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1  INTRODUCTION 
The contract under which this report has been prepared is entitled “MEMS/GPS Integration 
Investigation for NAVWAR Applications”. Its purpose is to “research, design and build a 
working prototype of an integrated MEMS/GPS system”.  GPS has become a dominant 
navigation system for defence applications. However, GPS is highly susceptible to jamming 
(due to its low power signal) and signal loss (due its requirement for line-of-sight satellite 
visibility). A missile or aircraft approaching a target could very well experience increasing 
defensive GPS jamming noise just as its need for accuracy is increasing. A soldier fighting in 
a canyon – man-made or natural – will have the usefulness of his GPS navigator 
compromised or negated by the lack of visible satellites. NAVWAR aims to mitigate these 
vulnerabilities by improving GPS operation in high jamming, high multipath and low signal 
strength environments like these. Efforts will be directed in a number of different directions.  

Integration of an Inertial Navigation System (INS) with GPS has been shown to mitigate 
NAVWAR problems: the INS is able to bridge GPS outages (and improve GPS signal 
tracking in tightly coupled systems); GPS is able to calibrate INS sensor errors (thus 
improving performance during GPS outages). However, traditional inertial systems are too 
expensive, too big and too complex to be practical on any but the costliest military platforms. 
A GPS-based navigation system that could be carried by a soldier would have to light and 
robust; a system fitted into a large number of land vehicles would have to be small and 
inexpensive; a system mounted in an artillery shell would have to survive 1000’s of g’s 
acceleration when fired and be capable of providing the required accuracy after decades of 
storage. MEMS inertial sensors are tiny, inexpensive and robust. However, at present, they 
are also very inaccurate. A MEMS/GPS system has the potential provide at least some of the 
benefits of INS/GPS integration while making robust navigation practically available to a 
much larger portion of the military in the field.  

This report describes important parts of the Kalman filter that is used to optimally combine 
data from different navigation sensors in a way that will provide the best navigation solution 
in all situations. The implementation of this filter is based on earlier work: the Dual Inertial 
Integrated Navigation System (DIINS). Details of the DIINS Kalman filter are presented in 
reference [1]. Unless otherwise stated, the theory, algorithms, techniques and models applied 
to the MEMS/GPS Kalman filter are the same as those described in ibid. 

Rather than repeating all these background details, this report was written as a kind of 
addendum to reference [1]. That is not to say that the differences are insignificant: the 
MEMS/GPS filter has completely different target applications; filter timing has changed from 
clock timed to data driven; there are new sensors, and new non-sensor measurements; there is 
a complementary IMU strapdown navigator running with the filter in a closed-loop fashion; 
and new IMU error states were added to try to better model the larger MEMS IMU errors. 
The main focus of the sensor integration has also been modified: in DIINS, the emphasis was 
on failure detection, isolation and reconfiguration; in the MEMS/GPS system, the emphasis is 
on maintaining navigation accuracy during periods of GPS loss or degradation.  
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The rest of this report describes the new or modified procedures.  

2  FILTER TIMING 
The predecessor to the MEMS/GPS Kalman filter was clock timed: functions were signalled 
to begin at regular preset clock time intervals. The MEMS/GPS Kalman filter is data driven: 
filter functions will be run as sensor data arrives. This chapter describes the methods to be 
used to control Kalman filter timing on the basis of sensor data arrivals.  

2.1 Reading Sensor Data 

Since sensor timing drives this new filter timing approach, it is instructive to fully understand 
how sensor data is read into the filter task.  

The basis of the procedures described below is the assumption that the IMU data rate will be 
no less than that from any other sensor. This is a fairly safe assumption: at the present time, 
IMU data rates are one to two orders of magnitude higher than other common sensors (e.g. 
100 Hz versus 1 Hz). The IMU strapdown navigator sends data to the filter at a selectable rate 
that can be as high the IMU data rate or can be reduced by integer fractions of the IMU rate. 
For example, currently used IMUs output data at rates between 100 Hz and 200 Hz, GPS and 
digital compass data is available at 1 Hz, and the strapdown navigator outputs data at 10 Hz.  

All sensor data is sent to bounded (circular) buffers. At every processing cycle of the Kalman 
filter, the IMU data record is read from its buffer.  

Since the other sensors’ data is arriving at slower rates, they will not be read at every filter 
cycle. To determine whether or not a sensor data record must be extracted, its next expected 
time of data is computed and tested against the latest IMU time. To explain the algorithm used 
to do this, a brief overview of the process used to pre-process Kalman filter measurements is 
required (details can be found in the next section of this chapter).  

When Kalman filter measurements are formed, the aiding sensor data is interpolated back to 
the latest IMU time. To allow this, aiding sensor data should be read from its buffer only 
when IMU data has been read up to but not past the next expected aiding sensor time. In other 
words, the aiding sensor should be read when its next expected time lies between the latest 
IMU time and next expected IMU time.  

2.2 Filter Processing 

A discrete Kalman filter like that used in the MEMS/GPS project has a number of steps that 
are generally occurring at different rates. It is assumed that the reader is familiar with Kalman 
filter processing. All terms and processes are described in detail in References [1] and [3].  
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The IMU data arrives at the filter from the strapdown navigator at a fixed rate that should be 
greater than or equal to other sensor rates.  

1) At the arrival of every good IMU data record, the following steps are executed. 

A) Filter matrices are computed:  

i) A new dynamics matrix is computed using the new IMU data.  

ii) New diagonal elements for the system state block of the continuous process noise 
spectral density matrix are computed using IMU data and a set of coefficients. The 
Gauss-Markov diagonals are constant and computed once at filter initialisation.  

iii) The incremental, discretised process noise covariance matrix is computed using 
the spectral density matrix and the dynamics matrix.  

iv) The system state rows of the incremental transition matrix are computed. 
Assuming the dynamics matrix is constant over the IMU data interval, the 
transition matrix is computed as a Taylor series expansion in terms of the 
dynamics matrix and the IMU time interval. The Gauss-Markov rows are all 
constant: a zero sub-block in the system state columns, and a diagonal sub-block 
computed from correlation times and the IMU time interval in the Gauss-Markov 
columns.  

B) At filter initialisation and immediately after a measurement update, the full transition 
and discrete process noise matrices are re-initialised to their incremental counterparts.  

C) Between measurement updates, the error models are propagated over the time since 
the last measurement update by  

i) Pre-multiplying the previous transition matrix by the current incremental matrix,  

ii) And adding the current incremental process noise covariance matrix to the 
previous process noise covariance matrix.  

2) The second filter “rate” is variable, dependent on the arrival of aiding sensor data or the 
signal that the time for non-sensor measurements has arrived. At each of these “update 
times,” the following steps are executed.  

A) The full transition and process noise covariance matrices are used to propagate the 
state vector and its covariance matrix from the last update time to the current time.  

B) Propagated IMU states are sent to the strapdown navigator for closed loop error 
control. These states are saved for use in Step F).  

C) Each Kalman filter measurement corresponding to the new aiding sensor (or non-
sensor) data is formed and tested. If the statistical test of the measurement’s residual 
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passes, the state vector and its covariance matrix are updated. If the test fails, no action 
is taken. All measurements are processed before any other steps are processed. 

D) The updated state vector is used to correct IMU data to get the best navigation 
(position, velocity, attitude) estimates.  

E) The corrected navigation data, measurement residual data, and state vector data is sent 
to a file for subsequent analysis.  

F) The states sent to the strapdown navigator (saved in Step B) are subtracted from the 
updated state vector. This maintains consistency with strapdown navigator: the error 
control states were used to reduce IMU errors; the filter estimates of those errors (the 
IMU states) must be adjusted to account for this reduction.  

The update interval is variable in the sense that the time of arrival of data from different 
sensors and the non-sensor measurement times are not coincident. However, if data and non-
sensor measurement rates are constant, there will be a repeatable pattern in the measurement 
update times. For example, assume that GPS and compass data and non-sensor measurement 
time intervals are all one second. Further assume that GPS data arrives about time Gt , 
compass data arrives about time 3.0+= GC tt , and non-sensor measurement times arrive at 

1.0+= CN tt . At each Gt , GPS measurement updates will be processed. Then 0.3 seconds 
later, a compass heading update will be processed. 0.1 seconds later, the non-sensor updates 
will be processed. Then, 0.6 seconds after that (when the next GPS record arrives), the 
process repeats.  

Note that the all filter timing is driven by IMU time: all actions will be triggered at an IMU 
time of data.  

3  FILTER MEASUREMENTS 
The MEMS/GPS integrated navigation system is comprised of a MEMS IMU plus additional 
aiding sensors, GPS being the primary aid. A main goal of the MEMS/GPS project is the 
development of procedures that will allow successful navigation after the loss or degradation 
of GPS signals. To this end, non-GPS Kalman filter measurements have been developed. 
These are based on  

1. Heading from a digital compass (the compass is also used for initial IMU alignment),  

2. Non-sensor data like 

a. A fixed height,  

b. Zero velocities.  

Future additions to this non-GPS suite of aiding information could include  
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1. A baro-altimeter to stabilise the IMU vertical channel in the absence of GPS (to 
replace or augment the fixed height measurements),  

2. An vehicular odometer to provide direction-of-travel speed (e.g. a velocity 
measurement in the body frame),  

3. Stride length algorithms to aid a dismounted soldier’s personal navigator.  

3.1 Overview 

This chapter describes the MEMS/GPS current measurement models. GPS measurements are 
presented first, followed by all other measurements. Errors in all MEMS/GPS discussions are 
defined as true minus approximate. Therefore, measurements are all formed as aid minus 
IMU.  

For each measurement type described below, the measurement vector and the associated rows 
of the (design) H-matrix will be derived. In brief, a Kalman filter updates its states by 
combining a weighted residual and its previous state estimates (see e.g. references [1] or [3] 
for more details). The H-matrix describes the linear transformation of the state vector into 
measurement space. Specifically, the full residual vector (for all measurements) is  

xHz
)vvv −=υ  

The H-matrix can be derived as the partial differential equation  

x
zH v
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3.2 Temporal And Spatial Corrections 

Kalman filter measurements in a system such as MEMS/GPS compare IMU quantities with 
similar reference values. In some cases, special constraints can be used to form measurements 
with no reference sensor. For example, when the system is stationary (i.e. with velocity of 
zero), IMU velocity can be compared with the known zero velocity to form Kalman filter 
measurements. However, most measurements are formed by comparing IMU quantities with 
reference values from an independent sensor, an example being IMU versus GPS velocity.  

In the more common case of sensor-supplied reference data, corrections are often required 
before comparisons can be constructed. Firstly, data coming from the two different sensors to 
form a measurement are not usually synchronized in time. Over “short” differences, when 
appropriate rate data is available, data from one sensor (usually the reference) can be 
extrapolated to the time-of-validity of the second sensor (usually the IMU). Further, the two 
sensors are not, in general, co-located. Given the vector from one (usually the IMU) to the 
other (usually the reference) in the vehicle body frame (unless otherwise indicated, all 
coordinate frames used in this report are those defined in reference [1]) and the appropriate 
supplemental information, the data from one sensor can be transferred to the location of the 
other. The following sub-sections detail the procedures used in the MEMS/GPS Kalman filter. 

3.2.1  Notation 

The need to add time and relative body positions to a sensor quantity adds to the notational 
complexity. The full notation required for the following discussions will be developed here, 
starting from base notation.  

Let’s start with a true velocity vector, vv . If the vector is presented in the a coordinate frame, it 
is written avv . If it is an estimated or measured value (any quantity containing errors), a hat is 
added - av̂v . Now, if is has been measured by sensor X , that is added as a subscript - a

Xv̂v . If 
the velocity of sensor X  has been transferred to another location on the vehicle, say to the 
location of sensor Y , we will write a

XYv̂v . Finally, the time of validity is added as a suffix: 
( )i

a
XY tv̂v .  

To summarise, the notation ( )i
a
XY tv̂v  represents a velocity vector  

  In the a coordinate frame,  

  Measured by sensor X ,  

  Transferred to body location Y,  

  Valid for time it .  
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Note that location Y need not be different from location X. If they refer to the same point, and 
there is no chance of confusion, the second (location) subscript may be dropped 

( ) ( )i
a
Xi

a
XX tvtv ˆˆ vv ≡ . The time of validity is not necessarily the sensor X time; it could any time 

shortly before or after sensor X time.  

3.2.2  Temporal Measurement Extrapolation 

Let’s begin the discussion of adjustments in time by assuming that we wish to form a velocity 
measurement by comparing an IMU velocity with a reference velocity valid at a slightly 
different time. If the vehicle is moving (specifically, undergoing accelerations), one of the 
velocity vectors must be adjusted so it refers to the same point in time as the other. In general, 
we do not know how the velocity changed over the small time interval. However, we do have 
enough information to make an estimate: we have a series of previous and current velocities, 
and we may have acceleration outputs from the IMU (this is the case in MEMS/GPS). 
Extrapolation could be used to estimate a change in velocity forwards in time. The 
extrapolation could use a linear (or higher order) fit to the previous (one or more) velocity 
records (requiring that they be stored); or it could use past accelerations. Extrapolation is 
generally risky business; and the noisier the data, and the longer the extrapolation period, the 
greater the risk. A safer approach would be to interpolate backwards in time. Linear 
interpolations over short periods of time will suffice; more complex models may be required 
over longer periods of time. Keep in mind that short and long in terms of time periods in these 
discussions are relative: higher accelerations require shorter time intervals. In any event, it is 
safe to say that the shorter the interpolation or extrapolation time, the better the expected 
results will be.  

Before continuing, let’s look at the specifics of the MEMS/GPS system. IMU data is 
generally available at higher rates than other sensor data. In the MEMS/GPS strapdown 
navigator (reference [2]), any output rate up to the rate of the raw data can be selected. IMU 
data rates are typically 100-200 Hz. At present, the strapdown navigator output rate is set at 
10 Hz. GPS output is receiver dependent: the Rockwell-Collins DAGR used in 2003 van 
testing could output NMEA-standard sentence sets at rates of 0.5 or 1 Hz. Other receivers 
have output rates of 10 Hz and even higher. Additional current and anticipated MEMS/GPS 
reference sensors can be assumed to have data rates on the order of 1 Hz.  

In theory, it doesn’t matter which sensor, the IMU, the reference or both, is time corrected. 
There are several options for setting measurement times. The following list describes the most 
likely possibilities and provides some observations that will guide us to the best choice:  

1. A measurement rate higher than the lowest sensor rate would be counter-productive 
(in Kalman filtering theory, sensor data should be used to form measurements only 
once). This statement should be understood to apply to the following discussions.  

2. Triggering measurements on the basis of clock time (every second on the second for 
example) leads to the possibility of having to adjust sensor times as much as the full 
sensor data time interval (if a measurement is triggered just before sensor data 
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arrives). And, of course, both IMU and reference data would, in general, have to be 
adjusted.  

3. Triggering measurements on the basis of the time-of-data for one sensor eliminates 
the need to adjust the times of the selected sensor. However, the possibility of having 
to extrapolate the other sensor’s times as much as its full data time interval remains.  

4. IMU-supplied rate quantities that are not directly used for measurements may be 
required for temporal adjustments (e.g. accelerations for velocity measurements). 
They are required for the spatial (lever arm) adjustments described in the next section. 
Rather than adjusting all those other IMU quantities to the reference time, one 
adjustment of the reference quantity to IMU time is preferred. 

Item 3 above leads to the conclusion that maximum possible extrapolation times will be 
minimised by adjusting the times of the sensor with the highest data rate (lowest time interval 
between data records). In most cases, this is the IMU.  

On the other hand, item 4 states explicitly that reference sensor times should be adjusted to 
IMU times.  

If the IMU data rate is less than the reference sensor’s, items 3 and 4 both lead to the 
conclusion that reference times should be adjusted to IMU time.  

Unfortunately, in the more common situation where IMU data arrives at a higher rate, there is 
a contradiction. Let’s now try to find the best compromise solution to this problem.  

Intuition (along with the preceding discussions) suggests that we should try to abide by the 
recommendation of item 4. Doing so should minimise software complexity, adjustment errors, 
and computational burden. Let’s start with the position that reference times will be adjusted to 
IMU time. Item 3 then tells us that it may be necessary to extrapolate the other sensor’s times 
as much as its full data time interval. Methods to minimise the adjustment errors need to be 
found.  

In general, adjustment errors are reduced when adjustment times are reduced, and when 
interpolating rather than extrapolating. A hybrid solution is presented below that meets both 
error reduction criteria. Table 1 lists the proposed steps in measurement formation within an 
arbitrary measurement interval.  

Table 1: Proposed Temporal Measurement Adjustment Process  

1. IMU data records are received – no measurement activity;  

2. A reference data record arrives, signalling the start of the measurement process;  

3. Rather than extrapolating the IMU time to the reference time, the reference data is 
interpolated back to the previous IMU time;  
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4. The measurement is formed at the previous IMU time.  

 

This is a hybrid solution in the sense that it is the arrival of reference data that triggers the start 
of the measurement process, but the measurement itself is formed at the last IMU time. This 
procedure  

  Uses the preferred interpolation method,  

  Limits the interpolation time to the (lesser) IMU data interval,  

  Applies to situations where the IMU rate is higher or lower than reference data rates.  

Its weaknesses lie in the facts that  

  The reference data interpolation uses data points that are separated in time by the full 
reference data interval (even though the point of interest is as close as possible to one 
end point).  

  The Kalman filter update will be slightly stale by the time it is available for use 
(applicable, as it is, to a point in the near past).  

When appropriate rate data is available (e.g. velocity data for position measurements), it could 
be used for adjustment. However, for practical reasons, this option is not recommended for 
MEMS/GPS: 

  At present (and for the foreseeable future), MEMS/GPS will use only position, 
velocity and heading measurements. The corresponding rate data (velocity, 
acceleration and heading rate) is available only from the IMU (with the exception of 
GPS position rate, i.e. velocity).  

  Using IMU rate data to time shift reference data is not recommended.  

  The added implementation complexities and inconsistency required switching 
between the application of rate methods (for GPS position measurements) and 
interpolation methods (for all MEMS/GPS measurements) eliminate any potential 
benefit of using rate methods.  

  GPS velocities computed from carrier phase information is more or less independent 
of code-derived positions, drawing into the question the validity of using such 
velocities for temporal adjustment of position data. GPS velocities derived from the 
numerical differentiation of position data offer little benefit relative to the (perhaps 
simpler) recommended interpolation procedure.  
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Given the constraints imposed, Table 1 presents an attractive solution to the problem of 
temporal data matching when forming position, velocity and heading measurements in the 
MEMS/GPS Kalman filter.  

In mathematical terms, a vector of reference measurement data is linearly interpolated to IMU 
time as follows:  

( ) ( ) ( ) ( )( )
( )

( )IRj
jRRj

jRRRjR
RjRIR tt

tt
tmtm

tmtm −
−
−

−=
−

−

1

1
ˆˆ

ˆˆ
vv

vv  

where  

  Rjt  is the time-of-data for the current reference data record,  

  ( )1−jRt  is the time-of-data for the previous reference data record,  

  ( )kR tm̂v  is the vector of reference measurement data applicable to time kt .  

The above equation is valid for extrapolation as well as interpolation.  

3.2.3  Spatial Measurement Corrections 

After sensor times have been rationalized, the problem of spatial rationalisation can be 
addressed. In this case, general procedures cannot be developed. Of the three anticipated 
measurement types, only position and velocity corrections will be developed here. The 
reasons for the lack spatial correction of heading measurements will be clear presently.  

Recall that the problem involves the adjustment of measurement data to account for spatial 
displacements of the IMU and reference sensors. All displacements are measured in the 
(forward, starboard, down) body frame, relative to the navigation reference point. This 
reference point is the origin of the body frame. In many cases (MEMS/GPS included), the 
navigation point of reference is near the centre gravity of the vehicle. Often, the IMU is 
defined as reference point. But, it doesn’t really matter: the spatial corrections are computed in 
the same way regardless of the location of the reference point. Aside from the given definition 
of the body frame (origin and orientation), the only other constraint required to begin the 
derivations is the assumption that the vehicle is a rigid body. This assumption is required if 
the displacement vectors are to be assumed constant in the body frame.  

3.2.3.1 Heading 

This brings us the question of spatial corrections for heading measurements. If the rigid body 
assumption is valid, the heading measured by a sensor will have a constant offset from the 
heading of the vehicle (defined as the heading of the body frame X-axis) regardless of the 
location of the sensor on the vehicle. For example, if the sensor could be perfectly aligned to 
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the vehicle heading, it would output the same heading regardless of its location on the vehicle 
– front or back, top or bottom. So, comparison of heading from two different sensors does not 
require any adjustments to account for differences in relative location.  

3.2.3.2 Positions 

Let’s begin with position measurements. Clearly, positions collected from sensors at different 
locations on the vehicle need to be adjusted. Exceptions are made only when the errors 
introduced by neglecting the differences are negligible when compared to other position error 
sources: if two position sensors are separated by one centimetre and they measure position to 
an accuracy of 10 metres, there is nothing to be gained by applying spatial adjustments when 
forming measurements.  

The vector from the origin of the body frame to the measurement centre of the sensor is 
conventionally called the lever arm. The three elements of the vector are measured in body 
frame coordinates. Positions in body frame coordinates are of no use – positions are 
conventionally provided in an earth-fixed frame: we generally need to know where we are on 
or near the Earth’s surface. With a lever arm in body frame coordinates and positions in an 
earth-fixed frame, a method of rotating one into the other is required.  

This is accomplished using the well-known direction cosine matrices (DCMs). The lever arm 
vector in the body frame can be transformed into the local geographic (north, east, down) 
frame as follows: 

bg
b

g rCr ll

vv δδ =  

where g
bC  is DCM from the body frame to local geographic frame. Again, all notation 

follows that of reference [1]. g
bC  is a function of the roll, pitch and heading angles (details of 

its formation are not given here). A sensor-derived position vector in the local geographic 
frame can be translated to the system reference point as follows:  

gg
S

g rrr l

vvv δ−=0  

One point of clarification: the local geographic is a locally level, topocentric frame whose 
origin is attached to the vehicle (coincident with the reference point for convenience). It is 
generally used to represent changes (e.g. velocity) or differences (e.g. the GPS position 
velocity equation in the next section).  

In summary, the position lever arm correction requires (the one-time) measurement of the 
lever arm from the reference point to the measurement centre of the sensor as well as (on-
going) measurement of vehicle roll, pitch and heading (or equivalent).  



MMMEEEMMMSSS///GGGPPPSSS   KKKAAALLLMMMAAANNN   FFFIIILLLTTTEEERRR   DDDAAALLLEEE   AAARRRDDDEEENNN   CCCOOONNNSSSUUULLLTTTIIINNNGGG   

 

 
 
 12   

 

3.2.3.3 Velocities 

Velocity lever arm corrections are slightly more complicated. They describe the velocity 
measured at the end of the lever arm that can be attributed to rotations of the lever arm relative 
to the Earth’s surface. These rotations are the result of vehicle motions.  

We’ll begin by differentiating the position lever arm transformation equation, using the 
locally level, topocentric wander azimuth frame in place of the local geographic frame:  

 bw
b

bw
b

ww rCrCvr llll
&vv&v&v δδδ +==  

Recalling our previous rigid body assumption, we can set 0
v

&v
l ≡brδ , so that 

( )bb
wb

w
b

bw
b

w

rC

rCv

l

ll

vv

v&v

δω
δ

×=

=
 

where b
wbωv  is the vector of rotations of the body frame with respect to the wander azimuth 

frame, expressed in the body frame; it is a by-product of IMU strapdown calculations. The 
DCM, g

b
w
g

w
b CCC = , where w

gC  is simply a rotation about the local vertical through an angle 

known as the wander angle (see reference [1] for details). w
bC  may also be available from the 

strapdown navigator.  

The velocity is corrected by removing the lever arm effects:  

ww
S

w vvv l

vvv −=0  

The same equation can be used for the local geographic frame:  

( )bb
gb

g
b

g rCv ll

vvv δω ×=  

The strapdown navigator does not provide the b
gbωv  rotation vector, but b

gbωv  can be computed: 

b
wb

b
gw

b
gb ωωω vvv +=  

where b
gwωv  describes the rotation of the wander azimuth frame with respect to the local 

geographic frame, expressed in the body frame. In reference [1], b
gwωv is derived:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

α
ωω

&

vv 0
0

w
gw

b
w

b
gw C  
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The wander angle rate is 

hR
v

E

g
y

+
−

=
φ

α
tan

&  

where φ  is the absolute value of latitude. Is α&  significant? At 89 degrees latitude (zero 
height), assuming a maximum velocity of 50 metres per second (180 km/hr),  

rad/s105.4 4−×−<α&  

Assuming a maximum lever arm of 10 metres, the lever arm velocity due to the wander angle 
rate is less than 5 millimetres per second. Even with these extreme limits, this is negligible. At 
latitudes above 89 degrees, or when velocities are much higher (aircraft speeds), the wander 
angle rate effects should be added.  

3.3 GPS Measurements  

GPS position and velocity measurement models are described below.  

3.3.1  GPS Position Measurements 

GPS positions expressed as latitude, longitude and height in the WGS84 geodetic system are 
used to form position measurements according to the following development.  

3.3.1.1 The Measurements 

Since the MEMS/GPS IMU system (navigation) states are all defined in the local level 
wander azimuth coordinate frame, the GPS position measurements are also formed in a local 
level frame, the local geographic:  

( )( )
( )( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

+−

+−

=

GPSIMU

GPSGPSEIMUGPS

GPSEIMUGPS

g
r

hh

hR

hR

z
GPS

ˆˆ

ˆcosˆˆˆ

ˆˆˆ

φλλ

φφ

v  

Notes: 

  A spherical earth model is used in the horizontal measurements.  
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  Height is positive up while the local geographic z-axis is positive down – leading to the 
sign change in the z-measurement.  

  Strictly speaking, the right-hand side of the equation produces arcs while the left-hand 
components are chords. However, the difference is insignificant in this application.  

  In the radius estimates, GPS height is used to approximate true height. Similarly, GPS 
latitude is used to estimate true latitude. In the closed-loop formulation used in 
MEMS/GPS, GPS, IMU and filtered positions should all be close enough to one another 
that they are interchangeable when estimating these radii.  

3.3.1.2 The Model 

The corresponding rows of the H-matrix are derived using equation (1). To ease the 
differentiation, expand the first row of the measurement equation as follows 

( )( ) ( ) ( )[ ]( )
( )( )

g
GPS

g
IMU

GPSEGPSIMU

GPSEIMUGPSGPSEIMUGPS

XY
rr

hR

hRhR

δδ
δφδφ

δφφδφφφφ

−=

+−=

+−−−=+−
ˆ

ˆˆˆˆ

 

Similarly,  

( )( )
g

GPS
g

IMUIMUGPS

g
GPS

g
IMUGPSGPSEGPSIMU

ZZ

YY

rrhh

rrhR

δδδδ

δδφδλδλ

−=−

−=+− ˆcosˆ

 

Now,  

g
GPS

w
IMU

g
w

g
GPS

g
IMU

g
r rrCrrz
GPS

vvvvv δδδδ −=−=  

The 3 row by number-of-states column GPS position measurement matrix is derived through 
the partial differentiation of this equation:  

[ ]...0000 IC
x

z
H g

w

g
r

r
GPS

GPS
−=

∂
∂

= v

v

 

The 3 by 3 non-zero blocks fall in the IMU position error state and (optional) GPS error 
position error state columns, respectively. Columns corresponding to all other error states are 
zero.  

The DCM g
wC  rotates the IMU position error states from the IMU (computer) wander 

azimuth frame into the GPS local geographic frame:  
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−

=
100

0cossin
0sincos

IMUIMU

IMUIMU
g
wC αα

αα
  (3) 

where IMUα  is the wander angle at IMU longitude.  

Note that this DCM is strictly correct only when IMU and GPS longitudes are the same 
(changes in wander angle being strictly a function of change in longitude). If there were 
significant differences (on the order of tens of kilometres) in longitude, it would be more 
correct to include the earth-centred rotation from the IMU to the GPS position. In 
MEMS/GPS, large IMU position errors will only occur when the IMU is unaided, and this 
problem will occur when GPS positions are re-acquired after a period of accumulating IMU 
longitude error. However, since this is really a second order affect, the IMU longitude will 
quickly converge to GPS longitude after reacquisition, even when ignoring the IMU to GPS 
rotation.  

3.3.2  GPS Velocity Measurements 

GPS velocity, expressed in the local geographic frame, is used to form velocity measurements 
according to the following development.  

3.3.2.1 The Measurements 

In principle, GPS velocity is computed in an earth-centred, earth-fixed coordinate frame, as a 
function of line-of-sight velocities to individual satellites. Then it is rotated into the local 
geographic frame at the GPS-computed position. Therefore, like positions, the GPS velocity 
measurements will be formed in the local geographic frame at the GPS-computed position - 

g
GPSv̂v .  

The MEMS/GPS strapdown navigator provides IMU velocity in the wander azimuth frame.  

A Kalman filter measurement formed using GPS and IMU velocities requires a common 
coordinate frame. The local geographic coordinate frame at the GPS-computed position has 
been selected as the measurement frame. This means that the IMU velocity must be rotated 
into this frame. Using the wander azimuth to local geographic DCM at the IMU-computed 
position, the GPS velocity measurement is:  

w
IMU

g
w

g
GPS

g
v vCvz

GPS
ˆˆ vvv −=  

where     
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
−

=
100

0cossin
0sincos

IMUIMU

IMUIMU
g
wC αα

αα
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3.3.2.2 The Model 

Identifying Kalman filter state dependencies of the measurement equation is somewhat more 
complex than it was for position measurements. In the  -angle error formulation used in 
MEMS/GPS, IMU velocities are assumed provided in the “platform” frame (a nominally 
local level wander azimuth frame centred at the IMU-computed position) - p

IMUv̂v . All 
coordinate frames and their transformations are defined in reference [1].  

The DCM used to form the measurements does not completely describe the transformation to 
the GPS local geographic frame: 

  g
wC  describes a single rotation about the local level at the IMU position – it is more 

properly written ( )IMUC g
c , from the “computer” frame to the local geographic frame 

at the IMU-computed position.  

  The DCM from the platform frame to the computer frame is a function of the  -
angles: ( )×+≅ ψvIC c

p , using small angle approximations.  

  The local level at the IMU position is rotated with respect to local level at the GPS 
position because of earth curvature. The rotations are described (in standard notation) 
by the θδ

v
-angles. The θδ

v
-angles are dependent on IMU position errors (that are 

estimated using GPS positions).  

The measurement equation can now be expanded to  

( )( ) p
IMU

GPSg
GPSw

g
GPS

p
IMU

c
p

t
c

GPSg
GPSw

g
GPS

p
IMU

c
p

GPSw
c

GPSg
GPSw

g
GPS

g
v

vIICv

vCCCv

vCCCvz
GPS

ˆˆ

ˆˆ

ˆˆ

)(
)(

)(
)(

)()(
)(

vvvv

vv

vvv

×+×+−=

−=

−=

ψθδ

 

Further expansion and elimination of second order error terms gives 

( ) ( )[ ] p
IMU

GPSg
GPSw

g
GPS

g
v vICvz

GPS
ˆˆ )(

)(
vvvvv ×+×+−≅ ψθδ  

This is the most complete form, required for open-loop INS/GPS filtering systems.  

MEMS/GPS is a closed-loop system: whenever GPS data is available, the IMU strapdown 
navigator is continuously corrected with filter error estimates. This means that (whenever 
GPS data is available) IMU position, velocity, and attitude errors remain small. For this 
reason, this complete model is not required for MEMS/GPS GPS velocity measurements. The 
GPS velocity measurement model based on the complete model is derived in APPENDIX  A. 
A hybrid model will be developed below.  
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The hybrid model will be developed by examining the relative sizes of the two error terms in 
the complete model, θδ

v
 and ψv . The former depends on IMU position errors. On a spherical 

earth, the θδ
v

-angles are an inverse function of the mean earth radius:  

hR
r

E +
= δδθ  

where rδ  is the position error. An error as large as 10 kilometres produces an angle of only 
about 5.5 arc minutes.  

On the other hand, ψv -angle tilt errors are expected to be somewhat larger that 5 arc minutes 
even when all measurements are available.  

The hybrid GPS velocity measurement model assumes position errors introduce negligible tilt 
relative to the ψv -angles:  

( )[ ]
( ) p

IMU
g
w

p
IMU

g
w

g
GPS

p
IMU

GPSg
GPSw

g
GPS

g
v

vCvCv

vICvz
GPS

ˆˆˆ

ˆˆ )(
)(

vvvv

vvvv

×−−≅

×+−≅

ψ

ψ
 

Note that position errors produce wander angle changes at about the same rate as tilts. This 
allows us to use any wander azimuth to local geographic DCM.  

At this point, the velocity errors will be introduced. Restricting ourselves to the first two 
terms,  

( ) ( )
g
GPS

p
IMU

g
w

p
IMU

p
IMU

g
w

g
GPS

g
GPS

p
IMU

g
w

g
GPS

vvC

vvCvvvCv
vv

vvvvvv

δδ
δδ

−=

−−−=− ˆˆ
 

where g
wC  is given by equation (3), for convenience.  

This expression is dependent only on IMU and GPS velocity errors. The partial differential 
equations needed to extract these dependencies are:  

( )

( ) I
v

vvC

C
v

vvC

p
GPS

g
GPS

p
IMU

g
w

g
wp

IMU

g
GPS

p
IMU

g
w

−=−∂

=−∂

v

vv

v

vv

δ
δδ

δ
δδ

 

Note: GPS velocity error states are often not included in a filter such as this.  

The third term is bit more complicated. A very similar expression was derived in APPENDIX  
A. Those results will be modified for the present purposes:  
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( )
( ) ( )
( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−+−−

−−+−
=×

p
IMUx

p
IMUy

p
IMUx

p
IMUzIMU

p
IMUy

p
IMUzIMU

p
IMUx

p
IMUzIMU

p
IMUy

p
IMUzIMU

p
IMU

g
w

YX

ZXZY

ZXZY

vv
vvvv

vvvv
vC

ψψ
ψψαψψα

ψψαψψα
ψ cossin

sincos
v̂v  

Note that all velocity errors in this term will be second order and would be neglected as usual. 
The measured IMU velocity will be used here.  

Once again neglecting second order effects, this expression is dependent only on the ψv -
angles. The partial differential equation needed to extract these dependencies is:  

( )( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−
+−−

=
∂

×−∂

0
sincossincos
cossincossinˆ

p
IMU

p
IMU

IMU
p
IMUIMU

p
IMUIMU

p
IMUIMU

p
IMU

IMU
p
IMUIMU

p
IMUIMU

p
IMUIMU

p
IMUp

IMU
g
w

XY

YXZZ

YXZZ

vv
vvvv
vvvv

vC αααα
αααα

ψ
ψ
v

vv
 

This can be simplified by writing the zψ  column in terms of local geographic velocity:  

( )( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−−
=

∂
×−∂

0
sincos
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p
IMU

p
IMU
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IMUIMU
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IMUIMU

p
IMU

g
IMUIMU

p
IMUIMU

p
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IMU
g
w

XY

XZZ

YZZ

vv
vvv
vvv

vC αα
αα

ψ
ψ
v

vv
 

The resulting 3 by number-of-states GPS velocity measurement matrix is:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−−−
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∂
∂

= ...000
0

sincos
cossin

0 I
vv

vvv
vvv

C
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z
H

p
IMU

p
IMU

g
IMUIMU

p
IMUIMU

p
IMU

g
IMUIMU

p
IMUIMU

p
IMU

g
w

g
v

v

XY

XZZ

YZZ

GPS

GPS
αα
αα

v

v

 

In this case, the 3 by 3 non-zero blocks fall in the IMU velocity ( )g
wC , IMU attitude 

( )( )
⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂

×∂−
ψ

ψ
v

vv p
IMU

g
w vC ˆ

 and (optional) GPS velocity (-I ) error state columns. Columns 

corresponding to all other error states are zero.  

3.3.2.3 The Simplest Model 

The GPS velocity model can be further simplified by assuming that the tilt errors also have a 
negligible effect on the measurement (i.e. set 0

vv ≅ψ  or IC c
p ≅ ). Then the H-matrix is simply  

[ ]...00000 IC
x

z
H g

w

g
v

v
GPS

GPS
−=

∂
∂

= v

v
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3.3.3  GPS Course-Over-Ground Measurements 

In certain applications, the direction of the GPS velocity vector can be used to control system 
heading. These measurements can only be used for installations that ensure the direction of 
travel and heading are collinear. In general, this restricts GPS course-over-ground (COG) 
measurements to wheeled or tracked land vehicles.  

If GPS COG is not available directly from the receiver, it is derived from the horizontal 
components of the GPS velocity vector:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Ψ −

g
x

g
yg

GPS v
v1tanˆ  

3.3.3.1 The Measurement 

The GPS COG measurement equation can be written as 

( )IMU
w
IMU

g
GPS

g
IMU

g
GPS

g
GPS

z

α−Ψ−Ψ=

Ψ−Ψ=
Ψ

ˆˆ

ˆˆ
 

where w
IMUΨ̂  is the IMU’s so-called “platform” heading. 

3.3.3.2 The Model 

To derive the H-matrix model, write the GPS COG measurement equation in terms of true 
values and errors:  

( ) ( ) ( )
( )

IMU
g

GPS
w
IMU

IMU
g

GPS
w
IMU

wg
IMU

w
IMU

wg
GPS

g

IMU
w
IMU

g
GPS

g
GPS

z

δαδδ
δαδδα

δααδδ

α

−Ψ−Ψ=

−Ψ−Ψ++Ψ−Ψ=

−+Ψ−Ψ−Ψ−Ψ=

+Ψ−Ψ=
Ψ

ˆˆ

 

Using equation (9.51) of reference [1],  
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IMU
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ψψψ

δδδ

−ΨΘ−ΨΘ+

+
ΨΘ

+
+
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where   is pitch.  
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The wander angle error is dependent solely on longitude (or east) error. In terms of the 
wander azimuth IMU position error states (again from reference [1]),  

( )
GPSE

GPSIMU
w

IMUIMU
w

IMU
IMU hR

rr
YX

+
+

=
φαδαδ

δα
tancossin

 

Once again, the position errors will be assumed negligible in this closed loop model. In 
addition, since this measurement is restricted to wheeled or tracked land vehicles, it can be 
assumed that pitch will not approach 90 degrees, and the IMU heading error term can be 
assumed negligible. With these assumptions, the GPS COG measurement can be written 

g
GPS

w
z

g
GPS

z Ψ−−≅
Ψ

δψ  

Now the row of the H-matrix corresponding to the GPS COG measurement can be written as 

( )[ ]1...0010000 −−=
∂

∂
= Ψ

Ψ x
z

H
g

CMPS

CMPS v  

with minus ones in the IMU vertical attitude error and GPS heading error columns and zeroes 
everywhere else.  

3.3.3.3 Measurement Variance 

Since GPS COG is the direction of the GPS local geographic velocity vector, the accuracy of 
the COG will depend on the accuracy of the horizontal velocity as well as the vehicle speed. 
Thus, it is better to compute the COG measurement variance from GPS velocity variances, 
when they are available.  

If GPS velocity accuracy estimates are available, they are used to estimate COG accuracy as 
follows. Differentiate the COG equation,  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Ψ −

g
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g
yg

GPS v
v1tanˆ  

to get an expression for COG error in terms of velocity error:  
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In general,  
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Therefore,  
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Finally, the error in GPS COG (in radians) in terms of GPS horizontal velocity errors is  
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The variance of g
GPSdΨ̂  can be estimated in terms of the velocity error variances by using the 

definition of variance: 
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Taking the expectation of the result,  
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If velocity covariances are known, they can be used to compute ( ) ( )[ ]g
x

g
y vdvdE . In the more 

usual cases where they are unknown, they will be assumed negligible, with the result  

( ) ( )[ ] 0E ≅g
x

g
y vdvd  

The COG variance can thus simplified to  
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Note that when 222
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σσσ == , this expression can be further simplified to 
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These results make intuitive sense: the COG variances are directly related velocity variances 
and inversely related to speed. The poorer the velocity accuracy, the poorer the COG 
accuracy; the higher the speed, the better the COG accuracy.  

3.4 Compass Measurements 

Since only a single channel digital compass is currently being used in the MEMS/GPS 
system, the simplest, scalar heading measurement model will be derived in this section. The 
compass heading model should be revised if a multi-channel compass is added in the future.  

Note that this model is identical to the GPS COG measurement derived above.  

3.4.1.1 The Measurement 

The compass heading measurement equation can be written as 
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3.4.1.2 The Model 

To derive the H-matrix model, write this equation in terms of true values and errors:  

IMU
g

CMPS
w
IMU

IMU
w
IMU

g
CMPS

g
CMPS

z

δαδδ

α

−Ψ−Ψ=

+Ψ−Ψ=
Ψ

ˆˆ
 

Assuming IMUδα  is negligible and pitch is small,  

g
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g
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z Ψ−−≅
Ψ

δψ  

The digital compass currently being used is a KVH C100. The Technical Manual (reference 
[5]) limits valid heading to tilt angles of 16 degrees or less. The tangent of 16 degrees is less 
than 0.3, justifying the assumption of small pitch.  

Now the row of the H-matrix corresponding to the compass heading measurement can be 
written as 
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H
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In this case, the second minus one is located in the compass heading error column.  

In an application that is not limited in pitch (e.g. a soldier-mounted system), assuming the use 
of a multi-axis compass, the IMU tilt error terms cannot be neglected in the H-matrix. The 
following model should be used   
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Note the singularity at the vertical where the tangent of pitch is infinite.  

3.5 Non-Sensor Measurements 

3.5.1  Non-Sensor Position Measurements 

At present (and for the foreseeable future), the is only one non-sensor position measurement – 
a fixed height.  

3.5.1.1 Fixed Height 

An IMU is naturally instable in the vertical channel. When there are no other measurements 
able to stabilise the vertical channel, the system height can be held constant using a fixed 
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height measurement. Note that a fixed height measurement can be used in conjunction with 
the vertical velocity measurement described below.  

To use a fixed height measurement, it is advisable to track height and save it whenever it can 
be confidently assumed good. Then when fixed height measurements are required, the saved 
good height is used as the reference, fixed height for measurement formation.  

3.5.1.1.1 The Measurement 

The fixed height measurement is very simple:  

IMUFIX
w
Z hhz

FIX

ˆˆ −=  

It is similar to the GPS height measurement, except that it is formed in the wander azimuth 
coordinate frame, resulting in a sign change in the measurement.  

3.5.1.1.2 The Model 

No coordinate conversion is necessary and the fixed height is assumed to be error-free. This 
leads to a measurement model is equally simple:  

[ ]...00001=
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=

x
z

H
w
r

r
FIX

FIX v  

3.5.2  Non-Sensor Velocity Measurements 

When the GPS signals are not available, it is important for the MEMS/GPS system to have 
backup measurements available to limit or slow the rate of growth of filtered errors. There is 
non-sensor information that can be used to form velocity measurements:  

1. Zero velocity updates (often called ZUPTS) can be made whenever the system is 
known to be stationary. These can be used in a system mounted in a land vehicle or on 
a dismounted soldier.  

2. An IMU is naturally instable in the vertical channel. When there are no other 
measurements able to stabilise the vertical channel, the system height can be held 
controlled by assuming zero vertical velocity and forming zero vertical velocity 
measurements (just like a regular vertical ZUPT except the vehicle may be moving).  

3. If an IMU is aligned to the body of a land vehicle, the velocity in the body lateral axis 
(perpendicular to the direction of travel) can be assumed to be zero unless the 
vehicle’s wheels (or tracks) are sliding sideways.  
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3.5.2.1 ZUPTs 

3.5.2.1.1 The Measurement 

The measurement model for a ZUPT is very simple. Since a zero velocity vector is zero in 
any coordinate frame, no transformations are necessary:  

p
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3.5.2.1.2 The Model 

Since p
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IMU vvv vvv δ−=ˆ , the ZUPT rows of the H-matrix are simply 
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3.5.2.2 Land Vehicle Velocity Constraints 

3.5.2.2.1 The Measurement 

The lateral axis velocity constraint is somewhat more complicated than the ZUPT model. This 
is a scalar model that will be written in the vehicle body y-axis. Again, the reference is simply 
zero velocity. The IMU velocity must transformed from the wander azimuth platform frame 
into the Y-axis of the body frame:  
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where the second row of the wander azimuth to body frame DCM,  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ΘΦ−

ΨΦ−

ΨΘΦ−

ΨΦ−

ΨΘΦ
= IMUIMUp

IMUIMU

p
IMUIMUIMU

p
IMUIMU

p
IMUIMUIMUb

wC cossin
coscos

sinsinsin

sincos

cossinsin
2

 

p
IMUIMUIMU ΨΘΦ ,,  are the IMU computed roll, pitch and platform heading (heading relative 

to the (platform) wander azimuth x-axis), respectively.  

3.5.2.2.2 The Model 

Once again, the IMU velocity must be rotated from the platform to the computer frame using 
the  -angles. Following steps similar to those used for GPS velocity measurements:  
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Introducing velocity errors:  
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Expanding the last term gives  
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Finally, by taking the partial derivatives, we get the required row of the H-matrix:  
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3.6 Measurement Pre-Conditions 

The Kalman filter measurements described above typically are run only when specific pre-
conditions are met. This section describes the pre-conditions for each type of measurement.  

There are general pre-conditions applied to all measurements.  

1) The MEMS/GPS Kalman filter software allows measurements to enabled or disabled. 
Only enabled measurements are processed.  

2) Execution of each measurement is dependent on the availability of good IMU and aiding 
sensor data.  

3) A particular measurement will be excluded from forming an update if its misclosure could 
not be properly formed. 

Pre-conditions applied to specific measurements (or groups of measurements) are described 
below. Measurements are formed only when all pre-conditions are met: the general pre-
conditions were listed above; measurement-specific pre-conditions are described below.  
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3.6.1  GPS Positions 

Most GPS receivers will switch to 2-D(imensional) mode when they are not able to track 
enough pseudoranges to provide a full solution. A GPS receiver in 2D mode will output a 
fixed height equal to its last computed height as well as a flag informing the user of the 
change in operating mode. When fixed height data is being used in a Kalman filter, the 
measurement model should be adjusted to reflect the degraded height performance. Rather 
than adjusting the GPS height measurement model as a receiver switches to and from 2D 
mode, the MEMS/GPS filter uses a separate “fixed height” measurement. When 2D mode is 
signalled, the GPS height measurement is deactivated and the fixed height measurement is 
activated. Conversely, when GPS height estimation is resumed, the fixed height measurement 
is deactivated and the GPS height measurement is reactivated. To add some confidence in and 
control over the height fixing, the MEMS/GPS Kalman filter task keeps track of and uses its 
own fixed height value instead of relying on the receiver’s fixed height.  

Therefore, to optimise filtered height performance during periods of 2D GPS, it is 
recommended that the fixed height measurement always be enabled. Note that fixed height 
measurements are activated whenever a sensor-based height measurement has not succeeded. 
This could be a single measurement residual rejection, or it could be a period of time with no 
GPS position fixes due to signal blockage or jamming. This is an important feature since the 
IMU strapdown navigator relies on the Kalman filter to control instability in the vertical 
channel. Even a short period without damping can result in an unstable height. Note further 
that this feature is suitable only for surface vehicles. An aircraft or submarine application 
requires an independent height (or depth) sensor to maintain acceptable height performance.  

3.6.2  GPS Velocities 

A specific pre-condition prevents GPS velocity measurements whenever the system speed is 
zero and zero velocity measurements have been enabled. In this situation, activation of zero 
velocity measurements coincides with the deactivation of GPS velocity measurements. When 
motion resumes, zero velocity measurements are deactivated and GPS velocity measurements 
are reactivated.  

3.6.3  GPS Course-Over-Ground 

The GPS COG measurement is based on the direction of the GPS local geographic velocity 
vector. If the speed is zero, the direction is undefined. Additionally, GPS velocity noise will 
cause COG to be very noisy at low speeds. Therefore, COG measurements are not processed 
when speed drops below a specified limit. In MEMS/GPS, the low speed test is implemented 
as a maximum COG measurement variance test: if the computed COG variance is greater 
than a specified maximum (or if GPS speed is zero, meaning the COG variance can not be 
computed), the COG measurement is disabled.  
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See Section 3.3.3.3 for a derivation of the dependence of COG variance as a function of 
velocity and velocity variances.  

3.6.4  Compass Heading 

The accuracy of compass heading measurements depends largely on the magnetic 
environment in which they required to operate: a large metallic vehicle with many electrical 
devices onboard is a very poor environment for a magnetic compass; a soldier-carried system 
would tend to be more magnetically benign. In addition, GPS COG data will be more accurate 
at vehicular speeds than at soldier speeds. Therefore, compass heading measurement pre-
conditions will depend on the intended application.  

3.6.4.1 On a Land Vehicle 

On a land vehicle, GPS COG measurements are given precedence over compass heading 
measurements: the relatively high speeds produce accurate COG estimates, and the 
challenging magnetic environment produces compass data that is likely biased and noisy. In 
this application, compass heading is used only when the GPS COG measurement has not 
succeeded. This could be due to a single COG measurement residual rejection, or it could be a 
longer duration problem due loss of appropriate GPS data or low vehicle speed preventing the 
formation of a COG measurement (as described above).  

Furthermore, a single-axis compass (suitable for a land vehicle) provides valid heading 
information only when its sensitive axis is “close” to horizontal. When a single-axis compass 
is used to form heading measurements, a maximum tilt pre-condition is required. In the 
MEMS/GPS Kalman filter, IMU roll and pitch are tested against a manufacturer-supplied 
maximum tilt value. The measurement proceeds only when roll and pitch are below the 
specified limit.  

3.6.4.2 On a Soldier 

Conversely, on a dismounted soldier, compass heading measurements can be expected to be 
superior to GPS COG measurements because of the relatively low speeds and benign 
magnetic environment. However, implementation of the compass heading pre-conditions need 
not differ from that used for a land vehicle application: compass heading is used only when a 
GPS COG measurement has not succeeded. While the implementation is the same, it may be 
advisable to modify the pre-condition model (i.e. the maximum GPS COG measurement 
variance). Or, GPS COG measurements could simply be disabled. In addition, it is expected 
that GPS COG measurements (if enabled) would succeed much less frequently than they do 
on a land vehicle.  

The unrestricted movement of a dismounted soldier requires the use of a three-axis 
magnetometer. The ability of such a sensor to resolve heading at any orientation precludes the 
need for tilt-based measurement pre-conditions.  
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3.6.5  Fixed Height 

The first fixed height measurement pre-condition is closely connected to those for GPS 
position measurements: the fixed height measurement is formed only if there has been no 
successful sensor-based (e.g. GPS) height measurement update. In principle, other sensors 
could be used to generate height measurements. In practice, only GPS is used. In addition, 
there must be a valid fixed height to use as the misclosure reference.  

3.6.6  Zero Velocities 

Horizontal and vertical velocity measurement pre-conditions differ. Firstly, horizontal zero 
velocity measurements are formed only when the system is stationary. Vertical measurements 
are formed when the system is stationary, or when the system is moving but the vertical 
channel is unconstrained, i.e. when there has been  

  No successful height update from a sensor (like GPS) or from a fixed height;  

  Nor a successful (GPS) vertical velocity measurement.  

3.6.6.1 Zero Speed Detection 

Zero speed is detected automatically by comparing sensor-supplied speeds with a fixed 
maximum.  

The speed is calculated as the length of the velocity vector. The maximum allowable 
calculated speed is taken as the maximum of the ZUPT measurement noise standard 
deviations and a fixed minimum (e.g. 0.1 m/s).  

Each sensor is checked for zero velocity, starting with GPS (if two receivers are active, both 
may be tested) and ending with the IMU. Zero speed is signalled as soon as any sensor passes 
the zero speed test. In other words, zero speed is signalled when the calculated speed from any 
active sensor is less than or equal to the limit.  

4  NEW SENSOR STATES 
The number of states in a Kalman filter mechanization is often the largest single factor in the 
determination of computational requirements: the covariance matrix of the state estimates 
must be inverted. For this reason, only those states that have the largest effects on the total 
error budget are traditionally included in the state vector. Other known but smaller errors may 
be neglected all together or are dumped into the Kalman filter process noise, where they are 
not explicitly estimated but are included in the filter’s accuracy estimates (via the state 
covariance matrix).  

MEMS inertial sensors currently have errors that are larger than most of their predecessors. In 
some cases, the size of these MEMS sensor errors requires that they be more rigorously 
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modelled in a Kalman filter integration. Specifically, they may have to be added to the state 
vector where they can be explicitly modelled and estimated (assuming they are observable 
with the available measurements).  

The software package used as the basis for the MEMS/GPS Kalman filter came from DIINS 
(as described in reference [1]). The only inertial errors that can be modelled in the state vector 
are accelerometer and gyro biases. The following errors are modelled in the process noise 
covariance: 

1. Horizontal and vertical gravity modelling errors;  

2. Accelerometer and gyro scale factor errors;  

3. Accelerometer and gyro misalignments (relative to an ideal sensor coordinate frame);  

4. Accelerometer and gyro random walk errors.  

The gravity errors are not sensor errors and are less of a factor when sensor errors are larger: 
the gravity error modelling will not be changed. The remaining (sensor) errors are candidates 
for inclusion in the MEMS/GPS state vector.  

This chapter describes the methodology needed to model these other inertial errors as states.  

4.1 Expanded Gyro and Accelerometer Error Models 

A Kalman filter for conventional inertial sensors typically models sensor errors as a dominant 
bias component and a process noise component that lumps the remaining (much smaller) 
errors into the velocity and attitude covariance estimates. These amalgamated “process noise” 
components were included effects arising from: 

  Anomalous gravity,  

  Sensor scale factors and misalignments,  

  Random drifts.  

Reference [1] describes the details. 

With MEMS sensors, noise levels, scale factor errors and misalignments are much larger than 
they are for conventional inertial sensors. This section begins with the error analysis used to 
include gyro and accelerometer scale factor and misalignment states in the MEMS/GPS 
Kalman filter system.  It concludes with an expanded process noise methodology.  



MMMEEEMMMSSS///GGGPPPSSS   KKKAAALLLMMMAAANNN   FFFIIILLLTTTEEERRR   DDDAAALLLEEE   AAARRRDDDEEENNN   CCCOOONNNSSSUUULLLTTTIIINNNGGG   

 

 
 
 31   

 

4.1.1  New Gyro Model 

Inertial scale factor errors essentially describe the errors resulting from imperfect knowledge 
of the process required to transform the electrical signals produced by the sensors into data 
that can be processed in an inertial navigator. Scale factor errors are typically divided into a 
dominant linear portion and smaller deviations from the linear model. The linear part will be 
modelled explicitly; the non-linear part will included in the process noise covariance matrix.  

Misalignment errors describe the rotations needed to align each sensor with an arbitrary, 
theoretical, Cartesian sensor frame.  

To derive the expanded gyro error models, let the error vector, s
Gεv , be a generic term 

containing all gyro errors as measured in the sensor frame.  

A gyro error model dependent on (small) misalignments, scale factor errors and biases can be 
written (in an arbitrary coordinate frame) as  
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where  

  ωv  is the true (corrected) rotation rate vector.  

  ω̂v  is the measured rotation rate vector.  

  Gijμ are the misalignment angles of the gyro’s (nominally orthogonal) sensitive axes 
relative to a perfectly orthogonal true frame. Specifically, Gijμ  is the (small) misalignment 
of the gyro sensitive axis i relative to the true axis i measured in the true i-j plane. For 
example, Gyxμ  is the misalignment of the y-gyro in the x-y plane. Gijμ  can also be 
considered the fraction of rotation about the true x-axis that is sensed by the y-gyro.  

  GiS  is the (full) scale factor applicable to gyro i.  

  Giβ  is the bias applicable to gyro i. 

See reference [4] for additional details. All remaining gyro errors are modelled as process 
noise.  

Note the order of the corrections:  

1. The scale factor is applied to the measured rotation rate. 
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2. The bias error is removed.  

3. The small misalignment rotations are applied.  

In reference [1], it was assumed that that 0≅Gijμ  and 1≅GkS , so that GG βε
vv ≅ .  

To include misalignments and scale factors, begin by expanding the above equation.  
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This can be simplified by assuming that misalignments and scale factor errors are much 
smaller than the signal and the biases and ignoring second order terms. Note that the scale 
factor terms are the full scale factors: iiS σ+= 1 , where iσ  is the (small) scale factor error. 
Now,  
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The expanded expression for gyro errors can now be derived 
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( ) ( )
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An exponentially correlated first-order Gauss-Markov model will be used in the filter to 
characterize the gyro errors. It is completely described by a variance and a correlation time. 
This is the same kind of model that is used in the software for almost all sensor errors.  

The Kalman filter dynamics matrix describes how the state vector changes in time. The 
effects due to the gyro errors are derived through partial differentiation. Following the 
development in reference [1], begin with the equations of motion in sections 4.3.2 and 4.3.3. 
Equation (4.42) is a first-order differential equation for the attitude errors (the  -angle vector). 
It is repeated here: 

( ) s
G

p
s

c
Ec

c
IE C εψωωψ vvvv&v +×+−=  

  The c-frame is the wander azimuth computer frame,  

  The I-frame is the inertial frame,  
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  The E-frame is the earth-centred, earth-fixed frame, 

  The s-frame is the sensor frame,  

  The p-frame is the wander azimuth platform frame.  

The dynamics matrix is derived via the partial differentiation of equation (4.42) with respect 
to the Kalman filter states, as described in reference [1], Chapter 7. For the present purposes, 
we are concerned only with the gyro error term. There are no dependencies on non-gyro error 
states.  
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(7) 

where  

[ ]GyzGxzGzyGxyGzxGyx
T
G μμμμμμμ =v  

Hats added to the error terms indicate filter-estimated values. Recall that all three of theses 
dynamics matrix sub-blocks have to be pre-multiplied by the sensor frame to platform frame 
direction cosine matrix.  

The misalignments add as many states as the biases and scale factors combined. And, the 
misalignment states are not expected to add as much information to the solution as the other 
gyro errors. Therefore, they will likely remain in the indirect process noise covariance model 
and not be modelled in the state vector. In this simplified model,  
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  The misalignment sub-block will obviously be removed from the dynamics matrix.  

  The scale factor sub-block is unchanged.  

  The bias sub-block is simplified to a 3x3 identity matrix (prior to pre-multiplication with 
p
sC ).  

Note that the INS velocity errors are also dependent on gyro errors (see reference [1], 
equation (4.59)). In this velocity differential equation, the s

G
p
sC εv  term is pre-multiplied by the 

wander azimuth velocity cross product, ( )×pvv  - see the next section.  

4.1.2  New Accelerometer Model 

Note that the gyro correction model, equation (4), is quite generic: it can just as easily be 
applied to accelerometer bias, scale factor, and misalignment corrections, as follows.  
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Equation (4.59) in reference [1] is the first-order differential equation for the velocity errors:  

( ) ( )
( ) cp

ct
s

G
p
s

ps
A

p
s

c
IE

ppc
Ec

c
IE

p

gCvC

vvv
~

ˆ2
~

vvvv

vvvvvv&v

+×+

+××+×+−=

εε
ψωωω  

Only the accelerometer and gyro error terms are of interest here. Note that the accelerometer 
error term is completely analogous to the corresponding gyro equation: the accelerometer 
dynamics matrix sub-blocks can be derived using the corresponding gyro error sub-blocks. 
Simply replace  

  ωv  by av ,  

  Gεv  by Aεv ,  

  Gβ
v

 by Aβ
v

,  

  Gσv  by Aσv , and  

  Gμv  by Aμv  

in equations (5), (6), and (7).  
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However, note the velocity error equation is also dependent on gyro errors. The velocity error 
rows of the dynamics matrix will therefore contain terms in the gyro error columns. 
Fortunately, the gyro error elements are simply those in the attitude error rows pre-multiplied 
by the velocity cross-product matrix.  

Note that the acceleration should include gravity to properly estimate the scale factors.  

4.1.3  New IMU Process Noise Models 

In conventional inertial sensors, noise levels are very low; in MEMS sensors, they are high. 
To model the noise accurately, specific noise terms are needed in the process noise covariance 
matrix. Sensor noise may be reported in terms of the noise itself or in terms of the integral of 
the noise - random walk.  

Reference [3] describes the relationship between noise and random walk. For the continuous 
process, the state variable differential equation for a random walk process (with its variance) 
is:  

qp
wx

=
=
&

&
  (8) 

where  

  x is the random walk variable, 

  w is the noise,  

  p is the random walk variance,  

  q is the noise variance.  

In the MEMS/GPS processing stream, IMU sensor data is first collected and run through the 
strapdown navigator (reference [2]) – effectively an integration process with gyro angular 
rates integrated once to give angular changes and accelerometer rates integrated once to give 
velocity changes and again to give change in position. Noise on the sensor inputs produces 
random walk error in the strapdown angular and velocity outputs. Integrating the second line 
in equation (8) gives the variance of the random walk process in terms of constant noise 
variance and time:  

τ
ττ

qdtqdtqp === ∫∫
00

 

The variance of the random walk process increases linearly with time at a rate equal to the 
noise variance.  
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It is important to keep track of the units in this analysis: random walk is generally reported in 
this context as so-called Angular Random Walk (ARW) and Velocity Random Walk (VRW) 
with units given in terms of standard deviations as degrees per square root hour and (metres 
per second) per square root hour. The corresponding noise standard deviation units are 
degrees per hour and (metres per second) per hour. Rates may also be expressed in terms of 
seconds (e.g. degrees per square root second and degrees per second) when they are large.  

The strapdown data is passed on to the MEMS/GPS Kalman filter where the final navigation, 
error control and accuracy estimates are generated. To accurately propagate the IMU error 
models (via the filter propagation step), the velocity and attitude random walk errors must be 
accounted for. In the filter, this is done in the process noise covariance matrix.  

Can a model be developed that will take either the noise variance or the random walk 
variance and give the appropriate velocity and attitude state process noise variances for a 
discrete Kalman filter? It should be noted that one model will be used for all accelerometer 
noise, and another for all gyro noise.   

 

4.1.3.1 Units Conversion 

Accelerometer and gyro random walk errors are each commonly quoted in two different units. 
The conversions between the units are presented here. 

4.1.3.1.1 Accelerometer Random Walk Units 

Accelerometer random walk errors are commonly quoted as  

  Acceleration per square root frequency (Rate or Acceleration Random Walk), or 

  Velocity per square root time (Velocity Random Walk).  

A useful starting point is the following conversion:  

hr
sm

hr
s

s
sm

s
sm

Hz
sm /60

1
3600/1

/1
/1/1

22422

=×==  

Therefore, a random walk error given in 
Hz

sm 2/  is converted to 
hr

sm /  by multiplying by 60. 

Note that 
s
sm /  is numerically equivalent to 

Hz
sm 2/ . 

Conversions of the velocity and acceleration units is relatively simply. For example, if 
acceleration is given in micro ( ) g’s,   
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Hz
g

Hz
sm

sm
g

g
g

Hz
sm μμ 040,102/

/8.9
1

1
10/1

2

2

62

=⋅=  

And 

Hz
g

hr
sm

Hz
sm μ040,102/60/1

2

==  

So that 

hr
sm

hr
sm

Hz
g /

1700
1/

040,102
601 ==μ  

A random walk error given in 
Hz
gμ  is converted to 

hr
sm /  by dividing by 1700.  

Other coordinate conversions can be derived in a similar fashion. And, of course, the inverse 
conversions are simply the numerical inverses of those given.  

4.1.3.1.2 Gyro Random Walk Units 

Gyro random walk errors are commonly quoted as  

  Angular rate per square root frequency (Rate Random Walk), or 

  Angle per square root time (Angular Random Walk).  

Let’s begin by converting 
Hz

sdeg/  to 
hr

deg . Note that this is completely analogous to the 

accelerometer conversion from 
Hz

sm 2/  to 
hr

sm / .  

A random walk error given in 
Hz

sdeg/  is converted to 
hr

deg  by dividing by 60. And again, 

s
deg  is numerically equivalent to 

Hz
sdeg/ .  

Conversions to other angle or time units would proceed in the normal fashion.  

5  SUMMARY 
This report describes those parts of the MEMS/GPS Kalman filter that differ significantly 
from earlier work (the DIINS Kalman filter are presented of reference [1]). It describes  
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1. New data-driven filter timing procedures;  

2. New and modified Kalman filter measurement algorithms;  

3. New IMU error states that were added to try to better model the larger MEMS IMU 
errors.  
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APPENDIX  A  ALTERNATIVE GPS VELOCITY 
MEASUREMENT MODELS 

A.1 Open-Loop Model 

In section 3.3.2 , the GPS velocity measurement equation was derived. It was given as  

( ) ( )[ ] w
IMU

g
t

g
GPS

g
v vICvz

GPS
ˆˆ vvvvv ×+×+−≅ ψθδ  

The measurement model resulting from this equation will be derived below.  

The objective is identification of all state dependencies. Begin by expanding the IMU term, 
temporarily making use of the  -angles (see reference [1]):  
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To be completely rigorous, the true wander angle should written  

IMUIMUt δααα +=  

From reference [1],  
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where GPSφ  is the absolute value of the GPS latitude. 

Using small angle approximations on IMUδα , we get  

( )

( )
GPSE

GPSIMU
w

IMUIMUIMU
w

IMU
IMUt

GPSE

GPSIMUIMU
w

IMUIMU
w

IMU
IMUt

hR
rr

hR
rr

YX

YX

+
+

+≅

+
+

−≅

φαδααδ
αα

φααδαδ
αα

tancoscossin
sinsin

tancossinsin
coscos

2

2

 

Expand the tα terms, neglecting second order terms:  
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Collect terms according to the  -angles:  
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To complete the derivation, the tα  and φ
v

 terms must be expanded (they are both dependent 
on error states). From reference [1] once again,  
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A.1.1 First Row of the H-Matrix 

But, to keep the equations to a manageable size, the partial differentiation will be started next, 
one term at a time, neglecting second order effects, starting with the X GPS velocity 
measurement row and X IMU position error column:  
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Similarly,  
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The IMU velocity error elements (where p
IMU

pp
IMU vvv vvv δ−=ˆ ) are  
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Continuing with IMU attitude errors,  
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A.1.2 Second Row of the H-Matrix  
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The Y GPS velocity measurement matrix row is similar to the X row:  
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A.1.3 Third Row of the H-Matrix 
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A.1.4 The Full H-Matrix 
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The full GPS velocity measurement H-matrix is presented below. Note that GPS velocity 
states are not represented in this matrix. If GPS velocity is used, expand GPS velocity to  

g
GPS

gg
GPS vvv vvv δ−=ˆ  

Then, add a 3 by 1 minus identity matrix (-I) in the GPS velocity state columns of the H-
matrix.  

One note regarding the H-matrix below: the velocities in the first two rows are in the local 
geographic frame; the velocities in the third row are in the wander azimuth frame.  
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A.2 An Alternative GPS Velocity Formulation 

In section 3.3.2 , a GPS velocity was constructed as follows:  
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Recall that the g
wC  DCM is the transformation from the IMU computer frame to the IMU 

local geographic frame: it is used as an approximate transformation from the IMU platform 
frame to the GPS local geographic frame. To develop the measurement model, it was 
expanded to 
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Here, an alternative formulation will be presented. 

Instead of transforming the computer frame velocity to the GPS local geographic frame in this 
way (as a function of IMU position error), an exact transformation can be used. The new 
measurement is 
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where the earth-centred, earth-fixed coordinate frame is used as an intermediary. The first new 
DCM, E

cC , is an exact function of IMU-computed latitude, longitude and height; the second, 
)(GPSg

EC , is an exact function of GPS-computed latitude, longitude and height. All IMU 
position error dependence has been removed – at the expense of the extra computations 
required to form the new DCMs.  

The H-matrix for the new model is derived from  
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In terms of   -angles, neglecting second order terms,  
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Without expanding the terms, the new H-matrix is  
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Using the above approximation,  
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All non-zero terms are in the IMU velocity and attitude error state columns.  
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