUX
p p
VIMUY _VIMUX 0

The resulting 3 by number-of-states GPS vel ocity measurement matrix is.

p i p g
_VIMUZ SN,y _VIMUZ COS\y _Vlmuy
— — g p p i g
=—==|0 C —Viuu, COSyy  Viuy, SNy Viwu, 0 00 -1

p p
VIMUY - VIMUX 0

In this case, the 3 by 3 non-zero blocksfall in the IMU velocity (CV%) IMU attitude

o7
corresponding to al other error states are zero.

g
( a(C 7>V )J and (optional) GPS velocity (-1 ) error state columns. Columns

3.3.2.3 The Simplest Model

The GPS velocity model can be further smplified by assuming that thetilt errors also have a
negligible effect on the measurement (i.e. set ¢ =0 or C¢ = | ). Then the H-matrix issimply

—e=_focs 0000 -1 .J
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3.3.3 GPS Course-Over-Ground Measurements

In certain applications, the direction of the GPS velocity vector can be used to control system
heading. These measurements can only be used for ingta lations that ensure the direction of
travel and heading are callinear. In generd, this restricts GPS course-over-ground (COG)
measurements to wheeled or tracked land vehicles.

If GPS COG is not available directly from the receiver, it is derived from the horizontal
components of the GPS velocity vector:

- AV
g _ = y
Y = tan vl
X

The GPS COG measurement equation can be written as

3.3.3.1 The Measurement

g _ W9 _ o
z =Weps —Yiuu

YGps

where ¥, isthe IMU’s so-called “platform” heading.

3.3.3.2 The Model

To derive the H-matrix model, write the GPS COG measurement equation in terms of true
vaues and errors:
ngps =Waps = Yivu + i
= (\Pg - &PGQPS)_ (\PW - &PIVI\\;IU )+ (0!— 5aIMU )
= (\Pg sk +0()+ My — MWps — 0ty
=Wy — MWeps — 0ty

Using equation (9.51) of reference [1],

tan®@sin'¥y, Y tan®cosV¥
RE +h Mo RE +h
+y, tan@cosy, — v, tanOsin¥y, -y

w _ w
&PIMU = &IMUX

where ispitch.
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The wander angle error is dependent solely on longitude (or east) error. In terms of the
wander azimuth IMU position error states (again from reference [1]),

(&I\II\V/IUX Sinalmu + &|vr5|uy Cosa yy )tan|¢GPS|

o0y =
e RE + hGPS

Once again, the position errors will be assumed negligible in this closed loop mode!. In
addition, since this measurement is restricted to wheeled or tracked land vehicles, it can be
assumed that pitch will not approach 90 degrees, and the IMU heading error term can be
assumed negligible. With these assumptions, the GPS COG measurement can be written

g ~ W g
z =y, — MWops

YGps

Now the row of the H-matrix corresponding to the GPS COG measurement can be written as
0z}
H, :%:[o 0 00 -10 0 ..-1]
CMPS X

with minus onesin the IMU vertica attitude error and GPS heading error columns and zeroes
everywhere dse.

3.3.3.3 Measurement Variance

Since GPS COG isthe direction of the GPS local geographic velocity vector, the accuracy of
the COG will depend on the accuracy of the horizontal vel ocity as well asthe vehicle speed.
Thus, it is better to compute the COG measurement variance from GPS vel ocity variances,
when they are available.

If GPS velocity accuracy estimates are available, they are used to estimate COG accuracy as
follows. Differentiate the COG equation,

- AV
g _ = y
Wi = tan vl
X

to get an expression for COG error in terms of velocity error:

In generd,
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Therefore,

Now,

So that

ape — bef  viedWp)-vy-div)

e ) (v

Findly, the error in GPS COG (in radians) in terms of GPS horizontal velocity errorsis

v? -d(v§’)—v§J -d(vf)
(v f + (v

Thevariance of d¥,. can be estimated in terms of the velocity error variances by using the
definition of variance:

d\ij(gps =

o = E|(x- E[(x)))?]

If it is assumed that E|d¥2. |= 0 (i.e that COG is unbiased),
~ 2
O-j\y = EI:(d\PGgPS) ]

Squaring d¥ S, , we get

(d\il(gps )2 =
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Taking the expectation of the resullt,

(ve) o2 —2vaveEld(ve Jave I+ (v - o2
(w2 + )

If velocity covariances are known, they can be used to compute E|d (v§J )d(viJ )J Inthe more
usual cases where they are unknown, they will be assumed negligible, with the result

Eld(vg v )= 0

The COG variance can thus smplified to

E[(d\il(gps )2] = O-g\v =

(vg )2 .02 + (vg )2 o,
(v f -+ f

Notethat when o, = o =0, thisexpression can be further simplified to

o ey er)or o

oy +oyf  Gef+bey

These results make intuitive sense: the COG variances are directly related vel ocity variances
and inversely related to speed. The poorer the velocity accuracy, the poorer the COG
accuracy; the higher the speed, the better the COG accuracy.

3.4 Compass Measurements

Since only asingle channd digital compassis currently being used in the MEM S/GPS
system, the simplest, scalar heading measurement model will be derived in this section. The
compass heading mode should be revised if amulti-channel compassisadded in the future.

Note that thismodd isidentical to the GPS COG measurement derived above.

3.4.1.1 The Measurement

The compass heading measurement equation can be written as

22



3.4.1.2 The Model

To derive the H-matrix mode, write this equation in terms of true values and errors:

g _ o pw
z - lPCMPS - lPIMU +\wy

= Ml\KIAU - W(?MPS - 5aIMU
Assuming éc ,,,, isnegligibleand pitchissmall,

ZSCMPS =y, — Mups
Thedigital compass currently being used isaKVH C100. The Technical Manual (reference
[5]) limitsvalid heading to tilt angles of 16 degrees or less. The tangent of 16 degreesisless
than 0.3, justifying the assumption of small pitch.

Now the row of the H-matrix corresponding to the compass heading measurement can be
written as

g

oz,
=—==(0 0 0O 0 -1) 0 0 ..-1
v =220 0 (0 0 1) )

In this case, the second minus oneislocated in the compass heading error column.

In an application that is not limited in pitch (e.g. a soldier-mounted system), assuming the use
of amulti-axis compass, the IMU tilt error terms cannot be neglected in the H-matrix. The
following model should be used

9
He - Paw b 0 (anecos¥y, -tan@sn¥y, -1) 0 0 ..-1]

Yemps X =

Note the singularity at the vertical where the tangent of pitchisinfinite.

3.5 Non-Sensor Measurements

351 Non-Sensor Position Measurements

At present (and for the foreseeable future), the is only one non-sensor position measurement —
afixed height.

3.5.1.1 Fixed Height

AnIMU isnaturdly instablein the vertical channel. When there are no other measurements
ableto stabilise the vertica channel, the system height can be held constant using afixed
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height measurement. Note that a fixed height measurement can be used in conjunction with
the vertical velocity measurement described below.

To use afixed height measurement, it is advisable to track height and save it whenever it can
be confidently assumed good. Then when fixed height measurements are required, the saved
good height is used as the reference, fixed height for measurement formation.

3.5.1.1.1 The Measurement

The fixed height measurement is very smple:

~

w 0
- hle - h||v|u

ZFIX

It issimilar to the GPS height measurement, except that it isformed in the wander azimuth
coordinate frame, resulting in asign change in the measurement.

3.5.1.1.2 The Model

No coordinate conversion is necessary and the fixed height is assumed to be error-free. This
leads to a measurement modd isequally smple:

w

0z,
=—==1 0000 .|
FIX aX

35.2 Non-Sensor Velocity Measurements

When the GPS signals are not available, it isimportant for the MEM S/GPS system to have
backup measurements available to limit or ow the rate of growth of filtered errors. Thereis
non-sensor information that can be used to form velocity measurements.

1. Zerovelocity updates (often called ZUPTS) can be made whenever the systemis
known to be stationary. These can be used in a system mounted in aland vehicle or on
adismounted soldier.

2. AnIMU isnaturdly ingtablein the vertical channel. When there are no other
measurements able to stabilise the vertical channel, the system height can be held
controlled by assuming zero vertical velocity and forming zero vertical velocity
measurements (just like aregular vertica ZUPT except the vehicle may be moving).

3. IfanIMU isdigned to the body of aland vehicle, the velocity in the body latera axis
(perpendicular to the direction of travel) can be assumed to be zero unlessthe
vehicle swhedls (or tracks) are diding sideways.
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3.5.2.1 ZUPTs
3.5.2.1.1 The Measurement

The measurement model for aZUPT isvery smple. Since a zero velocity vector iszeroin
any coordinate frame, no transformations are necessary:

2zpuPT =0- vlﬁnu = _VII;\’/IU
3.5.2.1.2 The Model

Since V%, =Vp,, — &2, , the ZUPT rows of the H-matrix are smply

=P
azZUPT —

HZUPT:T_[O | 0 00 0]

3.5.2.2 Land Vehicle Velocity Constraints

3.5.2.2.1 The Measurement

The lateral axisvelocity constraint is somewhat more complicated than the ZUPT model. This
isascalar modd that will be written in the vehicle body y-axis. Again, the reference issmply
zero velocity. The IMU velocity must transformed from the wander azimuth platform frame
into the Y -axis of the body frame:

Z\f =0- Cvt\)/(z)\:/&u = _Cvt\),(z)\:/&u
where the second row of the wander azimuth to body frame DCM,

b Sn®,,,, SNO,, COS\PI?/IU —sn®,,, SNO,,, Sinlylf\’Au ;
C2(2)= —-sin®,,,, cos®
w . p p IMU IMU
—cosD ,,, SNy, —cos® ,,, cos',,,

DO Py aethelMU computed roll, pitch and platform heading (heading relative
to the (platform) wander azimuth x-axis), respectively.

3.5.2.2.2 The Model

Once again, the IMU velocity must be rotated from the platform to the computer frame using
the -angles. Following steps similar to those used for GPS vel ocity measurements:
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Z\Z]b = _Cvt\)/(z)c,c)\:/linu
= —C\?,(Z)(I +y X)\:h'ﬁnu
= _Cvt\)/(z)\—/&u - Cvt\)/(z)(lvallﬁﬂu )

Introducing velocity errors.

Z\Z)b = _Cv?/(z)(vlﬁ/lu - &Iﬁ/lu )_ Cvt\’/ (2)(‘/7 X \:/Ill[\)/IU )
= —C2(2)VS +CEME, —CoR)F x5y )

Expanding the last term gives

- Cvl?/ (2) (‘/7X \:/|'|3/|u ) = _Cv?/ (271) (_ l//zVITVIUY + l//yVI':\/IUZ )
- Cvt\)/ (2,2) (WZVI':\/IUX - l//xvlrl’vluz )
- Cv?/ (2,3) (_ l//yvl?\/IUX + l//xVﬁ\AUY )

Findly, by taking the partia derivatives, we get the required row of the H-matrix:

HV :az\z;b “lo CV?,(Z) {Vl?\AUZC\?,(Z,Z) {_VI?\/IUZCV?/(Z’:L) {V,'?\,,UYCV?,(Z,l) 00 0
’ ox _VI’:\AUYCV?/(Z’B)} +V|?\/|UXC\?/(213)} _Vﬁwuxcv?/(zz)}

3.6 Measurement Pre-Conditions

The Kaman filter measurements described above typicaly are run only when specific pre-
conditions are met. This section describes the pre-conditions for each type of measurement.

There are genera pre-conditions applied to al measurements.

1) The MEMSGPS Kaman filter software alows measurements to enabled or disabled.
Only enabled measurements are processed.

2) Execution of each measurement is dependent on the availability of good IMU and aiding
sensor data.

3) A particular measurement will be excluded from forming an update if its misclosure could
not be properly formed.

Pre-conditions applied to specific measurements (or groups of measurements) are described
below. Measurements are formed only when al pre-conditions are met: the generd pre-
conditions were listed above; measurement-specific pre-conditions are described below.
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3.6.1 GPS Positions

Most GPS receiverswill switch to 2-D(imensional) mode when they are not able to track
enough pseudorangesto provide afull solution. A GPS receiver in 2D mode will output a
fixed height equal to itslast computed height aswell as aflag informing the user of the
change in operating mode. When fixed height datais being used in a Kalman filter, the
measurement model should be adjusted to reflect the degraded height performance. Rather
than adjusting the GPS height measurement model as areceiver switchesto and from 2D
mode, the MEM S/GPSfilter uses a separate “fixed height” measurement. When 2D mode is
signdled, the GPS height measurement is deactivated and the fixed height measurement is
activated. Conversaly, when GPS height estimation is resumed, the fixed height measurement
is deactivated and the GPS height measurement is reactivated. To add some confidencein and
control over the height fixing, the MEM SGPS Kaman filter task keepstrack of and usesits
own fixed height value instead of relying on the receiver’ sfixed height.

Therefore, to optimisefiltered height performance during periods of 2D GPS, it is
recommended that the fixed height measurement always be enabled. Note that fixed height
measurements are activated whenever a sensor-based height measurement has not succeeded.
This could be a single measurement residual rejection, or it could be a period of time with no
GPS position fixes due to signal blockage or jamming. Thisis an important feasture since the
IMU strapdown navigator relies on the Kalman filter to control ingtability in the vertical
channel. Even ashort period without damping can result in an unstable height. Note further
that thisfeature is suitable only for surface vehicles. An aircraft or submarine application
requires an independent height (or depth) sensor to maintain acceptable height performance.

3.6.2 GPS Velocities

A specific pre-condition prevents GPS velocity measurements whenever the system speed is
zero and zero vel ocity measurements have been enabled. In this situation, activation of zero
velocity measurements coincides with the deactivation of GPS velocity measurements. When
motion resumes, zero velocity measurements are deactivated and GPS velocity measurements
arereactivated.

3.6.3 GPS Course-Over-Ground

The GPS COG measurement is based on the direction of the GPS local geographic velocity
vector. If the gpeed is zero, the direction is undefined. Additionaly, GPS velocity noise will
cause COG to be very noisy at low speeds. Therefore, COG measurements are not processed
when speed drops below a specified limit. INn MEMSGPS, the low speed test isimplemented
as amaximum COG measurement variance test: if the computed COG varianceis greater
than a specified maximum (or if GPS speed is zero, meaning the COG variance can not be
computed), the COG measurement is disabled.
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See Section 3.3.3.3 for aderivation of the dependence of COG variance as afunction of
velocity and velocity variances.

3.64 Compass Heading

The accuracy of compass heading measurements depends largely on the magnetic
environment in which they required to operate: alarge metallic vehicle with many electrical
devices onboard isavery poor environment for amagnetic compass; a soldier-carried system
would tend to be more magnetically benign. In addition, GPS COG data will be more accurate
at vehicular speedsthan at soldier speeds. Therefore, compass heading measurement pre-
conditions will depend on the intended application.

3.6.4.1 On aland Vehicle

On aland vehicle, GPS COG measurements are given precedence over compass heading
measurements:. the relatively high speeds produce accurate COG estimates, and the
challenging magnetic environment produces compass datathat islikely biased and noisy. In
this application, compass heading is used only when the GPS COG measurement has not
succeeded. This could be due to asingle COG measurement residual rejection, or it could be a
longer duration problem due loss of appropriate GPS data or low vehicle speed preventing the
formation of a COG measurement (as described above).

Furthermore, a single-axis compass (suitable for aland vehicle) provides valid heading
information only when its senditive axisis*“close” to horizontal. When asingle-axis compass
is used to form heading measurements, amaximum tilt pre-condition isrequired. In the
MEMSGPS Kaman filter, IMU roll and pitch are tested against amanufacturer-supplied
maximum tilt value. The measurement proceeds only when roll and pitch are below the
specified limit.

3.6.4.2 On a Soldier

Conversdly, on adismounted soldier, compass heading measurements can be expected to be
superior to GPS COG measurements because of the relatively low speeds and benign
magnetic environment. However, implementation of the compass heading pre-conditions need
not differ from that used for aland vehicle application: compass heading is used only when a
GPS COG measurement has not succeeded. While the implementation isthe same, it may be
advisable to modify the pre-condition modd (i.e. the maximum GPS COG measurement
variance). Or, GPS COG measurements could smply be disabled. In addition, it is expected
that GPS COG measurements (if enabled) would succeed much less frequently than they do
onaland vehicle.

The unrestricted movement of a dismounted soldier requiresthe use of athree-axis

magnetometer. The ability of such a sensor to resolve heading at any orientation precludesthe
need for tilt-based measurement pre-conditions.
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3.6.5 Fixed Height

Thefirgt fixed height measurement pre-condition is closely connected to those for GPS
position measurements: the fixed height measurement isformed only if there has been no
successful sensor-based (e.g. GPS) helght measurement update. In principle, other sensors
could be used to generate height measurements. In practice, only GPSisused. In addition,
there must be avalid fixed height to use as the misclosure reference.

3.6.6 Zero Velocities

Horizontal and vertical velocity measurement pre-conditions differ. Firstly, horizontal zero
velocity measurements are formed only when the system is stationary. Vertical measurements
are formed when the system is stationary, or when the system is moving but the vertica
channel isunconstrained, i.e. when there has been

No successful height update from a sensor (like GPS) or from afixed height;
Nor asuccessful (GPS) vertical velocity measurement.

3.6.6.1 Zero Speed Detection

Zero speed is detected automeatically by comparing sensor-supplied speeds with afixed
maximum.

The speed is calculated as the length of the vel ocity vector. The maximum alowable
cal culated speed istaken as the maximum of the ZUPT measurement noise standard
deviations and afixed minimum (e.g. 0.1 m/s).

Each sensor is checked for zero velocity, starting with GPS (if two receivers are active, both
may be tested) and ending with the IMU. Zero speed is Signalled as soon as any sensor passes
the zero speed test. In other words, zero speed is signaled when the cal culated speed from any
active sensor islessthan or equal to the limit.

4 NEW SENSOR STATES

The number of statesin a Kaman filter mechanization is often the largest single factor in the
determination of computational requirements: the covariance matrix of the Sate estimates
must be inverted. For this reason, only those states that have the largest effects on the total
error budget are traditionally included in the state vector. Other known but smaller errors may
be neglected al together or are dumped into the Kalman filter process noise, where they are
not explicitly estimated but are included in the filter’ s accuracy estimates (viathe State
covariance matrix).

MEMS inertid sensors currently have errorsthat are larger than most of their predecessors. In
some cases, the size of these MEM S sensor errors requires that they be more rigoroudy
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modelled in aKaman filter integration. Specifically, they may have to be added to the state
vector where they can be explicitly modelled and estimated (assuming they are observable
with the available measurements).

The software package used as the basis for the MEM S/GPS Kaman filter came from DIINS
(asdescribed in reference [1]). The only inertia errorsthat can be modelled in the State vector
are accelerometer and gyro biases. The following errors are modelled in the process noise
covariance:

1. Horizontal and vertica gravity modelling errors;

2. Accelerometer and gyro scale factor errors,

3. Accderometer and gyro misalignments (relative to an ideal sensor coordinate frame);
4. Accderometer and gyro random walk errors.

The gravity errors are not sensor errors and are less of afactor when sensor errors are larger:
the gravity error modelling will not be changed. The remaining (sensor) errors are candidates
for incluson in the MEM S/GPS state vector.

This chapter describes the methodol ogy needed to model these other inertial errors as states.

4.1 Expanded Gyro and Accelerometer Error Models

A Kaman filter for conventional inertial sensorstypically models sensor errors as a dominant
bias component and a process noise component that lumps the remaining (much smaller)
errorsinto the velocity and attitude covariance estimates. These amalgamated “ process noise”
components were included effects arising from:

Anomalous gravity,
Sensor scale factors and misalignments,
Random drifts.

Reference [1] describes the details.

With MEM S sensors, noise levels, scale factor errors and misalignments are much larger than
they are for conventional inertial sensors. This section begins with the error analysis used to
include gyro and accelerometer scale factor and misalignment statesin the MEM S/GPS
Kaman filter system. It concludes with an expanded process noise methodol ogy .
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411 New Gyro Model

Inertial scale factor errors essentialy describe the errors resulting from imperfect knowledge
of the process required to transform the electrical signals produced by the sensorsinto data
that can be processed in an inertial navigator. Scale factor errorsare typically divided into a
dominant linear portion and smaller deviations from the linear moddl. The linear part will be
modelled explicitly; the non-linear part will included in the process noise covariance matrix.

Misalignment errors describe the rotations needed to align each sensor with an arbitrary,
theoretical, Cartesian sensor frame.

To derive the expanded gyro error models, |et the error vector, &; , be ageneric term
containing al gyro errors as measured in the sensor frame.

A gyro error model dependent on (small) misalignments, scale factor errors and biases can be
written (in an arbitrary coordinate frame) as

1 /uny /usz SGxa,\)Gx + ﬁGx
D= Hgy 1 Hey SGy(bGy + 5 Gy (4)
IUze :uGyz 1 SGzé\)Gz + ﬁez

where

@ isthetrue (corrected) rotation rate vector.

@ isthe measured rotation rate vector.

Y are the misaignment angles of the gyro’s (nominally orthogonal) sensitive axes
relative to aperfectly orthogonal true frame. Specificaly, ug; isthe (smal) misalignment

of the gyro sengitive axisi relative to the true axisi measured in the truei-j plane. For
example, 4g,, isthemisaignment of they-gyro inthex-y plane. 4¢; canasobe

considered the fraction of rotation about the true x-axis that is sensed by the y-gyro.

S, isthe (full) scale factor applicableto gyroi.
b isthebiasapplicableto gyroi.

Seereference [4] for additional details. All remaining gyro errors are modelled as process
noise.

Note the order of the corrections:

1. Thescaefactor isapplied to the measured rotation rate.
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2. Thebiaseror isremoved.

3. Thesmall misalignment rotations are applied.
In reference [1], it was assumed that that g =0 and Sy, =1, sothat &; = J; .
To include misalignments and scale factors, begin by expanding the above equation.

SGxa,\)Gx + ﬁGx + :uny (SGyaA)Gy + ﬂGy )+ /usz (SGZGA)GZ + ﬁGZ)
@ = :quy (SGx(be + ﬁGx)+ SGyé)Gy + ﬁGy + :uGzy (SGZC’[)GZ + ﬁGz)
zquz (SGxé)Gx + ﬁGx )+ /uGyz (SGyé)Gy + ﬁGy)-i_ SGzé\)Gz + ﬁez

This can be smplified by assuming that misalignments and scale factor errors are much
smdller than the signal and the biases and ignoring second order terms. Note that the scale
factor teemsarethe full scalefactors: § =1- ¢, where ¢, isthe (small) scale factor error.

Now,

SGxaA)Gx + ﬂGX + zuny (aA)Gy + ﬂGy)+ /usz (é)Gz + ﬂGz)
67) = zquy (a,\)Gx + ﬂGX)+ SGya,\)Gy + ﬂGy + luGzy (a’\)Gz + ﬂGz)
:quz (é)Gx + ﬁGx )+ :uGyz (a,\)Gy + ﬂGy )+ SGza,\)Gz + ﬂGz

The expanded expression for gyro errors can now be derived
ﬂGX + O-GXaA)GX + luny (aA)Gy + ﬂGy)+ zusz (&)Gz + ﬂGz)

gG = 67) - C%) = ﬂGy + GGyé)Gy + lquy (é)Gx + ﬁGx )+ IUGzy (é)Gz + ﬂGz)
ﬁGz + GGzé)Gz + lquz (&)Gx + ﬂGx )+ zuGyz (a,\)Gy + ﬂGy)

An exponentially correlated first-order Gauss-Markov model will be used in thefilter to
characterize the gyro errors. It is completely described by avariance and a correlation time.
Thisisthe same kind of model that is used in the software for dmost al sensor errors.

The Kaman filter dynamics matrix describes how the state vector changesin time. The
effects dueto the gyro errors are derived through partia differentiation. Following the
development in reference [1], begin with the equations of motion in sections 4.3.2 and 4.3.3.

Equation (4.42) isafirst-order differential equation for the attitude errors (the  -angle vector).
It isrepeated here:

l/; = _(CT)ICE + @Ec )X lp + Cspgé
The c-frame is the wander azimuth computer frame,

Thel-frameistheinertia frame,
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The E-frame is the earth-centred, earth-fixed frame,

The s-frameisthe sensor frame,

The p-frameisthe wander azimuth platformframe.
The dynamics matrix is derived viathe partia differentiation of equation (4.42) with respect
to the Kaman filter states, as described in reference[1], Chapter 7. For the present purposes,

we are concerned only with the gyro error term. There are no dependencies on non-gyro error
dates.

1 Uy Hon 1 g, fg,

dE, N N
ﬁ = H Gxy 1 ﬂGzy = lquy 1 luGzy (5)

© :quz IUGyz 1 :quz ;uGyz 1
g P, 0 O
5 el 0 @ O (6)

% 1o 0 a,

ag F(&)Gy + IBGy) (aA)Gz + :BGz) 0 O O O
m | ° 0 (Ooths) (Gnths) O 0

© o 0 0 0 0 (é)Gx + ﬁGx) (é)Gy + ﬂGy)

(aA)Gy + IBGy) (é)Gz + Bez) 0 A 0 i 0 0
= O 0 (é)Gx+IBGx) (&)GZ+IBGZ) 0 . O .
| O 0 0 O (d)Gx +IBGX) (&)Gy +ﬁGy)

(1)
where

T

A = Lueyx Hore Hoy Moy Hox luGyz]

Hats added to the error terms indicate filter-estimated values. Recall that all three of theses
dynamics matrix sub-blocks have to be pre-multiplied by the sensor frame to platform frame
direction cosine matrix.

The misalignments add as many states as the biases and scale factors combined. And, the
misalignment states are not expected to add as much information to the solution as the other
gyro errors. Therefore, they will likely remain in the indirect process noise covariance model
and not be modelled in the state vector. In this smplified model,
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The misalignment sub-block will obviously be removed from the dynamics matrix.
The scale factor sub-block is unchanged.

The bias sub-block is smplified to a 3x3 identity matrix (prior to pre-multiplication with
CH).

Notethat the INS velocity errors are also dependent on gyro errors (see reference[1],
eguation (4.59)). In thisvelocity differential equation, the CPg; termis pre-multiplied by the

wander azimuth velocity cross product, (\7 P ><) - see the next section.

412 New Accelerometer Model

Note that the gyro correction model, equation (4), is quite generic: it can just aseasily be
applied to accelerometer bias, scale factor, and misalignment corrections, as follows.

1 Uy Hax Sadax t Ba
/quy 1 :quy SAy Ay + IBAy
Hpo  Hpy 1 Spla, + Ba,

Q>

a=

Equation (4.59) in reference [1] isthefirst-order differentia equation for the velocity errors:
VP = —(Zé)fE +cT),§C)><\:/" +vP x(c?),cE xzp)+
Cles +vP x(cres)+ g
Only the accelerometer and gyro error terms are of interest here. Note that the accel erometer
error term is completely analogous to the corresponding gyro equation: the accelerometer

dynamics matrix sub-blocks can be derived using the corresponding gyro error sub-blocks.
Simply replace

in equations (5), (6), and (7).



However, note the velocity error equation is aso dependent on gyro errors. The velocity error
rows of the dynamics matrix will therefore contain termsin the gyro error columns.
Fortunately, the gyro error elements are Ssmply those in the attitude error rows pre-multiplied
by the velocity cross-product matrix.

Note that the acceleration should include gravity to properly estimate the scale factors.

4.1.3 New IMU Process Noise Models

In conventional inertial sensors, noise levelsare very low; in MEM S sensors, they are high.
To model the noise accurately, specific noise terms are needed in the process noise covariance
matrix. Sensor noise may be reported in terms of the noiseitsalf or in terms of the integral of
the noise - random walk.

Reference [ 3] describes the relationship between noise and random walk. For the continuous
process, the state variable differential equation for arandom walk process (with its variance)
is.

(8)

where

xisthe randomwalk variable,

wisthe noise,

p isthe random walk variance,

g isthe noise variance.
In the MEM S/GPS processing stream, IMU sensor dataiis first collected and run through the
strapdown navigator (reference[2]) — effectively an integration process with gyro angular
rates integrated once to give angular changes and accel erometer rates integrated once to give
velocity changes and again to give changein position. Noise on the sensor inputs produces
random walk error in the strapdown angular and velocity outputs. Integrating the second line

in equation (8) givesthe variance of the random walk processin terms of constant noise
variance and time:

p:qut = qjdt =qr
0 0

The variance of the random walk processincreases linearly with time at arate equal to the
noise variance.
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It isimportant to keep track of the unitsin thisanaysis: random walk is generaly reported in
this context as so-called Angular Random Walk (ARW) and Ve ocity Random Walk (VRW)
with units given in terms of standard deviations as degrees per square root hour and (metres
per second) per square root hour. The corresponding noise standard deviation units are
degrees per hour and (metres per second) per hour. Rates may also be expressed in terms of
seconds (e.g. degrees per square root second and degrees per second) when they are large.

The strapdown data is passed on to the MEM SGPS Kaman filter where the fina navigation,
error control and accuracy estimates are generated. To accurately propagate the IMU error
models (viathefilter propagation step), the velocity and attitude random walk errors must be
accounted for. In thefilter, thisis done in the process noise covariance matrix.

Can amodel be developed that will take either the noise variance or the random walk
variance and give the appropriate velocity and attitude state process noise variances for a
discrete Kaman filter? It should be noted that one model will be used for al accelerometer
noise, and another for al gyro noise.

4.1.3.1 Units Conversion

Accelerometer and gyro random walk errors are each commonly quoted in two different units.
The conversions between the units are presented here.

4.1.3.1.1 Accelerometer Random Walk Units

Accelerometer random walk errors are commonly quoted as
Acceeration per square root frequency (Rate or Acceleration Random Walk), or
Velocity per square root time (Ve ocity Random Walk).

A useful gtarting point isthe following conversion:

m/ s m? /s’ m?/s® 3600s m/s
1—> — = X =60—
v Hz 1/s S 1hr Jhr
2
Therefore, arandom walk error givenin m/s isconverted to m/s by multiplying by 60.
VHz vhr
m/s m/ s

Note that isnumericdly equivaent to

Us Jhz

Conversions of the velocity and acceleration unitsisrelatively smply. For example, if
accelerationisgiveninmicro( ) g's,
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S .
And
1S _ 605 _ 10204049
oz
Sothat

,ug 60 m/s_ 1 m/s

\/ Hz 102,040 +/hr 1700 vhr

A random walk error givenin — ad® isconvertedto — m/s by dividing by 1700.

JHz Jhr

Other coordinate conversions can be derived in asimilar fashion. And, of course, theinverse
conversions are smply the numerical inverses of those given.

4.1.3.1.2 Gyro Random Walk Units
Gyro random walk errors are commonly quoted as
Angular rate per square root frequency (Rate Random Walk), or

Angle per square root time (Angular Random Walk).

, . . eg/ S .

Let’ sbegin by converting e to —_ Note that thisis completely analogousto the

accelerometer conversion from _2 m_/ >

A random walk error givenin deg/s isconverted to deg by dividing by 60. And again
VHz Jhr ’

deg . . . deg/s

— Isnumerically equivalent to )

Js Y A Hz
Conversionsto other angle or time units would proceed in the normal fashion.
5 SUMMARY

This report describes those parts of the MEM S/GPS Kalman filter that differ significantly
from earlier work (the DIINS Kaman filter are presented of reference [1]). It describes
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1. New data-driven filter timing procedures,
2. New and modified Kaman filter measurement agorithms;

3. New IMU error states that were added to try to better model the larger MEMS IMU
errors.
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APPENDIX A _ALTERNATIVE GPS VELOCITY
MEASUREMENT MODELS

A.1 Open-Loop Model

In section 3.3.2, the GPS vel ocity measurement equation was derived. It was given as
zngPS = \:/gps -C¢ [I + (55 X)"' (‘/7 X)]@mu
The measurement model resulting from this equation will be derived below.

The objectiveisidentification of all state dependencies. Begin by expanding the IMU term,
temporarily making use of the -angles (seereference[1]):
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[cosq, -sine, O 1 -9, ¢, v,
Ctg [l + (¢7 ><)]\:/IVIY/IU = —SiﬂO(t — COSo, 0 ¢z 1 - ¢x VIWMUY
| 0 0 -1 -9, & 1 | Vimy,

[ cosa, —siney, O | Vi, —9.Vinu, +9,Viuu,

=|-sing, —cosa, O ¢ZVIWMUX +v,VKAUY _¢XVIWMUZ

| 0 0 -1 -9V, +Vimu, Vi,

[ w w w : w w w
Coso, (VIMUX - ¢)zV||v|uY + ¢yVIMUZ )_ Sno; (¢zV|Mux + VlMuY - ¢xV|MuZ )

_ : w w w w W w

=[—-Sng (VlMux - ¢zV|MuY + ¢yV|MUZ )_ Cosa, (¢ZVIMUX + VIMUY - ¢><V|MuZ

w

w w
¢yV|MUX _¢xV|MUY _VIMUZ

To be completely rigorous, the true wander angle should written
Oy =0y - oc IMU
From reference [1],

Sa _ (&I\II\VIIUX SinalMU +&|\1I\V/|UY Cosay )tan|¢eps|
" Re + hGPS

where || isthe absolute value of the GPS latitude.
Using small angle approximationson oc ,,, , we get

. 2 -
(&I\IQ//IUX sin a’/IMU + &Ivl\\;IUY S|na’/IMU COSaIMU )tan|¢GPS|

RE + hGPS
(&Ivl\\;lux S.nCKIMU COSa’/IMU + &Ivl\\;IUY COSZ aIMU )tan|¢GPS|

Re + Ngps

COSQ, = COSy, —

sng, =sina,,,, +

Expand the a, terms, neglecting second order terms:

Ctg [I + (¢7 X)]\:/mu =
COSOQVYXAUX —sin O(tV;NMUY + COSyy (_ ¢2VI\AI:/IUY + ¢yV;NMUZ )_ Sinamu (¢2Vmux - ¢xvn</|uz )
- Cosatvlvl\\llluy —sn OQVvinux —SNa,y (_ ¢zvlv;</|uY + ¢yvmuz )_ Cosay (¢2Vmux - ¢><V|V\r:/|uZ )

w

w w
¢yVIMUX _¢xV|MUY _VIMUZ

Collect terms according to the -angles:
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C? [I + (é X)]vmu =
w H W H w w w H W
COSOQVH\AUX - snatVIMUy + Sna|MuV|MUZ¢x + CosalMUVIMUZ¢y - (COSO(lMU VIMUY + SnaIMUVIMUX )¢z
w H W W H w H w w
- COSO‘tanluY - SmatleuX + COSaIMUVIMUZ¢x _snalMUVIMUZ¢y + (SlI’IO{,MU VIMUY - COSO{IMUVIMUX )¢z

W w w
¢yV|MuX _¢XVIMUY _VIMUZ

To complete the derivation, the a, and ¢ terms must be expanded (they are both dependent
on error states). From reference [1] once again,

- s _
MUy | v,

RE + hGPS
Oy,

I:sz + hGPS
v,

)

<
Il
™
+

<
[l

+Wy

A.l.1 First Row of the H-Matrix

But, to keep the equations to amanageable size, the partia differentiation will be started next,
oneterm at atime, neglecting second order effects, starting with the X GPS velocity
measurement row and X IMU position error column:

9z°
HGPs, (aZ\?X ’&IMUX )= a%
IMU
a(_ COSO[tV;Al(AUX )+ a(Sirm{tV?’r\(AuY )+ a(_ 00505|MUV|VKAUZ¢y)
oV, ) G, ) G, )
_ sin? v tan|¢GPs|V|VK/|uX +Sina|Mu COSa tan|¢GPS|VIVK/IUY + COSO{IMUVIVI\\I/IUZ

RE + hGPS
_ _VIgMUY Sinan\/lu tan|¢eps| _VIgMUZ Cosay

- RE + hGPS

Similarly,
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029
HGPs, (aZ\?X ’&IMUY )= J&Z\I—X)
IMUy
a(_ Cosatvlml(/lux )+ a(Sirm{tV?’r\(/luY )+ a(_SinaIMUVI‘Al(/IUZ¢x)
Sy, ) Gy, ) 3Gy, )
_ SinaIMU CoSa\y tan|¢eps|V;/r\</1uX + cos? Oy taﬂ|¢eps|vlv;</|uY _SinalMuleuz

RE +hGPS

g g ;
_ ~ Vimy, COSOyy tan|¢eps| T Vinu, SNy
Re + Ngps

0z,
HGPS,(aZ\?X ’&|Muz) = a&_xj =0
IMU,

The IMU velocity error dements (where V2, = VP — &%, ) are

az,
HGPS, (aZ\?X 15‘/IMUX) = aﬁ = COS,y
IMU

928 ,
HGPs, (aZ\?X '&/IMUY) = aﬁ =-3Na,yy
IMUy

0z,
HGPS, (aZ\?X 15‘/|MUZ) = aﬁ\l_x) =0
IMU,

Continuing with IMU attitude errors,

928 d-sina Vi, 8) ., .
HGPS,(aZ\?X’l//x) = a(wx): a(l;vlyu)lMUZ =—39N&yy Vi, :VIgMUZ SNy

a(_ COSy V|V1\</|uZ ¢y)
oy, )

09
Hes, (aZ\?X W)= B(ZX ) =
y

— w0
- _COSO{IMUVIMUZ - V|MUZ CoSayy

az\?X E)((SiI'IOJH\,.UV;’,\(AUX + COSO{IMUVIVK/IUY »x)

¢} — — o W w
HGPs, (az\/X ’l//z) = = =8Ny Vimu, T COSA )y Vi,

ov,) ov,)

A.l2 Second Row of the H-Matrix
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TheY GPS velocity measurement matrix row issimilar to the X row:

0z,
HGPs, (aZ\?Y 1&IMUX) = a&_Y)
IMU

_olsnawiy, ) aleosavi, ) alsina, Vi, 9,)
a(&IMUX) a(&IMUX) a(&IMUX)
_ SinalMU COS\y tan|¢GPS|V;II\(/IUX —sin® vy t"'*‘n|¢eps|V;I|\(/|UY _Sir‘()ln\ﬂuv?,r\:/luZ

I:QE + hGPS
9 ] 9 1
_ VIMUX sr-ICZIMU ta‘n|¢GPS| +VIMUZ Sr]OYIMU

Re + Nges

0z°
HGPSV (aZ\?Y ’&IMUY )= a%
IMUy
_alsnawiny, ) dlcoseqviny, ) l-coseny Vi, 4,)
a(&IMUY ) a(&IMUY ) a(&IMUY )
_ cos’ Ximu tan|¢GPs|V|WMUX _Sinan\nu COS vy tan|¢GPS|VIVI\\I/IUY — COSa leuz

RE +hGPS

g g
Vimu, COSyy tan|¢GPs| * Vimy, COSA )y

RE +hGPS

oz’
HGPs,(aZ\?W&MUZ):w:O
IMU,
9z°
Heps, (025, My, ) = ( al ):_Sina
S y X REY IMU
IMU

azs
HGPs, (aZ\?Y 1&/IMUY )= aﬁ = —C0Sy
IMUy

028

=0
a(a/nwuZ )

HGPS, (aZ\?Y 15V|Muz) =

dz]  9l=0CoSa iy, By w
Heps, (020, %) = a(;Y = ( a('MU)'MUZ ): ~Vipy, COSyy = Vi, COSyy,
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ASna, Vi 0,) .,

o)

029
HGPSV (aZ\?Y ’l//y) = a(;Y ):
y

228

w H w
a(COS(Z,MU VIMUX —SNoyy VIMUY )¢z

Heeg, (02 .¥,) = =
< (2 V) =50, 9.

A.1.3 Third Row of the H-Matrix
Ze eV, ) v
H (az\? ’&- ) — z — y X/ _ X
s ’ Mo a(&IMUX ) a(ﬁﬂmuX ) RE + hGPS

028, AoV, ) Viw,
0y, ) O, ) Re+hees

HGPs, (aZ\?z ’&IMUY) =

92,
HGPS,(aZ\?Z '&IMUZ) :a&_z): 0
IMU,

vy,

HGPS,(aZ\?Z ’&/IMUX) :W =0
IMU

a W
Haps (022, 8y, ﬂgv_)) 0
IMUy
a w
Hepa<azsz,5v.MuZ>=ﬂfsvv'M_UZ))=—1
IMU,
Vi, )
ow,)

= Vimu,
a(_ ¢yvl\l\l</IU>< ) —_yW
8( y) IMU

9z,
HGPS, (az\?z 7Wx) = a(l//Z ) =

Hps, (az\?z W)= a( ):
y

a 9
HGPS, (az\?z ’l//z) = a(zl/;z ) =0

A.1.4 The Full H-Matrix
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The full GPS veocity measurement H-matrix is presented below. Note that GPS velocity
states are not represented in this matrix. If GPS velocity is used, expand GPS velocity to

o9 _ g9 _ 539
Veps =V &eps

Then, add a3 by 1 minusidentity matrix (-1) in the GPS velocity state columns of the H-
matrix.

One note regarding the H-matrix below: the velocitiesin thefirst two rows arein thelocal
geographic frame; the velocitiesin the third row are in the wander azimuth frame.



az"ips _

o o) -
—_V|gMuY SinO’lMu tan‘¢eps‘ _VIgMUZ Cose,y _V|gMuY Cosa tan‘¢GPS‘ +VIgMUZ Sinanwu
Re + hGPS Re + hGPS
Vlgmux SinalMU tan‘¢eps‘+VFMuz SinalMU V|g|v|uX Cosayy tan‘?’jeps""VFMuz Cosa,yy
RE + hGPS RE + hGPS
Vmux V;IKAUY
RE + hGPS RE + hGPS

g9
VIMUZ Cosayy
g .
_VIMUZ SNy

_VIMUX







A.2 An Alternative GPS Velocity Formulation

In section 3.3.2, a GPS velocity was constructed as follows:

9 _g9 ggp
Zvas = Veps — CWVIMU

Recall that the C) DCM isthe transformation from the IMU computer frame to the IMU

local geographic frame: it is used as an approximate transformation from the IMU platform
frameto the GPSloca geographic frame. To develop the measurement modd, it was
expanded to

g _Zg g(GPS) ~W(GPS) ~cS p
ZVGPS = Veps — CW(GPS) Cc CpVIMU

_ g9 9(GPS) ~t~cG P

= Vaps ~ CW(GPS) CcCpVIMU

_ g9 9(GPS) n 7} P

= Vgps — Coiare (1 + 68 1 +@x)g,
Here, an dternative formulation will be presented.

Instead of transforming the computer frame velocity to the GPS local geographic framein this
way (asafunction of IMU position error), an exact transformation can be used. The new
mesasurement is

g9 _g9 9(GPS)~EGP
ZvGPS = Vaps — CE Cc Vimu

where the earth-centred, earth-fixed coordinate frame is used as an intermediary. Thefirst new
DCM, CF, isan exact function of IMU-computed latitude, longitude and height; the second,

C2©P® | isan exact function of GPS-computed latitude, longitude and height. All IMU

position error dependence has been removed — at the expense of the extra computations
required to form the new DCMs.

The H-matrix for the new model isderived from
PS — CS(GPS)CcEC;vlﬁnU
= CS(GPS)CcE (I + V7X)\:/|’KAU

g(GPS)~ES p g(GPS)~E [, o P
PS — CE Cc Vivu — CE Cc (l//XVIMU )

=9
ZVGPS

Il
<> <
Da Oa

1l
<»
@«

Intermsof  -angles, neglecting second order terms,
~CEEICE (pxUhy ) = CEEICE [y )
= (Cg(GPS)C(I:E\:iI?/IU )X W

:g —
VIMU XW

In



Without expanding the terms, the new H-matrix is

esemcelg, xv)

92,
H — Gps _ O Cg(GPS)cE 0
GPS, a(X) [ E c al/—/
Using the above approximation,
_ 0 -v; v
H = az’i“ =|0 C¢ICE v? 0 —\y/g 0
GPS, — 8(7() - E c z X
-vy vy 0

All non-zero terms are in the IMU velocity and attitude error state columns.
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