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Abstract …….. 

Theoretical concepts used in the field of complexity theory are presented. Proposed definitions 
include the essential elements gleaned from the scientific literature. Key terms such as system, 
complex system and complex adaptive system and other preliminary notions for the study of 
complexity are first defined and described. Four classification criteria distilled from an extensive 
literature review (Couture, 2006a) are then described and used to classify and structure concepts, 
properties, mechanisms and emerging phenomena. The criteria incorporate concepts that are 
essential for the study of the above systems. For instance, they employ the concepts of level and 
interrelationships between levels, thus enabling researchers to describe level-dependent complex 
manifestations such as emergence. The criteria defined are then used in a review of complexity 
theory in the hope that the structured descriptions of the criteria will aid in elucidating the 
elements of this theory. 

Finally, this document shows that complexity theory is in fact a rich set of interrelated theoretical 
concepts that already help us understand the increasingly complexity of our world. These 
concepts may also be used as guides to design specific properties or characteristics into 
information, communication and C2 systems to make them more efficient and effective in 
complex military operations. 

Résumé …..... 

Les concepts utilisés dans le domaine de la théorie de la complexité sont présentés dans ce 
document. Les descriptions proposées intègrent l’essentiel de la littérature scientifique consacrée 
à cette science. Les mots clés tels que « System », « Complex System » et « Complex Adaptive 
System » et d’autres notions préliminaires à l’étude de la complexité sont d’abord définis et 
décrits. Un ensemble de quatre critères de classification déduit d’une revue de littérature étendue 
(Couture, 2006a) est ensuite décrit et utilisé pour regrouper et structurer concepts, propriétés, 
mécanismes et phénomènes émergents. Cet ensemble intègre les notions essentielles à l’étude de 
ces systèmes. Par exemple, il intègre la notion de niveau et les interrelations entre eux, 
permettant la description de manifestations complexes qui dépendent de niveaux comme 
l’émergence. Cet ensemble de critères est ensuite utilisé pour effectuer une revue de la théorie de 
complexité en espérant que les descriptions structurées impliquant ces critères vont contribuer à 
aider à la compréhension des éléments de cette théorie. 

Ce document montre finalement que la théorie de la complexité est faite d’un riche ensemble de 
concepts théoriques qui sont interdépendants et contribuent déjà à aider à la compréhension de 
notre monde toujours plus complexe. Ces concepts peuvent également être utilisés comme guides 
pour munir les systèmes d’information, de communication et de C2 des propriétés et 
caractéristiques dont ils ont besoin pour améliorer leur capacité et leur efficacité lors d’opérations 
militaires complexes. 
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Executive summary  

Complexity and chaos – State-of-the-art; Overview of theoretical 
concepts:   

Mario Couture; DRDC Valcartier TM 2006-453; Defence R&D Canada – 
Valcartier; August 2007. 

Content of this document  

Man-made systems are becoming more and more complex and harder to predict and control. They 
involve myriad combinations of individuals, organizations, data, hardware such as computers and 
network devices, software, and other technologies that are (and will continue to be) used in an 
increasingly intricate manner. These systems are considered as complex adaptive systems 
(Holland, 1996). Complexity theory already aids significantly in the study of these systems. Even 
if this theory has not reached its final level of maturity, interested parties in various disciplines 
may already incorporate these concepts and approaches into their work. 

This document introduces notions related to complex systems and complexity theory. Basic 
concepts that are essential to the understanding of this theory are presented using a “medium” 
level of details. 

Basically, the information following the Introduction (Chapter 1) are grouped into three chapters; 
Chapter 2: the preliminary concepts and basic tools of the theory, Chapter 3: important aspects of 
“complexity”, and Chapter 4: the use of complexity theory. Chapter 2 contains definitions of 
basic key words that are used all along this document. For instance, the terms “system”, “complex 
system” and “complex adaptive system” are defined at the beginning of this chapter. All other 
definitions that are proposed in this document are aligned with the semantic of these key words. A 
limited number of conceptual tools of complexity theory are then described in this chapter. The 
following concepts are, for instance, described: level, scale of resolution, phase space, power law 
of distribution, attractors, fitness landscape, and the possible types of systems’ state evolution 
toward chaos. Chapter 3 is the core of this document. It groups and defines complex concepts, 
mechanisms, behaviors, and properties that are often found in the scientific literature. The 
structure of this chapter groups notions as a function of a system’s hierarchical levels. Complex 
properties and mechanisms belonging to the “level of system’s components” are first presented. 
Among others, independence, coherence, coupling, structure and aggregation of components are 
described. Complex phenomena and properties belonging to the “system level” (that depend on 
the first level) are then presented; emergence, resilience, robustness are, among others, described. 
Finally, the Chapter 4 proposes the preliminary skeleton of a process that, when completed and 
validated, will guide the use of concepts of complexity theory while studying and engineering 
complex systems. The conclusion lists important observations that were made all along the 
document and describes future potential work that could be achieved in this domain. 
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Sommaire ..... 

Complexity and chaos – State-of-the-art; Overview of theoretical 
concepts:   

Mario Couture; DRDC Valcartier TM 2006-453; R & D pour la défense Canada – 
Valcartier; Août 2007. 

Contenu de ce document  

Les systèmes d’aujourd’hui faits par l’homme et utilisés dans nos sociétés deviennent de plus en 
plus complexes, difficiles à prévoir et à contrôler. Ils impliquent la combinaison de nombreuses 
personnes, organisations, données, appareils tels que les ordinateurs et dispositifs réseau, logiciels 
et autres technologies qui sont (et seront) utilisés de manière toujours plus complexe. Ces 
systèmes sont considérés comme étant des « Complex Adaptive Systems » (Holland, 1996). La 
théorie de la complexité apporte déjà une contribution significative à l’étude de ces systèmes. 
Même si cette théorie n’a pas encore atteint sa pleine maturité, les concepteurs, ingénieurs et 
autres responsables provenant de différents domaines et disciplines peuvent dès maintenant 
intégrer ces concepts et approches à leurs travaux.  

Ce document présente les notions reliées aux systèmes complexes ainsi que la théorie de la 
complexité. Les concepts de base essentiels à la compréhension de cette théorie y sont énoncés et 
définis selon un degré de détail jugé « moyen ».  

À la base, l’information suivant l’introduction (chapitre 1) est regroupée en trois chapitres ; 
chapitre 2 : les concepts préliminaires et outils de base de la théorie, chapitre 3 : les aspects 
importants de la « complexité », et chapitre 4 : l’utilisation de la théorie de la complexité. Le 
chapitre 2 contient les définitions des mots clefs de base qui sont utilisées tout au long du 
document. Par exemple, les termes « système », « système complexe » et « système complexe 
adaptatif » sont définis au tout début du chapitre. Toutes les autres définitions proposées ensuite 
dans ce document sont en conformité avec la sémantique de ces mots clefs. Un nombre limité 
« d’outils conceptuels » de la théorie de la complexité sont ensuite décrits dans ce chapitre. Les 
concepts suivants y sont par exemple décrits : niveau, échelle de résolution, espace de phase, la 
« Power Law of Distribution », les attracteurs, la « Fitness Landscape » et les différentes 
évolutions possibles de l’état d’un système vers le chaos. Le chapitre 3 constitue le cœur du 
document. Il regroupe et définit les concepts, mécanismes, comportements et propriétés 
complexes qui sont le plus souvent abordés dans la littérature scientifique. La structure de ce 
chapitre regroupe les notions en fonction des niveaux hiérarchiques des systèmes. Les propriétés 
et mécanismes complexes appartenant au « niveau des composants de système » sont d’abord 
présentés. On y retrouve entre autres la description de : l’indépendance, la cohérence, le couplage, 
la structure et l’agrégation des composants. Les phénomènes et propriétés complexes au « niveau 
du système » (qui dépendent du premier niveau) sont ensuite présentés ; l’émergence, la résilience 
et la robustesse notamment sont décrits. Finalement, le chapitre 4 propose l’ébauche préliminaire 
d’un processus qui, lorsqu’il sera achevé et validé, guidera l’utilisation des concepts de la théorie 
de la complexité dans l’étude et l’ingénierie des systèmes complexes. La conclusion répertorie les 
observations importantes faites tout au long du document et décrit les travaux potentiels futurs qui 
pourraient être réalisés dans ce domaine. 
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1  Introduction  

Man-made systems1 like the Internet, the stock market, industries, cities and military command 
and control (C2) systems are becoming more and more complex and harder to predict and 
control2. They involve myriad combinations of individuals, organizations, data, hardware such as 
computers and network devices, software, and other technologies that are (and will continue to 
be) used in an increasingly intricate manner. Actually, these systems exhibit many of the 
properties of natural complex systems3 (Holland, 1996). They are for instance composed of huge 
numbers of autonomous4 sub-systems or agents (herein called elements of complex systems); 
these elements are able to communicate in different modes5 through redundant network links6; 
and they use sets of shared and standardized communication protocols, values, rules and internal 
models. They show high levels of stability and coordination despite frequent environmental 
disruptions and the lack of central operational planning and control. Intricate interactions between 
the elements of these complex systems produce complex behaviours such as the emergence of 
self-organization, adaptation and long-term evolution. The elements’ joint capabilities are greater 
than the sum of their individual capabilities.  

Most of the time, complex systems are also highly dynamical and non-linear. Their composition, 
structure, internal interrelationships, shared rules, values, beliefs and internal models will evolve 
over time in response to their environment7; they will be modified in a non-linear manner.  

Significant efforts have been made in the last decade (and are still being made) by the scientific 
community to find new approaches that would elucidate the basic principles of complexity 
theory. The Santa Fe Institute’s (SFI, 2006) approach is one example. People at this institute use 
the term complex adaptive system (CAS). Their approach involves the use of modelling and 
simulation (M&S) and the study of similarities between different CASs to find underlying 
principles that would form the basis of a unified complexity theory, one that would be valid for 
all CASs. Holland (1996) describes the SFI approach in these terms: The best way to compensate 
for this loss8 is to make cross-disciplinary comparisons of CAS, in hopes of extracting common 
characteristics. With patience and insight we can shape those characteristics into building blocks 
for a general theory. (9)  

                                                      
1 Words system, complex system and complex adaptive system are defined later in chapter 2. 
2 Complexity is showing in many areas. Air travel now projects public health problems across the globe: 
witness the worldwide repercussions of the SARS epidemic, and the looming threat of Avian flu. More 
seriously still, we face complexity at the level of planet Earth, as we struggle to find a sustainable path into 
the future, learning to manage the Earth’s climate and ecosystems (ONCE-CS, 2006). 
3 Such as the human immune system, biological ecosystems, ant colonies, etc. 
4 Depending of the type of CAS, elements may for instance be autonomous managerially, financially and/or 
operationally. 
5 Modes can be for instance cooperation/collaboration, coalition, competition or conflict. 
6 As an example, the Internet’s network systems communicate through redundant and loosely coupled links. 
7 Environment may be friendly, neutral and/or hostile. 
8 The fact that we are still looking for means that will allow the generalization of observations into a theory. 
9 All text reproductions originating from the scientific literature are written in italic in this document. 
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Similarities between CASs have revealed some hints regarding how man-made CAS composition, 
structure and operations can be improved (Holland, 1996). For instance, the human immune 
system suggests that an autonomous defensive system that is working in parallel with a CAS to 
protect the latter against unforeseen attacks may represent an effective and efficient solution. As 
an attack is detected by one element of the defensive system, a signal is transmitted to other 
relevant elements. They then form a countermeasure10 that is immediately put into action. Actions 
posed by the countermeasure aim to 1. limit the effects of the attack, 2. neutralize or destroy the 
sources of attack, 3. learn11 and 4. integrate the lessons learned12. The CAS would then capture 
the resulting knowledge and lessons learned and self-organize to adapt to this unforeseen 
situation. It would also concentrate its energy on self-repair and self-recovery tasks. This generic 
example depicts a whole system that is able to evolve through constant self-organization and 
adaptation. Its resilience is enhanced by the diversity and flexibility of its elements and their 
ability to re-deploy in a more focused manner. Actually, the defence system can attain its highest 
fitness level if its level of complexity13 equals or surpasses that of the red systems (Bar-Yam, 
2003d). 

Complexity theory already provides a means of meeting today’s complex challenges. It involves a 
shift in our way of thinking from purely logic-based rational design to a distributed design 
approach, harnessing a capacity for self-organization that is suited to the natural complexity and 
changeability of the real world, both natural and man-made (ONCE-CS, 2006). This document 
provides an overview of the concepts of this theory. 

1.1 Objective of this document 

Architects, engineers, commanders, operators and other stakeholders in various military domains 
or disciplines must now consider the concepts of complexity theory in order to better address 
current and future problems related to complex systems and operations. Even if this theory has 
not reached its final level of maturity, parts of it can already be used.  

There is an abundance of scientific literature on complexity theory, but as the science is still the 
object of intense R&D, different interpretations of the component concepts can be found in the 
complexity community. Although a lack of consistency is normal in an evolving science, it does 
not contribute to uniform global understanding. The main goal of this document is to compile the 
appropriate information from the literature and build a global and integrated picture of complexity 
theory, chaos and complex systems. It is based on a review of literature that aimed at building a 
state-of-the-art on the subject (companion documents are Couture 2006a, 2006b, and 2006c). A 
moderate level of presentation was chosen to maintain the requisite minimum of rigour while 
producing a report that is easy to read. A glossary can be found in Couture (2006c).  

                                                      
10 The composition and structure of the countermeasure should be tailored to defeat that specific type of 
attack. 
11 Learning new patterns of attack. 
12 Integration of lessons learned may take the form of mutations within the CAS to make it more robust for 
future attacks.  
13 For instance, the level of complexity of a CAS is raised when the diversity of its systems and complexity 
of collaboration between its systems are raised. The CAS has “more choices” on actions that can be taken 
to find solutions to complex problems. 
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This set of documents represents a point of reference for studying the complexity of systems. Its 
content and references will serve as both an introduction to these concepts and a conduit to more 
in-depth study. It is hoped that it will facilitate the understanding and re-utilization of these 
concepts in the military domain. 

1.2 Contexts and scopes 

This document is the fourth of a set of five DRDC Valcartier reports dedicated to the study of 
complexity theory, chaos and complex systems (Couture, 2006a, 2006b, 2006c, and one to be 
published in 2007). It is part of an overarching project being carried on at DRDC Valcartier, 
Project 15bp01 – Defensive Software Design. It focuses mainly on the presentation of concepts 
from this theory. There are only a few references to the architecting and engineering aspects of 
complexity. These aspects will be covered in another document. 

1.3 Used methodology 

Figure 1 depicts the general methodology used for this study. It is characterized by a main 
iterative and incremental loop (steps 1 and 2), which includes a number of sequential and parallel 
activities (steps 3, 4 and 5). This loop permits on-the-fly adjustment and optimization. 

The five main activities or steps are: 

1. Search literature, projects, groups, etc: Internet searches were made using Google and 
other search engines. A number of specialized databases were also searched (Dialog Database 
Catalog, 2005). These databases are listed in Annex C of Couture (2006a). 

2. Select potentially useful documents: Documents were selected based on their potential 
applicability to the military context.  

3. Study selected documents: Approximately 30–40% of the selected documents were read and 
studied in greater detail.  

4. Investigate in greater depth for the military context: This involved finding elements that 
offer potential solutions in the military context. 

5. Update documents: The content of each document was updated on the fly at each iteration. 
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Figure 1 Methodology for this study. 

The reports generated by this study are listed in Table 1. The first four reports will be published 
by the end of phase one of the study (by March 2007). The last will be published by the end of 
phase two (late 2007).  

 

 

 



 

DRDC Valcartier TM 2006-453 5 
 

 
 

Table 1 List of documents to be published.  

Title Description 

Complexity and chaos – State-of-
the-art; List of works, experts, 
organizations, projects, journals, 
conferences and tools. 

(Couture, 2006a). 

This Technical Note provides 471 references to scientific 
studies, organizations, scientific journals, conferences, 
experts and tools, plus 713 additional Internet addresses 
that are related to complexity theory, chaos and complex 
systems. Abstracts are included where available. 

Complexity and chaos – State-of-
the-art; Formulations and 
measures of complexity.  

(Couture, 2006b). 

Different formulations and measures of system complexity 
are provided in this Technical Note. They were drawn 
from the scientific literature on complexity theory, chaos 
and complex systems.  

Complexity and chaos – State-of-
the-art; Glossary. 

(Couture, 2006c). 

This Technical Note defines 335 key words related to 
complexity theory, chaos and complex systems. The 
definitions were extracted from the scientific literature. 

Complexity and chaos – State-of-
the-art; Overview of theoretical 
concepts. 

This document: Couture (2007). 

This Technical Memorandum presents an overview of 
theoretical concepts pertaining to complexity theory.  

Complexity and chaos – State-of-
the-art; The Engineering of 
complex adaptive systems. 

(To be published in 2007). 

Descriptions of the current approaches, methodologies and 
tools used to address problems related to the architecting, 
engineering and improvement of complex systems is 
included in this Technical Report.  

1.4 Taxonomy for classifying properties and phenomena 

Complexity theory involves concepts and principles derived from observation, logical deduction 
and more formal theoretical analysis. They must be named and classified using a unique set of 
descriptors in order to avoid confusion in interpretation.  

A problem arises while reading the scientific literature on complexity theory: not all authors 
employ the same definitions for the key words, and they often use different descriptors. For 
instance, a specific complex phenomenon may be termed a feature by one author while another 
refers to the same phenomenon as a fundamental principle. Section 3.1 discusses some 
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examples. These differences are an impediment to the understanding of complexity theory and the 
building of a global picture. 

To avoid these differences in interpretation, a taxonomy is proposed and used throughout this 
document. It is made up of a structured list of descriptors, which are the underlined terms in 
Figure 2. The taxonomy has three main branches: 1. descriptions of observations; 2. validated or 
tested theoretical descriptions; and 3. theoretical descriptions that are not yet validated or tested. 
The observations of phenomena are presented in branch one using appropriate descriptors. More 
formal theoretical descriptions are presented in branches two or three, again using appropriate 
descriptors. 

1.5 How to use this document 

Chapter 2 presents a set of preliminary concepts that may be essential for the study of complex 
systems. First, some important definitions are given and a taxonomy for designating systems 
throughout this document is proposed. The current method of characterizing systems based on 
their state is then described. Finally, chapter 2 presents a basic toolkit that can be used to study 
complex systems. Notions presented in chapter 2 are used in subsequent chapters.  

Chapter 3, the core of the document, provides a description of properties and phenomena related 
to complex systems. A set of four criteria are first described and then used to structure this 
description.  

Chapter 4 describes some current trends in this science and some precautions to be taken when 
discussing concepts of complexity theory.  

Finally, the Conclusion section lists some general observations on this study. 

The notions presented in this document may originate from studies that were made in the 19th 
and 20th centuries, particularly those relating to systems and no-linearity. This document does not 
provide references to these original studies. It rather refers to the more recent studies of 
complexity theory, which gained in popularity in the last 10 to 15 years. The reader is referred to 
historical reviews of the literature14 for more details on the original identification and description 
of these concepts.  

The reader is encouraged to read all chapters in order, although a fast reading would involve the 
consecutive reading of chapter 2, chapter 3 and the Conclusion. 

All reproductions of text originating from the scientific literature are written in italic in this 
document. 

 

                                                      
14 Levine (1996) would be a good starting point; The Control Handbook by Williams S. Levine, CRC Press, 
ISBN: 0-8493-8570-9. 
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Taxonomy for the 
description of 

phenomenon related 
to CAS

Description of 
observation of 
phenomenon

Observed 
Phenomenon Name, location, time of occurrence, etc.

Feature of observed 
phenomenon

Trait
(Collins COBUILD, 1995): A particular characteristic, quality, 
or tendency that someone or something has.

Characteristics

(Collins COBUILD, 1995): A quality or feature that is 
characteristic of someone or something in one which 
is often seen in them and seems typical of them.

Attribute
(Collins COBUILD, 1995): A quality or feature that 
someone or something has.

Properties
(Merriam-Webster, 2003): An attribute common to all 
members of a class.

Description of observed  
phenomenon 

What is described Properties of features

Aspects of 
description

Qualities

Description involving 
un-measurable properties: pretty, 
bad, etc. 

Quantities
Description involving measurable 
properties: 25 degrees C., etc.

Means

Measure
The evaluation of properties of features 
based on concrete measures.

Variable
Examples: variable of a formula or 
computer-based variable, etc.

Text

Context within which 
phenomenon are 
observed

Physical experiments
Computer-based simulations
Theoretical analysis

Provable description of 
phenomenon

Principle

(Collins COBUILD, 1995): 1) The principles of a particular theory or 
philosophy are its basic rules or laws. 2) Scientific principles are 
general scientific laws which explain how something happens or works.

Tenets
(Collins COBUILD, 1995): The tenets of a theory or belief 
are the main principles on which it is based.

Theorem
(Collins COBUILD, 1995): A theorem is a statement in mathematics 
or logic that can be proved to be true by reasoning.

Model, approximation

Yet unproved description 
of phenomenon

Axiom
(Collins COBUILD, 1995): An axiom is a statement or idea which 
people accept as being true.

Postulate
(Collins COBUILD, 1995): A postulate is an idea that is suggested as or 
assumed to be the basis for a theory, argument, or calculation

Hypothesis

(Collins COBUILD, 1995): A hypothesis is an idea which is suggested 
as a possible explanation for a particular situation or condition, 
but which has not yet been proved to be correct.

Assumption

(Collins COBUILD, 1995): If you make an assumption that 
something is true or will happen, you accept that it is true or will 
happen, often without any real proof.

Model, approximation  
Figure 2 Taxonomy for classifying complex phenomena and properties. 
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2 Preliminary concepts 

An overview of preliminary concepts for studying complexity theory and complex phenomena is 
presented in this Chapter. Important key words such as system, complex system and complex 
adaptive system are first defined and described. A scheme for grouping systems based on their 
state is then presented. Some basic conceptual tools of complexity theory such as phase spaces 
and attractors are finally briefly described. 

2.1 System  

The following definition of the term system is sufficiently generic to be used in any domains or 
disciplines. All other definitions of systems will be considered as specializations of this 
definition. 

2.1.1 A Generic definition  

Following points constitute the essence of the definition of the term system for this document: 

• A system is made of any combination of interacting elements15 like: people (person, group 
of people, organizations of people, etc), intangible elements (military doctrines, methods, 
approaches, theories, software, processes, concepts, ideas, etc), and tangible elements 
(computers, network devices, mechanical devices, radio, vehicles, etc.).  

• Elements of a system interact dynamically; they are evolving in environments and 
contexts16. 

• Elements of a system aim at achieving one or many functions, goals and/or missions. 

• The system’s openness with its environment allows all necessary exchanges through the 
system’s boundaries17. 

• Outputs to the environment result from transformation and production mechanisms that are 
internal to the system. They may take many different forms. 

• Transformation and production mechanisms are influenced by internal rules, values, beliefs, 
constraints, culture and internal models (as defined by Holland, 1996) that in turn may be 
influenced by the environment.  

• As it will be shown in Section 2.5, a system may evolve in linear, complex or chaotic states. 

• The concept of system is recursive; a system may be composed of other sub-systems that are 
themselves systems.  

                                                      
15 A system is made of interacting parts that are called elements, which are themselves systems. 
16 Examples of environments could be for instance: open field, urban cities, etc. Examples of contexts could 
be for instance:  peace keeping, social reconstruction, etc. 
17 As it will be shown later in this document (Section 2.1.3), missions, goals or functions of a system may 
represent perspectives that can be used to identify and define boundaries. 
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Unless stated otherwise, studied systems in this work will have behaviours that originate 
exclusively from deterministic causes-effects relationships among their constituent elements; 
there will be no random contribution. 

2.1.2 Description 

Figure 3 shows a conceptual view of a system in its environment. Some elements of the IDEF0 
notation (IDEF, 2006) are used in this figure. The system accepts and transform/produces 
input(s)/output(s) from/to the environment within which it evolves. Internal models, rules, beliefs, 
constraints, missions or goals and contexts guide this transformation/production processes.  

Systems may also be controlled by other systems (Control in Figure 3), it may use external 
mechanism(s) (Mechanism) and it has the possibility to make calls to other systems (Call). 
External constraints and rules may also be imposed to the system by the environment. 

Environment
Context(s)
Rule(s), 
Constraint(s)

System

Context(s)
Rule(s)
Internal model(s)
Constraint(s)
Mission(s) or Goal(s)
Composition, structure
Activity(ies)

Input Output

Control

Mechanism Call

 
Figure 3 Conceptual view of a system in its environment. 

Some important aspects of the definition may be emphasized here: 

• The dynamical aspect. Systems are evolving with respect of time. They are not 
considered as static sets of elements because transformations/productions only happen if 
we consider systems as being in action. A static piece of hardware may potentially become 
a system when put in action with other elements such as human, processes, etc. This 
dynamical aspect is essential to support concepts of complexity theory. Beech (2004) 
mentions for complex adaptive systems (an instance of this generic definition of system): 
Complex networks are referred to as “adaptive” or “dynamic”, because they are 
constantly changing their interrelationships based upon the needs of individual agents and 
environmental impacts.  



 

10 DRDC Valcartier TM 2006-453 
 
 
 

• Systems often include human. For many systems, human is often considered as an integral 
part (or element) of the system. Senge (1994 (among many others) is clear on this point: 
business and other human endeavors are also systems. A communication radio, a tank or a 
C2 software system for instance involve the active participation of human for the 
accomplishment of missions, goals and/or functions. Other kinds of system like autonomous 
software agents, automatic computers and network devices are less dependant on human’s 
inputs, but they still need maintenance and restart (human interventions) for staying 
operational over long periods of time. Whether human is part or not of systems depends on 
the interactions of the former; Section 2.1.3.2 gives an example. At the opposite end, natural 
biological systems such as sets of natural growing biological cells18 are human independent.  

• Systems may include intangible elements. In this document, intangible elements 
represent all non-physical or non-palpable elements of a system. Examples are software19 
and processes. This differentiation between tangible and intangible elements allows for 
instance the differentiation between intangible internal models and the tangible structure 
and composition of a system. An example would be: the human mental models of 
understanding (intangible elements) within the human body (tangible element) that 
constitute a person (the whole system).  

2.1.3 Boundaries of systems  

In this document boundaries of systems are considered as subjective to the observer and they 
may evolve or change with respect of time. Two criteria are used to identify and define 
boundaries: the first one is based on observer’s perspectives and the second one involves time 
considerations. 

2.1.3.1 Boundaries identified out of observer’s perspectives 

In this document, systems are considered as demarcated by boundaries that are defined in 
function of the observer’s perspective; boundaries are subjective to the observer. Perspectives 
are subjective ways of looking at systems; they may for instance be defined in function of 
specific functionalities of a system. 

A car in action is used as an example of a global system to illustrate the identification of 
boundaries based on functionalities. One observer’s perspective may be the propulsion 
functionality while another observer’s perspective would be the security functionality. Both 
perspectives lead to two different boundaries defining two sets of elements or sub-systems (or 
systems) for the same car20: the propulsion system and the security system.  

The two identified systems can be considered as elements of the whole system; the car. The study 
of these two systems is not sufficient to achieve a complete understanding of the whole car. Many 

                                                      
18 For instance: the embryogenesis of metazoans – the process whereby a fertilized egg progressively 
divides until it yields a mature many-celled organism that reproduces by producing another fertilized egg 
(Holland, 1995). 
19 Software is made of an assembly of non-palpable executable machine code that is stored in palpable 
hardware devices. Software itself is intangible. 
20 Sub-systems are themselves systems. 
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other perspectives involving other functionalities must also be considered. Moreover, interactions 
between perspectives must be considered in a global perspective in order to take into account 
how elements are working together.  

2.1.3.2 Evolution of boundaries with respect of time  

The second criterion used to identify boundaries of systems is related to time. The composition 
and the structure of a system at one instant may not be the same at a later time; they may evolve. 

For instance, one may ask the question: when is human considered as an element of a particular 
system? Figure 4 shows the state of this hypothetical system (Y-axis) in function of time (X-axis). 
For the laps of time lying between t1 and t2, human is involved in the starting of the system and 
between t2 and t3 s/he is not anymore involved in its operation. In this particular example, human 
is an element of the system for the time lying between t1 and t2. After t2, human may not be 
considered as an element of the system.  

Time

The system 
is launched, 

human 
involved

On

Off

The system is 
autonomous, 

no human 
involved

t1 t2 t3

 
Figure 4 Identification of systems’ boundaries out of time considerations. 

This simple example suggests that boundaries defining the internal composition and possibly 
structure of a system at one instant will change with respect of time. 

2.1.4 Types of system behaviour 

According to Gharajedaghi (1999), systems’ behaviours can be grouped into four main classes. 
They are: 1. passive; 2. reactive; 3. responsive; and 4. active (or pro-active). Corresponding 
classes of system are: 1. passive/linear; 2. reactive/self-maintaining; 3. responsive/goal-seeking; 
and 4. active/purposeful. Table 2 lists these four classes and specifies forms of means and finality 
for each.  
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Passive behaviours are exhibited by linear systems like dedicated tools. Associated means and 
finality of these systems are fixed at conception/development and described in specifications.  

Systems that self-maintain themselves in changing environments show reactive behaviours; they 
are able to react to changes in order to maintain their states under different environmental 
conditions. If the finality of such systems remains the same, their means must vary according to 
pre-determined patterns (to adapt to changes). 

Goal-seeking systems show responsive behaviours in response to changes in the environment. 
They can respond differently to different events in the same or different environments until they 
produce particular outcomes (states). Their means  vary according to on-the-fly system’s choices 
that depend on observed changes. The finality may be adapted in function of observed changes 
but it must remain within pre-determined limits. Such systems have the choice of means but not of 
ends; hence they are responsive rather than reactive. 

Table 2 Four types of system’s behaviours (adapted from Gharajedaghi, 1999). 

Behaviour Means Ends, Finality 

Passive  

(Linear tools) 

Fix Fix 

Reactive  

(Self-maintaining systems) 

Variable and determined Fix 

Responsive  

(Goal-seeking systems) 

Variable and chosen Variable and determined 

Active  

(Purposeful systems) 

Variable and chosen Variable and chosen 

Purposeful systems demonstrate more intelligence and autonomy than any other kinds of systems. 
They are pro-active; their active behaviours demand choice and variability from means and 
finality. They can produce not only the same outcomes in different ways in the same environment 
but different outcomes in both the same and different environment. Purposeful systems have all 
the capability of goal-seeking and state-maintaining systems. Controlling the behaviour of 
purposeful individuals in a multi-minded system by using supervision is less feasible or even 
desirable. To manage a multi-minded system with self-controlling members we need a new social 
calculus. This calculus should provide a new framework for creating vertical, horizontal, and 
temporal compatibility among the members of an organization. This means among other things 
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that complex systems are best operated when control is relatively distributed among elements 
instead of being rigid and strongly hierarchic (Section 3.3.11). 

2.2 Complex systems  

There is no agreement on a definition of complex system in the scientific literature. One reason 
for this is that complexity theory has not yet reached its final level of maturity.  

2.2.1 Definition  

Complex systems are often defined in function of their characteristics. ONCE-CS (2006) 
mentions for instance that they are made of a large number of component elements that are 
showing strong interactions between each other. They are having a rich dynamics with patterns 
and fluctuations on many scales of space and time along with the absence of equilibrium. What is 
most striking is that complex systems that apparently have little in common – a collection of 
machines in a manufacturing plant, nodes in a P2P system, a group of chemical receptors on a 
cell’s surface or even a group of human agents in an economic setting – often share remarkably 
similar structures and means of organisation. 

The following points constitute the essence of the definition of complex systems for this 
document. 

• A complex system is made of an assemblage of autonomous elements21 that work together 
to achieve a common goal or mission.  

• Each element behaves according to its own set of internal rules, beliefs, constraints and 
models in response to local interactions with other elements and its environment. Agents 
(elements) are driven by local assessments, motivated by the necessity to couple with other, 
forming interdependent relationships to the mutual fulfillment of their individual 
requirements. (…) Agents are constantly reassessing their need preferences and degree to 
which they will compromise to bond with other (Beech, 2004). 

• Complex systems achieve missions, goals or functions through intricate interactions 
between elements. Taken separately, elements cannot achieve the same capabilities; the 
whole is greater than the sum of the parts. 

• Intricate interactions between elements of a complex system trigger the emergence of 
complex phenomena. 

• Even when rules within each element are simple and deterministic, the behaviour of the 
whole is often complex and hard to predict at mid and long time-scales.  

• Complex systems are non-linear and feedback is present.  

• Complex systems achieve a state of self-organized criticality without a blueprint or 
centralized control mechanism. 

                                                      
21 Elements and complex systems are systems (see definition in Section 2.1). Elements of a CAS may for 
instance be autonomous managerially, financially and hierarchically; they have a relative independence. 
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• Complex systems evolve near what Kauffman called the edge-of-chaos. At the edge-of-
chaos, the system is optimized for adaptation; the number of interactions is great enough 
that truly novel change can occur, but the system does not become totally unstable. Change 
occurs according to a power law distribution (Calhoun, 2004) (Section 2.6.4). 

• Complex systems exhibit coherence under changes, via conditional action and anticipation, 
and they do so without central direction or planning (Holland, 1996).  

Unless stated otherwise, studied complex systems in this work will have behaviours that originate 
exclusively from deterministic causes-effects relationships among their constituent elements; 
there will be no random contribution.  

2.2.2 Description 

Figure 5 shows a conceptual view of a complex system in its environment. It is made of twelve 
independent interacting elements or systems (S-1 to S-12)22 and external elements (called S). In 
this Figure, some elements are controlled by others (S-3 and S-4), some others are working in 
cooperation or collaboration (S-5 and S-9) while others are working in competition (S-4 and S-9). 
All form of interrelationships can be found (Section 2.2.3). Feedback23 is also present between 
some of the elements (between S-9 and S-11 and between S-10 and S-6). All these elements are 
concurrently evolving, making the whole system highly dynamical, non-linear, and non 
decomposable into its elements. Figure 5 also shows that complex systems may have their own 
contexts, constraints and missions.  

As it will be shown later in this document, the degree of complexity of systems often refers to the 
potential for emergent behaviour in complex and unpredictable phenomena (Chan, 2001). 
Economy, ecosystems, the human brain, developing embryos and ant colonies are all examples of 
complex systems. When an economy is considered, the elements might be individuals or 
enterprises, in an ecosystem elements might be the species, in the human brain elements are nerve 
cells, in an embryo the elements are cells, etc.  

Each complex system is made of a network of elements that are concurrently interacting with 
each other and with the environment. There are continual actions and reactions to what other 
agents are doing; nothing is essentially fixed.  

Elements of complex systems have a certain degree of autonomy and their individual missions 
may not necessarily be perfectly aligned with the mission of the whole. The ability and/or the 
willing of each element to adapt or align its own missions (or will) with the global mission are 
factors (called attractors in Section 2.6.7) that will influence the effectiveness and efficiency of 
the whole complex system to achieve its global mission. It will also provide a degree of order 
within the system.  

                                                      
22 Only a limited number of elements are shown in this generic example for clarity purposes. Some 
complex systems may involve large number of elements. 
23 Feedbacks shown in this Figure are internal to the complex system. Feedback may also be used at a 
higher level (Section 3.3.9). 
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Environment
Context(s)
Rule(s)

S-1

Complex System
Contexts
Constraints
Missions 

S-2 S-4

S-3

S-7

S-5

S-6 S-8

S-9

S-10

Competition

Cooperation

Feedback

Feedback

Feedback

S

S

S

S

S

S

S-11

Call/Control

S-12

Call/Control

 
Figure 5 Conceptual view of a complex system in its environment. 

2.2.3 Classes of relationships between elements of complex systems 

According to Gharajedaghi (1999), at least four classes of interrelationships can be found 
between elements of complex systems. They are determined by the level of compatibility between 
their means and finalities. They are: 

• Cooperation. Cooperation (or collaboration) between elements is possible when means of 
elements are compatible and finalities of elements are compatible. 

• Coalition. Coalition may happen when means of elements are compatible but finalities of 
elements are incompatible. Coalition may involve two opposite situations; the first one 
involves two compatible systems that are working together to achieve a common and shared 
goal or mission. The second involves two compatible systems that are not working together 
but they are achieving a common goal or mission. Coalition may results thus in constructive 
or disinterested interactions. 

• Competition. Competition may happen when means of elements are incompatible but 
finalities of elements are compatible. Systems that are in competition are working for 
themselves in order to get the most advantageous place or results. Both systems are doing 
their best to arrive at the best results as quickly as possible. Seen from a global perspective, 
it may thus generate constructive results because the finalities are compatible. 

• Conflict. Conflict may happen when means of elements are incompatible and finalities of 
elements are incompatible. Conflict may result in destructive interactions and aggressions 
between systems. In this mode, systems will usually fight against each other with the 
intention to destroy. 
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Holland’s (1996) types of relationships between elements of a complex system can be grouped 
within Gharajedaghi’s classes:  

• Offence: may fit in competition and conflict. 

• Defence: may fit in cooperation, coalition and maybe competition. 

• Aggregation: may fit in cooperation and coalition. 

• Adhesion: may fit in cooperation, coalition and maybe competition. 

• Selection: may fit in cooperation, coalition and maybe competition. 

• Replication: may fit in cooperation, coalition and maybe competition. 

The efficiency and effectiveness of a complex system to achieve its mission may concurrently 
involve any combination of these classes of relationships between elements (Gharajedaghi, 1999).  

2.3 Complex adaptive systems (CAS)  

The differences between complex systems and complex adaptive system (CAS) are not always 
clear in the scientific literature. The former often appears to be more generic then the latter 
(which is used at Santa Fe Institute). Sometimes, complex systems are also used for natural but 
non biological systems such as Per Bak’s sand pile experiment. This Section provides a definition 
of CAS and Section 2.4 proposes taxonomy for designating any kinds of system in this document.  

John Holland, a pioneer in the field of complexity, coined the term complex adaptive system 
(CAS) to describe the constantly evolving nature of complex systems. It is worth citing Holland 
(1998) on this subject:  Many natural systems (e.g., brains, immune systems, ecologies, societies) 
and increasingly, many artificial systems (parallel and distributed computing systems, artificial 
intelligence systems, artificial neural networks, evolutionary programs) are characterized by 
apparently complex behaviors that emerge as a result of often nonlinear spatio-temporal 
interactions among a large number of component systems at different levels of organization. 
These systems have recently become known as Complex Adaptive Systems (CAS). The theoretical 
framework is based on work in the natural sciences studying CAS, e.g., physics, chemistry, 
biology. The analysis of CAS is done by a combination of applied, theoretical and experimental 
methods (e.g., mathematics and computer simulation). 

An interesting definition of complex adaptive systems can be found in Dooley (1996): A CAS is a 
system composed of many interacting semi-autonomous parts (usually called agents) where each 
part has a few simple individual behaviors which when aggregated with other parts can produce 
systems with emergent behaviors of high complexity.  

Inspired from the work from the Santa Fe Institute, Dodder and Dare (2000) adds more 
characteristics: CASs are made of a network of many elements gathering information, learning 
and acting in parallel in an environment produced by the interactions of these agents. They are 
co-evolving with their environment and their states lye between order and anarchy at the edge-of-
chaos. Order is always unfolding into transitional and new emergent phenomenon (instead of 
pre-determined).  
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CASs tend to exist in many levels of organization in the sense that elements at one level are the 
building blocks for elements at the next level. An example is cells, which make up organisms, 
which in turn make up an ecosystem. Section 3.3.16 describes some structures of CASs. 

Finally, CASs by their non-linear nature have a future that is hard to predict. Gell-Mann (1994) 
proposes some examples: the origin of life on Earth; biological evolution; the behaviour of 
organisms in ecological systems; the mammalian immune system; learning and thinking in 
animals; the evolution of societies; and the behaviour of investors in financial markets. 

2.4 Proposed taxonomy for designating systems  

Terms used to designated systems are often defined and used differently from one author to 
another in the scientific literature; actually, they are often defined in function of their domain of 
applicability. In order to avoid any confusion on semantic, it is worth defining the taxonomy that 
is used in this document for designating systems. Used terms are: 

• System. This term will be used as a generic word for designating any kind of system (as 
defined in Section 2.1.1). As shown in Figure 6, this definition supports all other kinds of 
system. 

• Complex system. Complex system is a system. Complex system will refer to any system 
that satisfies the conditions listed in Section 2.2.1.  

• Complex adaptive system. Complex adaptive system (CAS) is a complex system and it is 
also a24 system. The concept of CAS comes from the approach taken by the Santa Fe 
Institute (SFI, 2006) for studying complex systems (Section 2.3). Holland (1996) for 
instance suggests that immune systems, cities and ecosystems are examples of complex 
adaptive systems that share certain properties that make it useful to consider them as 
instance of a class of phenomena.  

• Complex system (definition issued from Per Bak’s experiment). Using Per Bak’s work 
(Bak, 1991; 1997) Lansing (2003) mentions a possible difference between complex systems 
and complex adaptive systems: nonliving systems can also exhibit self-organizing properties 
that may take them to the edge of chaos (Bak & Chen 1991, Bak 1997). Bak’s examples 
include phenomena like earthquakes, which are unlike biological systems because no 
process of adaptation is involved; these are known as complex systems rather than complex 
adaptive systems. This definition or semantic is not used in this document. 

• Element of CAS or elements of complex systems. In this document, the term element 
refers to the interacting parts forming complex adaptive systems. Elements are themselves 
systems. 

• Agent. Elements of CAS can be called agent in the sense of economics by Holland (1996). 
Agents are systems. The term agent is not used in this document.  

Taxonomy used in this document is illustrated in Figure 6; used terms are bolded and underlined. 

                                                      
24 Using Unified Modeling Language terminology, one could say that CAS definition inherits from the 
complex system definition, which in turn inherits from system definition. 
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Taxonomy for 
Designating Systems

Generic name System

Systems classified 
following their state

Linear System

Complex

Complex System (is also a 
system)

Complex Adaptive System (is 
also a system)

Chaotic Chaotic System (is also a system)

Constituent elements of 
systems

Linear Parts of system

Complex
Elements or agents of a complex system 
(may also be considered as systems)

Chaotic
Elements or agents of a chaotic system (may 
also be considered as systems)

 
Figure 6 Proposed taxonomy for designating systems. 

2.5 The States of systems  

A scheme used to group systems is presented in this Section. It is based on their dynamical state 
and it is inspired from early works made in complexity theory by pioneers such as Dr. Kauffman 
from the Santa Fe Institute and Dr. Wolfram. Older historical works were not considered. 

2.5.1 Kauffman’s and Wolfram’s historical experiments 

Dr. Stuart A. Kauffman is a biologist associated with the Santa Fe Institute. Kauffman’s research 
in the sixties aimed at understanding the evolution of biological systems at the level of genes. He 
studied questions such as: the existing relationship between the average connectedness of genes to 
the global ability of organisms to evolve. Later, Kauffman observed that one can ask analogous 
questions about the connectedness of firms in an economy or species in an ecosystem, and other 
kinds of CASs (Lansing, 2003).  

Kauffman’s experiments revealed dynamical regimes within which CASs may evolve. Lansing 
(2003) gives a short description of this experiment: Imagine a collection of N Christmas tree 
lights. Each bulb has one of two possible states, on or off, and is wired up to K other bulbs. A 
simple rule tells each bulb what to do. For example, let K = 3, meaning that each bulb is wired to 
3 other bulbs. From one moment to the next, each bulb decides whether to turn itself on or off in 
accordance with the state of these neighbors. A typical rule is majority wins, meaning that if 2 or 
3 of its neighbors are on, the bulb will itself turn on; otherwise it will turn off. How will such a 
system behave when the electricity goes on? Kauffman found that two patterns of behaviour are 
possible; ordered (linear) and disordered (chaotic).  

Later on, a third regime was discovered by Langton (1990); a transition point between order and 
chaos. Behaviour at this point was different enough to be categorized as a third regime; they were 
among the firsts who called this transition point edge-of-chaos (Section 2.5.3 and Section 3.3.8). 
The three regimes are: 



 

DRDC Valcartier TM 2006-453 19 
 

 
 

• (1) Frozen or periodic. K is small (K = 1) in Kauffman’s experiment. Some lights flip on 
and off a few times, but most of the array of lights will soon stop twinkling. 

• (2) Complex. K is around 2. Complex patterns appear, in which twinkling islands of 
stability develop, changing shape at their borders. 

• (3) Chaotic. K is large. Bulbs keep twinkling chaotically as they switch each other on and 
off. 

They found that networks of connected lights that are either frozen or chaotic cannot: 1. transmit 
information; and 2. they cannot adapt. But Langton discovered an interesting property of CASs 
operating at the edge-of-chaos; a complex network—one that is near the “edge of chaos”—can 
do both Langton (1990). 

More recently, mathematician Dr. Stephen Wolfram carried out another type of experiment in an 
attempt to clarify the dynamic of complex behaviour in cellular automata25 (Wolfram 2002). 
Lansing (2003) gives a description of this experiment: A simple two-dimensional cellular 
automata begins with a line of different-colored cells on a grid or lattice. Each cell checks its 
own color and that of its immediate neighbors and decides on the basis of a rule whether to turn 
color in the next line of the grid. It is equivalent to a two-dimensional NK model where the K 
inputs are restricted to the cell’s closest neighbors on the lattice.  

Wolfram identified four classes of behaviour out of his experiment; they are: Class 1: Fixed; 
Class 2: Periodic; Class 3: Chaotic; and Class 4: Complex. Langton (1990) then developed a 
measure (the lambda parameter is shown in Figure 7) which relates the nature of the governing 
rules (between cells) to the overall behaviour of the cellular automata. He identified that 
Wolfram’s Class 3 corresponded to Langton’s complex regime. It lies between the periodic 
and chaotic regimes, at the edge-of-chaos. Used methods to study complexity in cellular 
automata differ from those used to investigate NK models but it is interesting to see that each of 
them provides intuitive examples of similar complex behaviour at the transition point between 
linearity and chaos.  

 
Figure 7 Langton’s behaviour classification for cellular automata (Flake, 1998). 

                                                      
25 The experiment is made of computer-based simulations of a discrete dynamical system that is composed 
of an array of cells, each of which behaves like a finite-state automaton. All interactions are local, with the 
next state of a cell being a function of the current state of itself and its neighbors (Flake, 1998). 
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Dynamical regimes are called state domain in this document. As shown in Figure 8, they are: 
linear State Domain (left of X axis); complex state domain (middle of X axis); and chaotic 
state domain (right of X axis).  

Following lines present an overview of some differences between each domains (please refer to 
Figure 8).  

• State. The states of systems evolving in linear state domain are pre-defined at their 
conception; they are finite and fully controlled. Systems evolving in the complex/chaotic 
State Domain have an/a increased/huge number of states; they are hard/impossible to predict 
at mid and long time scales. 

• Order. Elements and structures of a system belonging to linear state domain are and remain 
ordered; they normally keep this state all along the operation of the system. Systems in the 
complex state domain are still ordered but these systems are able to self-organize their 
elements and then self-adapt in function of internal and external changes26. The order within 
systems belonging to chaotic state domain is hard to observe as it is continually and rapidly 
changing with respect of time.  

• Linearity. The linearity of systems decreases rapidly from linear state domain to chaotic 
state domain. Systems evolving in the complex state domain already show strong non-
linearity. 

• Input versus output. Small perturbations of inputs to a system will have different effects 
depending on the state domain the system evolves. Linear systems will not be affected by 
slight variations of their inputs. At worst, they will stop working at the moment input 
variations exceed pre-defined specifications. The situation is different for systems belonging 
to complex and chaotic state domains. Small perturbations of inputs to a complex/chaotic 
system will show different/completely different behaviours. The more the system evolves 
near the chaotic state domain the more it becomes sensible to perturbations. 

• Control. If linear systems are relatively easy to control, complex and chaotic systems are 
not because of their complex nature. Changing only one element within a complex system 
may for instance induce hard to predict global behaviour at mid and long terms. Chaotic 
systems are impossible to control, they are completely unpredictable. 

• Determinism: as mentioned in the definition of system and complex systems, all systems 
that are studied in this work behave deterministically; random component are not 
considered27. 

                                                      
26 Possibly by changing their composition and/or structures. 
27 Actually, adding randomness does not help understand complexity aspects or complex phenomena. 
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Figure 8 The Three state domains. 

The following Sections give an overview of each state domain. More in depth descriptions of 
properties and phenomena related to complex and chaotic state domains are given in Chapter 3. 

2.5.2 Linear state domain  

A working civilian radio is an example of linear system when it is considered as a whole. It is 
designed to work and being managed in pre-determined number of ways28, which can hardly be 
changed. Its elements always behave and work approximately in the same ways. It has a limited 
number of states and its elements are rigidly structured and have predefined roles. Linear systems 
behaviours are easy to predict at all time scales. For instance, raising the volume of the radio in 

                                                      
28 They are usually defined and described in the system’s specifications. 
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any proportion will always raise the number of decibels in the same proportion. They do not offer 
a great amount of flexibility to different contexts and they are not capable of self-organization and 
self-adaptation. 

2.5.2.1 Approaches for studying linear systems 

The theory and approaches that are often used to study and control linear systems originate from 
the general theory of systems. Broadly speaking, reductionism for instance consists in: 1. 
decomposing the system under study into its constituent elements; 2. studying each element 
separately and considering links and interrelationships between elements as pre-determined and 
fixed; and finally 3. gathering back of results from step 2 into a whole. This methodology is 
appropriately suited for linear systems because of their pre-fixed functions, composition, structure 
and interactions; elements are assembled linearly. 

2.5.3 Complex state domain  

Shelter (2002) calls the complex state domain a zone of creative adaptability. It is at the edge-of-
chaos that emergence happens. It is specifically at this transition point that CASs are more robust, 
able to adapt, tolerant to faults, scalable, and flexible. Freniere et al (2003) give some examples of 
systems evolving in this domain: between the extremes of complete linear simplicity and complete 
chaotic simplicity lies a wide range of complex systems, including those containing most targets 
of military significance. Examples include electrical distribution grids, transportation networks, 
communications architectures, command and control organizations, naval missile exchanges, and 
ground combat.  

2.5.3.1 Description 

A shift of paradigm happens when systems get higher levels of complexity. This happens when: 
their number of elements is raised; when these elements have more choices regarding the actions 
they can take; when elements become more able to communicate and collaborate in a more 
intricate manner; when elements become able to dynamically self-organize in function of the 
environment; etc. This shift of state brings systems into the complex state domain; near or at the 
edge-of-chaos. 

New global properties or phenomena (such as emergence) arise from CASs operating in this 
domain; they are hard to predict. These complex phenomena originate from intricate interactions 
between elements of CASs. For instance, the brain’s consciousness is an emergent phenomenon. 
It comes from concurrent intricate interactions of a high number of brain cells. Global properties 
result from the aggregate behaviour of individuals (Chan, 2001).  

Most of the time, there is not an operational central control or planning that dictates elements 
actions they must take; the control, intelligence and decision making tend to be distributed 
throughout the system. For instance, there is no cell within a developing embryo, nor a master 
neuron in the brain. The overall behavior observed in the economy is a result of the countless 
decisions made by millions of individual people. Any coherent behavior in a system arises from 
competition and cooperation among the agents themselves (Chan, 2001).  



 

DRDC Valcartier TM 2006-453 23 
 

 
 

Near the edge-of-chaos, order often results from non-linear feedback interactions between 
elements of CASs; each element goes about its own business29. Ilya Prigogine's work on 
dissipative structures in 1977 showed for instance that the second law of thermodynamics - 
systems tend toward disorder - was not true for all systems. In another work, Kauffman showed 
that it is possible for the order of new survival strategies to emerge from disorder through a 
process of spontaneous self-organization (Chan. 2001).  

Complex systems having their state lying within the complex state domain are showing enhanced 
robustness, adaptability, fault-tolerance, scalability, concurrency and flexibility. The price for 
such qualities is: low predictability, difficulty of control, harder engineering and design, possible 
accidents and errors (Fromm, 2005b) and maybe performance (Section 3.4; Figure 28). 

2.5.3.2 Complexity theory 

In the last two decades, scientists have come to the evidence that the world is made of complex, 
dynamical and non-linear systems that cannot be understood and resolved anymore through linear 
approaches like reductionism (Edmonds, 1999; Calhoun, 2004). These non-linear systems are 
showing behaviours and types of orders that are hard to predict, even when they are governed by 
simple rules. It can be seen in the scientific literature that the study of these systems is becoming 
the foundation of an entirely new conception of science: complexity theory30 (Edmonds, 1999) or 
the complex systems science (Shetler, 2002).  

According to De Wolf and Holvoet (2005), there are actually four central schools of research that 
influence the way complex behaviour of complex systems is studied: 

• (1) Complex adaptive systems theory (Santa Fe Institute; SFI, 2006). Some important 
contributors to the institute are: George Cowan (founder); Murray Gell-Mann (winner of the 
Nobel Prize in physics); Stuart Kauffman; John Holland; and Kenneth Arrow (a Nobel 
laureate in economics). SFI’s members sought to pursue a common theoretical framework 
for complexity and a means of understanding the spontaneous, self-organizing dynamic of 
the world (Dodder and Dare, 2000). In this approach, complex systems are seen as having 
similarities that can be studied and exploited in order to ease the finding of underlying 
principles of a unified complexity theory (Holland, 1996). People at the SFI often call 
complex systems complex adaptive systems (CAS). The CAS movement appears to be 
predominantly American, as opposed to the European “natural science” tradition in the 
area of cybernetics and systems. CAS is distinguished by the extensive use of computer 
simulations as a research tool, and an emphasis on systems, such as markets or ecologies, 
which are less integrated or “organized” than the ones studied by the older tradition (Chan, 
2001). Complexity theory has thus forged bonds between researchers from across the 
spectrum of disciplines in natural and social sciences, military and in engineering. For 
instance, Beech (2004) states that: alternative theories that bring into focus networks and 
dynamic systems may help inform a US strategy to defeat global terrorism. It is shown by 
this author (and other such as Marion and Uhl-Bien, 2002) that terrorist groups show strong 
evidences that they can be considered as CASs. They refer to alternative theories 

                                                      
29 Elements have a relative autonomy and independence but also shared common interests. 
30 The reader is invited to see Waldrop (1993) or Lewin (1993) for an early popular introduction of 
Complexity Theory. 



 

24 DRDC Valcartier TM 2006-453 
 
 
 

(complexity theory) as means to address features of terrorism problematic. The SFI 
approach will be used all along this document. 

• (2) Nonlinear dynamical systems theory and chaos theory. This school promulgates the 
central concept of attractors. One kind of attractor is the so called strange attractor that the 
philosopher of science David Newman classifies as an authentically emergent phenomenon 
(Newman, 1996).  

• (3) The Synergetics school. This school initiated the study of emergence in complex 
systems. They describe the idea of an order parameter that influences which macro-level 
coherent phenomena a system exhibits (Haken, 1981). 

• (4) Far-from-equilibrium thermodynamics. This school was introduced by Ilya Prigogine. 
It refers to emergent phenomena as dissipative structures arising at far-from-equilibrium 
conditions (Nicolis, 1989). 

The New England Complex Systems Institute (NECSI) is another important organization 
dedicated to advancing the study of complex systems. NECSI joins faculty of New England 
academic institutions in an effort to collaborate “outside of institutional and departmental 
boundaries” (Dodder and Dare, 2000).  

CASs are fundamentally different from the kinds of systems with which science and engineering 
have traditionally dealt. Complexity theory states that critically interacting components self-
organize to form potentially evolving structures exhibiting a hierarchy of emergent system 
properties (CALRESCO, 2006). It views CASs behaviour and actions as the result of intricate 
interrelationships between many elements and it refers to these interrelationships or systems as 
complex, because it is impossible to fully understand these systems by reducing them to an 
examination of their constituent parts (Beech, 2003).  

Complexity theory is imposing thus a shift from the traditional analytical thinking (where 
variables are independent) to a more holistic thinking (where variables are interdependent). 
Complex systems must be considered and studied as wholes, rejecting the traditional emphasis 
on simplification and reduction as inadequate techniques on which to base this sort of scientific 
work. Such techniques, whilst valuable in investigation and data collection, fail in their 
application at system level due to the inherent nonlinearity of strongly interconnected systems - 
the causes and effects are not separate and the whole is not the sum of the parts. This does not 
mean that reductionism should be rejected; it means that it should be integrated into a more 
holistic approach. CASs’ related phenomena must be characterised by holistic features (Muller, 
1997; Holt, 2000). 

Holism involves the concurrent consideration of the whole and the parts. Another approach that 
may be used is the middle-out approach. Middle-out is a combination of top-down and bottom-
up approaches. It is useful for studying complex phenomena that involve both top-down and 
bottom-up cause/effect relationships. Emergence is an example of such complex phenomena. As 
it will be shown in Chapter 3, it originates from intricate interactions between elements (at a 
lower level) and it manifests at a higher level, at the level of CAS (bottom-up cause/effect). In 
turn, emergent phenomena (at the level of CAS) influence back elements located at a lower level 
(top-down cause/effect). The middle-out approach considers both bottom-up and top-down 
cause/effect interrelationships.  
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The study of complex systems often involves interdisciplinary works. This is particularly evident 
at the Santa Fe Institute (SFI, 2006). As mentioned earlier, their approach takes into account the 
fact that there exist commonalities between CASs pertaining to any domains or fields. 
Interdisciplinary works will favour the discovery of principles underlying a unified complexity 
theory that will be valid for all CASs (Holland, 1996). 

Finally, it is worth mentioning that the use of concepts of complexity theory may trigger side 
effects. For instance, Shetler (2002) warns that there is still considerable difficulty in identifying 
the right level at which to develop more precise theoretical generalizations with well-specified 
domains of applicability (Cohen, Riolo, and Axelrod, 1998). The utilization of concepts of this 
theory may also pose other problems; resistance may be encountered while trying to apply the 
new theory at enterprise level. Shetler has made a literature review on this subject. She mentions 
that: Members may be wary of unaccustomed CSS (complex system sciences) concepts such as 
self-organization that appear to make managerial control superfluous (Morgan, 1997); planners 
may object to seeing outcomes as unpredictable (Brown, and Eisenhardt, 1998); colleagues may 
feel uneasy that nonlinear outcomes make it hard to trace and assign credit or blame for 
performance (Holland, 1996, 1998) thus undermining expectations for mutual accountability 
(Axelrod and Cohen, 1999; Tetlock, 1985); leaders may think that edge of chaos/far-from-
equilibrium operation threatens structural stability (Byeon, 1999), or fear that ongoing complex 
adaptive alterations are precarious (Brown and Eisenhardt, 1998), and so on. Such resistance to 
displacement, arising from embedded structural customs, shared beliefs, and collective habits can 
be seen in CSS terms of system attractors (Section 2.6.7). This last citation suggests (like Senge, 
1994) that organizations can be considered and studied as complex systems. 

2.5.4 Chaotic state domain  

Systems having their state lying in chaotic state domain are showing very high level of 
complexity; they have passed the edge-of-chaos threshold (Langton, 1990).  

A degenerated social manifestation can be seen as an example of chaotic system, the weather is 
another example. The order within such systems is present but it evolves or changes constantly 
and rapidly. Chaotic systems are highly non-linear, and their behaviour cannot be predicted at 
mid and long time scales. Actually, the analysis of data representing chaotic behaviour shows that 
they pass all tests of randomness (Williams, 2001). Another important characteristic is that small 
variations of inputs to these systems lead to completely different outcomes or behaviour.  

2.5.4.1 Description 

Chaotic systems are briefly described in this Section by listing their main characteristics. The 
following lines come from Williams (2001) and CALRESCO (2006). Note that some of the 
characteristics refer to the logistic equation experiment (Section 2.6.9.1). The reader may refer to 
Williams’ (2001) references for a more detailed description of chaotic systems. 

• Chaos results from a deterministic process. 

• It happens only in nonlinear systems. 

• The motion or pattern for the most part looks disorganized and erratic, although sustained. 
In fact, it can usually pass all statistical tests for randomness. 



 

26 DRDC Valcartier TM 2006-453 
 
 
 

• It happens in feedback systems – systems in which past events affect today’s events, and 
today’s events affect the future. 

• Systems governed by physical laws of deterministic equations can produce regular results 
under some conditions, but irregular or disorderly results under others. 

• It can result from relatively simple systems. With discrete time, chaos can take place in a 
system that has only one variable. With continuous time, it can happen in systems with as 
few as three variables. 

• For given conditions or control parameters, it’s entirely self-generated. In other words, 
changes in other (i.e. external) variables or parameters aren’t necessary. 

• It isn’t the result of data inaccuracies, such as sampling error or measurements error. Any 
particular value of xt (right or wrong), as long as the control parameter is within an 
appropriate range, can lead to chaos (Section 2.6.9.1). 

• In spite of its disjointed appearance, it includes one or more types of order or structure. 
Period-doubling (bifurcation) followed by irregular fluctuations in some case indicates that 
those fluctuations are chaotic (Section 2.6.9.1). 

• The ranges of the variables have finite bounds. The bounds restrict the attractor to a certain 
finite region in phase space (Section 2.6.6). 

• Details of the chaotic behaviour are hypersensitive to changes in initial conditions (minor 
changes in the starting values of the variables) (Section 2.6.9.1). 

• A random-like or even chaotic evolution doesn’t have to be the result of a random 
operation. Instead it can arise by design. 

• Chaotic data is both random and deterministic. 

• Forecasts of long-term behaviour are meaningless. The reasons are sensitivity to initial 
conditions and the impossibility of measuring a variable to infinite accuracy. Description of 
chaos as random-like behaviour is mostly justified. Where reliable long-term predictions 
are impossible, a statistical approach may be the only viable alternative. 

• Short-term predictions, however, can be relatively accurate. 

• The Fourier spectrum is “broad” (mostly uncorrelated noise) but with some periodicities 
sticking up here and there. 

• Information about initial conditions is irretrievably lost. In the mathematician’s jargon, the 
equation is “noninvertible”. In other words, we can’t determine a chaotic system’s prior 
history. 

• The phase space trajectory may have fractal properties. 

• As a control parameter increases systematically, in initially non-chaotic system follows one 
of a select few typical scenarios, called routes, to chaos (Section 2.6.9.1). 

• The transition to chaos is preceded by a very high number of bifurcations. These 
bifurcations preceding the transition to chaos are characterized by the Feigenbaum number. 

• It is not possible yet to identify, in advance, the particular path that a dynamical process 
will follow in going to chaos. 
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2.5.4.2 Chaos theory 

A possible relation between complexity theory and chaos theory is given by Shetler (2002). This 
author unifies both theories into a unique complex systems science (CSS). The CSS makes use of 
both the complex and chaotic models into one science because they both complement each other. 
The CAS model epitomizes the integration of nonlinearity and emergence (Kauffman, 1993, 1995; 
Holland, 1996, 1998) and offers insights into organizational innovation and change (Poole, Van 
de Ven, Dooley, and Holmes (2000); Weick and Quinn (1999); Van de Ven and Poole (1995). 
Chaos theory models that are self-organized around constructs such as attractors offer useful 
insights into collective interactions as the generating mechanisms of self-organizing networks 
(e.g., Contractor, Whitbred, Fonti, Hyatt, O’Keefe, and Jones, 1998). 

Approaches and methods used for studying complex systems may be used with other more 
specialized means to study chaotic systems. The review of chaotic systems’ characteristics 
suggests that additional means are needed for being able to address the random aspect of chaotic 
systems. Probability analysis, Fourier analysis, extended phase space and attractor analysis are 
few examples proposed by Williams (2001). 

2.6 Basic toolkit for studying complex systems 

This Section introduces some notions, tools and other means that appear to be useful for the study 
of CASs. They are presented as a toolkit in this document. 

2.6.1 The Concepts of level, scale and resolution 

Concepts of level, scale and resolution are often used in complexity theory to study complex 
phenomena and systems (examples of studies involving the multi-scale complex systems analysis 
are (Section 2.6.3): Bar-Yam, 2003d; 2004b; and 2004d).  

A brigade in operation is proposed as an example of complex system (Figure 9). The Brigade is 
made of battalions, each of which in turn is made of a number of companies, and so on. This 
system may be studied using different perspectives or points of view; level, scale and resolution. 
Each of them is described in the following lines. 

• The level31. One may study the brigade at a specific level; for instance the company level as 
shown in Figure 9. In this example, companies will then be the basic objects used to study 
specific features pertaining to the brigade. The concept of levels allows for instance the 
study of complex phenomena, which are level dependent. Emergence is an example of these 
phenomena; using Figure 9, emergence may manifest at one specific level (company). 

• The scale. The scale complements the level. It allows the possibility to specify a number of 
supplementary levels (up and/or down to the level) in order to study level dependant 
complex phenomena. In the example shown in Figure 9, the scale covers one level down to 
the company level; emergence at the level of company results from intricate interactions of 
elements at the immediate lower level (platoon). 

                                                      
31 More detailed description can be found in Bahill et all (2005). 
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• The resolution. The resolution allows the specification of the thinness of details that is 
needed to appropriately study complex systems and phenomena at a specific level, using a 
specific scale. The resolution is different from the scale in that a study involving a fixed 
level and resolution may need a resolution that would take into account some essential 
details lying outside the range specified by the scale. In Figure 9 for instance, the soldier 
resolution was chosen to study the brigade at the level of company. The study of emergence 
that manifests at the level of company from interactions of elements at the level of platoon 
may involve the consideration of some details that have the thinness of soldier level.  
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Figure 9 The Concepts of level, scale and resolution. 

2.6.2 Time-scales within complex systems 

Another important characteristic of CASs is noted in this short Section. The dynamical regimes at 
two adjacent levels of one CAS may be different; they may operate at different time scales.  

Holland (1996) gives an example of this in his Two-tiered models and in his CCC (Civilian 
conservation corps) example. Activities at a specific level of a CAS that produce complex 
behaviour at the adjacent higher level show a faster dynamic or dynamical regime than the one 
found at the higher level, which show slower dynamic. 

2.6.3 Multi-scale complex systems analysis (MCSA) and complexity 
profile 

The concept of MCSA was introduced and used by Dr. Bar-Yam to study military complex 
systems in their environments and contexts (Bar-Yam, 2003d; 2004; 2004b; 2004c; 2005 among 
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others). MCSA provides a formal framework for understanding the interplay of scale and 
complexity in complex systems and their capabilities in the face of challenges. It is based upon the 
concept of complexity profile, which characterises the dependence of complexity on scale.  

A specific scale of a CAS is defined by Bar-Yam as the number of consecutive levels (Section 
2.6.1) within which a number of elements are acting together in a strictly coordinated way. An 
observer studying elements of a scale might not be able to see or study elements pertaining to 
other scales due to observational limitations. Consecutive scales may show different degrees of 
complexity at each scale; the whole spectrum is called the complexity profile of the CAS. This 
dependence of complexity as a function of scale reveals the capabilities of the (military) force at 
each scale of a potential encounter, from the smallest to the largest. 

As an example, for a military force in operation the complexity profile roughly corresponds to the 
number of elements at each level of command32 and it is function of the degree of independence 
of elements in face of their immediate higher-level hierarchical commander33. The more this 
independence is high at a specific level, the more there are choices for the finding of solution to 
complex problems and thus, the more the complexity of the CAS at this level is high34.  

Dr. Bar-Yam uses these concepts to show that the scale and complexity necessary to overcome a 
particular enemy force is dictated by the scale dependent structure of the enemy force itself (the 
degree to which its forces are aggregated), and the scale dependent structure of constraints in the 
battle space (terrain, etc.), as well as the scale dependent structure of objectives, including 
objective constraints (political, etc.). 

2.6.4 Power law distribution 

Numerous natural and man-made phenomena are distributed according to a power-law 
distribution. A power-law implies that small occurrences are common, whereas large occurrences 
are rare; it applies to CASs when large is rare and small is common. The distribution of 
individual wealth is a good example where there are a very few rich men and a lots of poor 
people. A familiar way to think about power laws is the 80/20 rule: 80% of the wealth is 
controlled by 20% of the population (Wikipedia, 2006).  

Per Pak’s sandpile experiment is another example showing the occurrence of the power law for 
complex systems (Bak and Chen, 1991; Bak, 1997). Lansing (2003) describes the experiment: If 
you patiently trickle grains of sand onto a flat surface, at first the sand will simply pile up; but 
eventually the pile will reach a critical state. At that point, Bak found that the size of the 
avalanches triggered by dropping another grain of sand follows a power law distribution: The 
size of avalanches is inversely proportional to their frequency. The power law states that there 
will be many little avalanches, and few large ones. Such sandpile’s regime lies in the complex 
State Domain; at the edge-of-chaos. 

                                                      
32 In this example, scales of the complexity profile correspond to levels of command and control. 
33 For instance: how independent the individuals are within fire teams, how independent fire teams are 
within squads, how independent squads are within companies and how independent companies are within 
battalions. 
34 This is related to Holland’s concept of building blocks that may be recombined in a different manner in 
order to find novelty or new solutions (Sections 3.3.3). 
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Newman (2005) reviewed some of the empirical evidence for the existence of power-law forms 
and theories to explain them. He gives a more formal definition of the power law: When the 
probability of measuring a particular value of some quantity varies inversely as a power of that 
value, the quantity is said to follow a power law, also known variously as Zipf's law or the Pareto 
distribution. Power laws appear widely in physics, biology, earth and planetary sciences, 
economics and finance, computer science, demography and the social sciences. Examples are: the 
distributions of cities varies inversely of their size, the occurrence of earthquakes varies inversely 
of their magnitude, etc. The origin of power-law behaviour has been a topic of debate in the 
scientific community for more than a century.  

2.6.5 The Law of requisite variety 

Bar-Yam’s (2003d) description of this law is integrally reproduced in this Section. The Law of 
Requisite Variety provides a quantitative expression relating the complexity of the environment, 
the complexity of the system and the likelihood of success of the system in performing a particular 
function for which it is designed. It states: The larger the variety of actions available to a control 
system, the larger the variety of perturbations it is able to compensate [18] (35). Quantitatively, 
it specifies that the probability of success, P, of a well adapted system in the context of its 
environment is decreased by the complexity of the environment C(e) and increased by the 
complexity of its actions C(a) according to the expression:  

 –Log2(P) < C(e)–C(a).  

Qualitatively, this theorem specifies the conditions in which success is possible: a matching 
between the environmental complexity and the system complexity, where success implies 
regulation of the impact of the environment on the system. The implications of this theorem are 
widespread in relating the complexity of desired function to the complexity of the system that can 
succeed in the desired function. This is relevant to discussions of the limitations of specific 
engineered control system structures, to the limitations of human beings and of human 
organizational structures. 

The Requisite Law Variety is related to Holland’s concepts of building blocks that can be 
recombined in different ways in order to find new solutions (Section 3.3.3). 

2.6.6 Phase space – The Playing field 

One way to ease the understanding of dynamic of complex systems is to graph the chronological 
evolution of their features or properties. The first kind of graph that can be used is the two-
dimensional time series. Time series consist of plotting the values of a variable (on the Y axis) in 
function of evolving time (the X axis). Depending on the length of the time plotted, they may 
produce wide graphs (long X axis); they may be not practical for analysing huge sets of data. 

Another (more practical) way of studying behaviour of complex systems is to use phase space 
graphs (Williams, 2001). These graphs complement time series by providing a different view for 

                                                      
35 Ashby, W. R., 1957. An Introduction to Cybernetics. Chapman and Hall, London. 
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understanding the evolution of systems. As it will be shown in the following sections, they also 
provide additional means for studying features and phenomena of CASs.  

Phase space graphs may take two forms; standard phase space and pseudo-phase space.  

2.6.6.1 Standard phase space 

Williams (2001) defines standard phase space as: an abstract space in which coordinates 
represent the variables needed to specify the state of a dynamical system as a particular time. On 
a graph, a plotted point neatly and compactly defines the system’s condition for some measuring 
occasions, as indicated by the point’s coordinates (values of the variables). He gives a simple 
illustration of a standard phase space by plotting a baby’s height (on the Y axis) against its weight 
measured at the same time (on the X axis) at different times. This plot shows patterns that are 
function of the dynamical system (the growth of the baby). The linking of these chronological 
points shows temporal evolution of the system; the line is called trajectory. Trajectories are 
called orbits when they are closed. An important fact about trajectories is that each of their points 
is partly a result of the preceding point; the feedback (Section 3.3.9). This is an important feature 
for the study of CASs; their state at an instant (t) depends on past states (t-1, t-2, etc)36. The 
trajectory is a neat, concise geometric picture that describes part of the system’s history 
(Williams, 2001). True random dynamical systems would show trajectories that would randomly 
cover the whole phase space (erratic-like trajectories; Williams, 2001). 

Trajectories, trajectory pattern and their boundaries in the phase space depend on initial 
conditions, environment, contexts and other conditions. Williams (2001) mentions on this: The 
phase space is a world that shows the trajectory and its development. Depending on various 
factors, different trajectories can evolve for the same system. The phase space plot and such a 
family of trajectories together are a phase space portrait, phase portrait, or phase diagram. The 
phase space for any given system isn’t limitless. On the contrary, it has rigid boundaries. The 
minimum and the maximum possible values of each variable define the boundaries.  

The baby’s example above has produced a two-dimensional phase space but other CASs showing 
high degrees of complexity may involve graphs having many dimensions.  For instance, CASs 
may involve a high number of variables that should be concurrently taken into account in the 
phase space. This would produce phase spaces having a number of dimensions higher than three; 
making them hard to plot on a regular two-dimensional paper. In this case, one option consists in 
restricting phase space analysis to three dimensional graphs using different combinations of 
variables. The analysis of such n-dimensional patterns in phase space can also be made by 
mathematical methods (Williams, 2001).  

2.6.6.2 Pseudo (lagged) phase space 

One common term in literature related to complexity and chaos is the one of map. In chaos, a 
map or function is an equation that specifies how a dynamical system evolves forward in time. It 
turns one number into another by specifying how x, usually (but not always) via a discrete step, 
                                                      
36 Recall one particularity of CASs: It happens in feedback systems – systems in which past events affect 
today’s events, and today’s events affect the future. Dynamical complex systems’ state at time (t) is 
dependent on the previous state, or that at time (t-1) (Shetler, 2002). 



 

32 DRDC Valcartier TM 2006-453 
 
 
 

goes to a new x (Williams, 2001). Actually, a map tells us how to pass from a value of a variable 
x at a given instant to its next value x at the next instant (one time step later). Pseudo phase spaces 
allow this. 

Taking the baby’s example of preceding Section, one might be interested by the baby’s weight 
rates of change (or map) in function of evolving time. It is possible to study this system by using 
a one-dimensional pseudo phase space. Points (x, y) on this two-dimensional diagram would be 
the coordinates of baby’s weights at two different times; the X axis would be weights at times t 
while Y axis would be weights at times t + lag. An example of such map is given in Figure 10. 
Each point on this diagram has coordinate of: (Weight(t), Weight(t + lag)); each plotted point 
represents sequential measurements rather than a concurrent measurement. Hence, the graphical 
space for a one-dimensional map is really a pseudo phase space. Pseudo phase space is an 
imaginary graphical space in which the axes represent values of just one physical feature, taken 
at different times (Williams, 2001). 

In that comparison, we call the group Weight(t) the basis series and the group Weight(t + lag) 
values of the sub-series. Lag is a constant interval in time. It specifies the rule or basis for 
defining the sub-series. A pseudo phase space graph such as the one shown in Figure 10 can have 
two or three axes or dimensions. As for standard phase spaces, it is possible to extend the idea to 
more than three dimensions.  
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Figure 10 Pseudo phase space. 

Standard and pseudo phase space diagrams are useful tools for studying CASs, no matter their 
state. Chaotic systems would for instance show random-like behaviours in time series diagrams 
while pseudo phase space diagrams would reveal hidden order in chaos (as it will be shown in 
Figure 23 of Section 3.3.7). Random systems would randomly cover the whole graph without any 
order because the states of a random system at two consecutive time steps are not related; this fact 
shows the main difference between random systems and chaotic systems. 

The reader is invited to see Section 2.6.9.1 for a simple mathematical example involving the 
logistic equation. Interesting observations can be made when this simple system evolves from 
linear to complex, and then to chaotic state domains. 



 

DRDC Valcartier TM 2006-453 33 
 

 
 

2.6.7 Attractors 

Trajectories of complex systems in phase spaces show patterns that are dependent on factors like: 
initial conditions, the kinds and roles of CASs’ elements, kinds of relationships between these 
elements, feedbacks, shared rules, values, beliefs and internal models, etc. Actually, these patterns 
have the tendency to converge toward specific areas in phase spaces with respect of time. These 
areas are called attractors.  

The following lines list some characteristics of attractors. 

• Systems are organized around attractors, which may be defined as: A point to which a 
system tends to move, a goal, either deliberate or constrained by system parameters (laws) 
(Shetler, 2002).  

• These attractors attract all trajectories emanating from some range of starting conditions 
(Williams, 2001).  

• An attractor is a characterization of the long term behaviour of a dissipative dynamical 
system. Over long periods of time, the STATE SPACE (or phase space) of some dynamical 
systems will contract toward this region (Flake, 1998).  

• Attractors determine those states that a dynamic system will tend to adopt over time. 
Depending on the system's initial conditions, it will proceed along a specific trajectory to 
the resulting stable state cycle. It is the presence of attractors in a system that enables its 
self-organization and orderly, rather than purely random, behaviour (Calhoun, 2004).  

• Attractors are sometimes called basin of attraction (Williams, 2001).  

• Attractors act like self-organizing magnets of behavior for agent interaction, analogous to 
the way that individual water molecules, collectively obeying the simple law of gravity, 
appear magically drawn to form a neat whirlpool circling down the bathtub drain (Shetler, 
2002). 

A number of properties for trajectories and attractors have been proposed by Gharajedaghi 
(1999). They are: 

• Hidden in the apparent disorganization is a great deal of structure. The order within CASs 
becomes apparent in phase spaces graphs (see for instance Figure 24 of Section 3.3.6). 

• The phase space trajectory may have fractal properties.  

• The attractors of a system are uniquely determined by the state transition properties of the 
nodes (their logic, rules, internal models, etc) and the actual system interconnections. 

• The range of the variables has finite bounds. The bounds restrict the attractor to a certain 
finite region in phase space. 

• The ratio of the basin of attraction size to attractor size (called here the Self-Organizing 
Factor or SOF) varies from the size of the whole state space (totally ordered, point 
attractor) down to 1 (totally disordered, ergodic attractor).  

• Single connectivity mutations can considerably alter the attractor structure of networks, 
allowing attractors to merge, split or change sequences. Basins of attraction are also 
altered and initial points may then flow to different attractors (Section 2.6.8). 
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• Single state mutations can move a system from one attractor to another within the system. 
The resultant behaviour can change between fixed, chaotic, periodic and complex in any 
combination of the available attractors and the effect can be predicted if the system details 
are fully known (Section 2.6.8). 

• Shetler (2002) adds about perturbation of CAS: Systems (CASs) in equilibrium tend to 
return to the same state when perturbed, falling back into repetition of their accustomed 
patterns. This system propensity to return to its old habit is related by CSS theorists to 
resistance to change (e.g., Goldstein, 1994; Lewin and Regine, 2000). (Resistance to change 
can be interpreted as potential (or gravitational) force surrounding a point attractor that 
keeps the CAS’s trajectory within a specific basin of attraction.) When perturbed beyond its 
ability to return to the original state, an equilibrium system will abruptly shift to a new 
equilibrium. Goldstein (1994) describes this stage-wise change behavior as analogous to 
the traditional organizational development concept of change, i.e., Kurt Lewin’s model of 
force-field shift from one kind of equilibrium to another (Lewin, 1951). 

Williams (2001) describes attractors using the logistic equation experiment (Section 2.6.9.1). He 
adds: 

• If the initial condition (x_min) lies on the attractor, then the trajectory stays there forever 
(never leave the attractor); 

• A trajectory (of CAS in the chaotic state domain) never gets completely end exactly all the 
way onto an attractor. 

Shetler (2002) gives a more concrete idea of the meaning of attractor by making direct links 
between this concept and social sciences systems (which are considered as CASs): Talk of the 
attraction of values leads to the concept of culture (…) the dynamics of an attractor may be used 
a metaphor for the mechanism of spontaneous self-organization of collective behavior patterns in 
a social system. The attractor is primed by the same co-constructed beliefs, shared values, 
developed ideologies, learned stories, etc. that characterize culture formation (Lewin and Regine, 
2000). The same author describes examples of sources of organizational attractors: One way 
organizational attractors are generated is by a leader who creates attraction through 
communication with organization members. It will be shown later in this document that shared 
rules, beliefs, values, internal models and ideologies within elements of CASs are attractor-like 
factors that contribute to create or influence specific patterns of behaviour of CASs. The reader 
may for instance refer to Marion and Uhl-Bien (2002) and Beech (2004) to see their importance 
for Al-Qaeda. 

There exist only few forms or types of attractor. The number varies from one author to another 
but they can all be grouped in two broad classes: non-chaotic attractors and chaotic attractors 
(Williams, 2001). According to this author, non-chaotic attractors are:  

• Point attractors. Static systems.  

• Periodic attractors. Systems that are cycling between two extremes or limits at one 
frequency and that may correspond to Wolfram’s class II of behaviour for cellular automata 
(Wolfram, 2002). 

• Torus attractors. Multi-frequency systems.  
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For non-chaotic attractors, minor perturbations to CAS’s generally do not have significant long 
term effects, neighboring trajectories stay close to one another and their prediction are fairly 
meaningful and useful, in spite of errors or differences in starting conditions (Williams, 2001). 

Chaotic attractors are strange attractors37; a far-from-equilibrium system whose behaviour is 
chaotic, not random, but lies within boundaries or constraints. Chaotic or strange attractors arise 
only after the onset of chaos. They take on many interesting and complex shapes in phase space. 
Unlike non-chaotic attractors, chaotic attractors’ trajectories are highly sensitive to initial 
conditions and small perturbations will result in completely different outcomes (Williams, 2001). 

The following Sections introduce and briefly describe each type of attractor. 

2.6.7.1 Point attractors 

The simplest form of attractor is the point attractor. It is a single fixed point in phase space that 
represents the state of a system that comes to rest as time passes (Crutchfield, et al, 1986) or that 
progress to a state where they no longer vary with time. (…) Once steady-state condition arrives, 
the point attractor is independent of time. It “stays fixed” and the system no longer evolves. In 
phase space, the system is static (Williams, 2001). Examples of such systems involving gravity 
and friction are a bouncing ball that comes to rest, a pendulum and a marble rolling in a bowl and 
coming to rest at the bottom. The pendulum for instance will always reach the same point 
attractor no matter where it began swinging. 

More concretely, Gharajedaghi (1999) mentions that point attractors represent the behaviour of 
social beings in pursuit of their natural instincts – fears, love, hate, desire to share, or self-
interest. With the point attractor in play, a person for instance may invariably be drawn to one 
particular activity or person, or be repelled from another. This is similar to the positive or 
negative poles of electromagnetic energy. 

Depending of the systems’ dynamic, trajectories reach attractor points in three different ways; 1- 
directly to the point attractor; 2- in an alternating fashion, with damped oscillations converging to 
the point; and 3- spirally, with the center of the spiral corresponding to the point.  

2.6.7.2 Periodic attractors or limit cycle 

Periodic attractors represent the next simplest type of attractors. Systems showing periodic 
attractors in their phase spaces have behaviour that oscillate periodically and continuously 
between two attractor values. The duration of the cycle is its periodicity and both attractors act as 
limits for any trajectory that originate from the basin. Periodic attractors are often called limit 
cycle.  

A periodic attractor is stable, it resists to changes or perturbations that are under acceptable 
limits38. Theoretically, repetitions or oscillations can go on forever but in real world, they usually 
slow down and drop after a number of cycles, unless the system receives energy from some 
                                                      
37 So far, only one type of chaotic attractor has been identified. It is also important to say that there is not 
any universal agreement on a definition of a chaotic attractor. 
38 Huge perturbations may of course change the dynamics of the system, modifying its attractor. 
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source. Something else is important: even if we nudge or otherwise perturb the pendulum (the 
system), it tends to return to its standard cycle (Williams, 2001).  

Periodic attractors can be observed in the predator/prey system39; Figure 11 shows the 
corresponding trajectory in the phase space. The respective predator/prey populations cycle up 
and down in relation to each other.  
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Figure 11 Phase space for predator–prey relationships (adapted from Flake, 1998). 

Starting at some point in the cycle, a huge number of preys will eventually induce an increased 
number of predators because the latter have plenty of food (the former) to reproduce. After a 
certain amount of time, the increased number of predators will cause a diminution of the number 
of preys because more predators are hunting the same biomass at the same time (first limit; many 
predators and few preys).  

As this cycle evolves over time, the number of predators will lower because there is not enough 
preys to feed all predators so they can procreate. As the number of predators lowers, the number 
of preys will then be raised because preys will be less hunted by predators and more preys will 
have more time to procreate (second limit; few predators and a lot of preys).  

This cycle goes on forever unless a drastic external perturbation (energy) modifies the system 
beyond its limits, and changes its dynamic. In this case, if the external energy (for instance preys’ 
food) would be missing, the whole cycle would quickly disappear.  

Periodic attractor results thus in oscillations between two or more states (or attractors). More 
generally, it is the pursuit of seemingly opposite but complementary tendencies: stability and 
change, security and freedom, and, in general, differentiation and integration (Gharajedaghi, 
1999).  

                                                      
39 Vito Volterra and Alfred J. Lotka independently noticed in the early nineties the cyclic nature of 
population dynamics. This system is called the Lotka-Voltera system (Flake, 1998). 
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The example above deals with two variables or dimensions (predators and preys) in isolation40. In 
reality, other systems are affecting the predator-prey system. They should be taken into account 
altogether in order to get the whole complex picture of interacting systems. Possible examples of 
these may be: 1- the temperature-salinity system that affects both prey and predator systems; 2- 
the prey’s food system; 3- human fishing activities that are affecting predators; etc. This CAS will 
thus have multi-dimensional phase spaces involving many interdependent variables, yielding 
multi-dimensional periodic attractors.  

A concluding remark regarding the predictability CASs’ behaviour is given by (Calhoun, 2004): 
A network made up of a large number of interacting agents (or elements) can contain many 
attractors, but if they are point or limit cycle attractors they will lead to behavior that is simple 
and predictable, and they will cause the network to achieve an orderly state.  

2.6.7.3 Torus attractors 

Torus attractor is a phase space shape that concurrently accommodates trajectories for more than 
one complex system at the same time. It consists of combining periodic attractors from different 
systems into one composite shape; the torus (Figure 12).  

 
Figure 12 The Torus Attractor (From Wikipedia, 2006). 

The torus is an object in the phase space that looks like the inner tube of a tire, or a doughnut. 
Mathematically the Torus is made up of a spiralling circle on many planes which may, or may 
not, eventually hook up with itself after completing one or more full revolutions 
(http://www.fractalwisdom.com). It is the result of the plotting of two different but interrelated 
systems on the same phase space graph; it brings them together into one compound system of 
four variables. Any single point on the torus is now the unique combination of four variables.  

Such attractors allow for instance the representation of systems’ states that show complex direct 
and indirect interactions between a numbers of interdependent species of an ecosystem. All the 
action – all the dynamics – take place on the surface or shell of the doughnut41 (Williams, 2001). 
Examples of interdependent variables (Section 2.6.7.2) would be: number of predators, number of 

                                                      
40 The isolation of a system from its environment is built upon arbitrary boundaries that are often subjective 
to human perspectives (Section 2.1.3). 
41 The reader is invited to refer to Williams (2001) for a description of the construction of such attractor 
involving two different systems. 



 

38 DRDC Valcartier TM 2006-453 
 
 
 

preys, water temperature, and water salinity. The Torus attractor can be associated with organized 
complexity that repeats itself. Torus attractors exemplify the behaviour of open systems. These 
systems are guided by image (DNA) of what they ought to be, as growth patterns of biological 
systems (Gharajedaghi, 1999). Responsive or goal-seeking systems (Section 2.1.4) show 
behaviour with torus attractors in phase spaces. 

2.6.7.4 Strange attractors 

As mentioned by Williams (2001), some authors like Gregobi et al. (1984) and others make a 
clear distinction between strange and chaotic attractors. In this document, chaotic attractor and 
strange attractor are used synonymously. 

Systems that are evolving within the chaotic State Domain show trajectories that are strange; they 
do not behave like other kinds of attractors. They take on many interesting and complex shapes in 
phase space. Williams (2001) lists a number of features that strange attractors have in common 
with non-chaotic attractors. They are: 

• It’s still the set of points (but in this case an infinite number of points) that the system settles 
down to in phase space. 

• It occupies only certain zones (and is therefore still a shape) within the bounded phase 
space. All data points are confined to that shape. That is, all possible trajectories still arrive 
and stay “on” the attractor.  

• A chaotic attractor shows zones of recurrent behaviour in the form of orderly periodicity. 

• It’s quite reproductible (the shape). 

• It has an invariant probability distribution. 

One of the most famous strange attractor was first discovered in 1963 by Edward Lorenz42. The 
attractor itself and the equations from which it is derived were introduced by this author in 1963. 
While working on a method for modeling and simulating atmospheric conditions, he derived it 
(the strange attractor) from the simplified equations of convection rolls arising in the equations of 
the atmosphere (Wikipedia, 2006). Lorenz plotted the possible configurations of weather system 
variables in three dimensional phase space, ending up with a butterfly-like shape (Figure 13); 
each wing of the shape corresponding to one meteorological mode or system. 

Studies around the Lorenz’s attractor revealed several key characteristics of strange attractors. 
First, strange attractors lead to a much more complex form of order than point, periodic and torus 
attractors. Second and more importantly, dynamical systems containing strange attractors are 
highly sensitive to initial conditions. This sensitivity is a central feature of chaotic systems and 
strange attractors.  

                                                      
42 A good description of Lorenz experiment can be found in Lorenz (1993) and Gleik (1989). 
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Figure 13 Three dimensional view of Lorenz’s strange attractor (Wikipedia, 2006). 

Referring to Lorenz strange attractor, Calhoun (2004) provides some interesting subtleties: one 
need only imagine pairs of adjacent points beginning to move along trajectories on the Lorenz 
attractor. It can be readily seen that depending on where they begin their movement, adjacent 
points can follow trajectories that will take them both to a pattern of activity on the left wing of 
the attractor, both to a pattern of activity on the right wing of the attractor, or each to separate 
patterns of activity on opposite wings of the attractor. These patterns of activity are not limit 
cycles. The wings of the butterfly are thin, but they each contain an infinite number of points. The 
weather characteristics get "trapped" on one wing of the attractor or the other, therefore 
displaying order, but each can occupy any of an infinite number of states on the wing where it is 
trapped, resulting in unpredictability: "This infinite of complex surfaces-- the strange attractor--
embodies a new kind of order. Though the trajectory's motion is unpredictable in detail, it always 
stays on the attractor, always moves through the same subset of states. That narrowness of 
repertoire accounts for the order hidden in chaos and explains why its essence never changes." 
This key characteristic of strange attractors explains a fundamental trait of complex systems--
despite the fact that they are governed by only a few simple, deterministic rules, they display 
behavior that is orderly, yet unpredictable.  

These subtleties are not aligned with traditional deterministic, time-reversible Newtonian view in 
which natural processes can be explained by a linear theory that provides accurate predictions as 
long as precise information is available regarding initial conditions. The popularized terms 
Butterfly Effect43 are often used to emphasize the importance of initial conditions or small 
perturbations on chaotic systems. 

One may ask the question: based on current and past experiments on chaos, how can we define 
chaotic (strange) attractor? Based on recent studies on chaos, Williams (2001) proposes two of 
the best definitions found in scientific literature. They are: 

                                                      
43 Note that the Butterfly Effect idea has nothing to do with the butterfly form of Lorenz strange attractor. 
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• A chaotic attractor is a complex phase space surface to which the trajectory is asymptotic in 
time and on which it wanders chaotically (Grebogi et al. 1982). 

• A chaotic attractor is an attractor that shows extreme sensitivity to initial conditions 
(Eckmann and Ruelle, 1985; Holden and Muhammad, 1986). 

Williams (2001) proposes a list of distinctive properties of chaotic attractors. They are listed in 
the following lines with additional comments from Shetler (2002): 

• A trajectory within the chaotic regime is usually more complex than just a simple, regular 
loop. At some values of the control parameter44, it supposedly never repeats itself (never 
stabilizes). It can be read from Shetler’s (2002) literature review on this subject: This 
strange attractor behavior never quite repeats itself, but its novel expression, nevertheless, 
stays within certain bounds, so it is sometimes called unpredictable but intelligible (Solé 
and Goodwin, 2000), or nonrepetitively repetitive (Marion, 1999; Pascale, Milleman, & 
Gioja, 2000).  

• Trajectories on chaotic attractor do not cross. If they did, then the system could behave in 
very different ways whenever the conditions at the crossing point recur. 

• Two trajectories that at one time are quite close together diverge and eventually follow very 
different paths. That’s because of the sensitivity to initial conditions that characterizes the 
chaotic regime. 

• The phase space path of a chaotic trajectory also does a folding maneuver. That occurs 
when the trajectory reaches its phase space boundary and rebounds or deflects back in its 
plotted pattern.  

• A chaotic attractor has a complex, many-layered internal structure. The reason is that 
“folding” happens over and over again. That internal structure is usually (but not always) 
fractal.  

• The external appearance is elaborate and variable compared to the loops or smooth-surface 
tori of the nonchaotic attractor. To date, many chaotic attractors have been found. Many 
more probably will be discovered. 

• Its dimension doesn’t have to be an integer, such as 2 or 3. The noninteger and usually 
fractal nature of chaotic attractors led Mandelbrot (1983: 197) to recommend calling them 
fractal attractors rather then chaotic or strange attractors. 

Pro-active purposeful systems (Section 2.1.4) may show the emergence of strange attractors over 
time in phase space. More concretely, Strange attractors reflect the behaviour of sociocultural 
systems with choice of ends and means; unpredictable patterns emerge out of stylistic preferences 
of purposeful actors (Gharajedaghi, 1999). In its literature review, Shetler (2002) mentions that: 
the strange attractor is an obvious metaphor for social phenomena” (Mario, 1999, p. 18). 
According to McMaster (1996), individual agents’ actions self-organize themselves into collective 
relationships to attractors, i.e., around the mutual (or shared) rules or values (and/or internal 
models; Holland, 1996) by which an organization operates. Collective stories, shared symbols 
like flags, or even communal schedules, like Daylight Savings Time, or the factory whistle, (or 
Holland’s concept of tag; Section 3.3.15) can create basins of attraction around which tangible 
                                                      
44 Refer to the Logistic equation experiment (Section 2.6.9.1). 
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behavioral patterns (such as rush hour) can be seen to self organize (Herman, 1982; Lissack and 
Roos, 1999). Leaders can supply heroic images, develop symbols, logos, etc., but can neither 
force the formation of attraction, nor easily counteract it once it forms (Lissack and Roos, 1999). 
This dilemma was recognized long before the development of CSS (Complex System Science). In 
a non-CSS discussion of how leaders can lead in a time of chaos, O’Toole (1995) says, “To be 
effective, leaders must begin by setting aside the culturally conditioned ‘natural’ instinct to lead 
by push, particularly when times are tough. Leaders must instead adopt the unnatural behavior of 
always leading by the pull of inspiring values” (p. 11). The recommendation of leading by the 
pull of values resonates with the metaphor of an attractor for organizing behavior. In this way, 
attractors can be seen as underlying the self-organization of culture in complex systems.  

Two important points can be drawn from the last citation. The first one is that CASs’ global 
coherent behaviour is the result of internal self-organizations of their elements. The main drivers 
that guide this self-organization are attractors, which are driven or conditioned by the presence of 
rules, values, beliefs and internal models within each element (and the effect of the environment). 
The more elements are sharing the same set of rules, values, beliefs and internal models, the more 
ability they will have to self-organize and show coherent global behaviour at the level of CASs. 
Actually, their presence within CASs will have the tendency to simplify the patterns of attractors 
found within phase spaces. Broadly speaking, attractors can be seen as one of the factors 
underlying the self-organization within complex systems.  

The second point is that the control of such CASs might not be as easy or direct as it was thought. 
In a complex organization, a leader cannot for instance blindly add or remove one element to the 
structure of a CAS without changing the whole dynamic and raising the risk of global 
instabilities. The reason is that cause/effect interrelationships are highly non-linear and behaviour 
are often hard (when not impossible) to predict. Instead, s/he must use a global strategy that will 
encourage inspiration and willing of each elements of the CAS to work in specific ways. This 
global strategy involves the identification and the understanding of attractors and their sources or 
causes prior to any modification. The organization’s phase space is the playing field for team 
leaders. 

2.6.8 Fitness landscape  

Dr Kauffman was the first to describe the co-evolution of CASs using the concept of fitness 
landscape. The fitness landscape is an n-dimensional function made of many maxima/minima. 
Each of them corresponds to a potential of fitness/unfitness. The higher a maximum/minimum is, 
the greater the fitness/unfitness it represents. Figure 14/15 shows a bi-dimensional/three-
dimensional fitness landscape.  

Chan (2001) compares the time evolution of a CAS with a voyage across a fitness landscape with 
the goal of locating the highest peaks. The system can get stuck on the first peak it approaches if 
the strategy represents a non-negligible incremental improvement. In the case where the system 
changes its strategy, the landscape will undergo some changes. In biology for instance, fitness 
landscapes are made of peaks (maxima) and valleys (minima). Populations typically are looking 
for maxima of fitness. Once a maxima has been found, populations climb until the maxima is 
reached (red trajectory in Figure 14) and remain there unless genetic changes (mutations) open a 
path to a new higher fitness maxima (Wikipedia, 2006). Biological CASs will seek optimal 
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adaptation through the navigation of this landscape climbing the various "peaks" in search of the 
most beneficial adaptive state or highest peak (Calhoun, 2004). 

 
Figure 14 Two dimensional sketch of a fitness landscape (Wikipedia, 2006).  

Using Kauffman’s NK model, the fitness landscape becomes more rugged when the number of 
elements and the number of interactions between them increase for a CAS. A fitness landscape 
with a lot of maxima offers the global system more choices during its voyage (or many 
opportunities for self-organization or for the finding of new solutions), enhancing its flexibility.  

 
Figure 15 Three dimensional sketch of a fitness landscape (CALRESCO, 2006). 

The concept of a fitness landscape has also gained importance in evolutionary optimization 
methods such as genetic algorithms or evolutionary strategies. In evolutionary optimization, one 
tries to solve real-world problems (e.g., engineering or logistics problems) by imitating the 
dynamics of biological evolution. For example, a delivery truck with a number of destination 
addresses can take a large variety of different routes, but only very few will result in a short 
driving time. In order to use evolutionary optimization, one has to define for every possible 
solution “s” to the problem of interest how “good” it is. This is done by introducing a scalar-
valued function “f(s)”, which is called the fitness landscape. A high f(s) implies that s is a good 
solution. The best, or at least a very good, solution is then found in the following way. Initially, a 
population of random solutions is created. Then, the solutions are mutated and selected for those 
with higher fitness, until a satisfying solution has been found (Wikipedia, 2006). 

CASs that are able to change their number of connections (by mutation) are found to move from 
the chaotic (K high; Section 2.5.1) or linear-static (K low) regions spontaneously to that of the 
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phase transition and stability - the self-organizing criticality. The maximum fitness is found to 
peak at this point CALRESCO (2006).  

2.6.9 Routes to chaos 

Williams (2001) calls route to chaos the transition of systems’ state from orderly to chaotic 
behavior. For dynamical systems, this transition may take place in many ways; roads to chaos 
differ from one another by the way in which the periodic regime loses its stability (Williams, 
2001). Roads to chaos are often grouped by type and they make up a rich and intricate landscape 
between order and chaos (Percival, 1989).  

Routes to chaos are important for greater understanding of chaos and for practical purposes. For 
example, identifying pre-chaotic patterns or behaviour might help us anticipate the occurrence of 
chaos. But, these transitions are not easy to detect, nor is it easy to identify, in advance, the 
particular path of the system’s evolution toward chaos. In the worse situation, a system might 
follow one route on one occasion and another on the next (Williams, 2001).  

All the routes to chaos have not yet been discovered. Nonetheless, three of them (1. period 
doubling; 2. intermittency; and 3. quasi-periodicity) are introduced and briefly described in the 
next sections. As the reader will remark, more emphasis has been put on the first one. The reason 
is that it is the object of many studies and it is a good introduction for the others (Swinney, 1986). 

2.6.9.1 Period-doubling 

As mentioned earlier, period-doubling is the most extensively studied type of system transition; it 
is the first road to chaos (Williams, 2001). It happens in fluid convection, water waves, biology, 
electricity, acoustics, chemistry, and optics, to name a few (Swinney, 1986). It shows up for 
instance in transition from stability to turbulence in pot a liquid being heated. The logistic 
equation is used in this Section to show the manifestation of period-doubling. This theoretical 
example is often used to demonstrate how linear systems may become complex and then chaotic 
only by changing its key parameters. The simulation of logistic equation has also the advantage of 
showing many other interesting properties and phenomena of complex systems. 

The logistic equation is a one-dimensional feedback system designed to model the long-term 
change in a species population (May, 1976; Briggs and Peat, 1989). The population is assumed to 
change at discrete time intervals, rather than continuously. Typical time-intervals are a year or 
the time from one breeding season to the next (Williams, 2001). Equation 1 defines the model. 

)1( 11 −− −= ttt xKxx  (1) 

This system is simple and there is no random component. Equation 1 shows that the 
multiplying factor Kxt-1 represents the growth of the system while the factor (1-xt-1) is a limiting 
one, which prevents infinite growths. The population at one specific moment (xt) is determined by 
some fixed proportion of the previous moment’s population (xt-1), where K is a constant called 
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the control parameter; it may reflect the net birth/death rate45. Equation 1 is normalized, data is 
ranging from zero (the minimum possible population) to one (the maximum possible population). 
The word “logistic” has many meanings. One is “provision of personnel and material” (as in 
logistics, the military meaning). Another is “skilled in computation”. In our case Equation (1), 
“logistic” has mathematical meaning and refers to a particular type of so-called growth curve 
(an expression that specifies how the size of a population varies with time) (Williams, 2001).  

A number of simulations of Equation 1 using different values for K were made in order to study 
the route to chaos for this particular system.  Figures 16 to 20 show selected results. Left graphs 
(labelled A) are time series diagrams while right graphs (labelled B) are pseudo phase spaces 
diagrams involving plots of xt against xt-1. Simulations are always carried out the same way:  

• Initial conditions. At the beginning of each simulation, the parameter K is given a value 
that stays constant during this simulation. The system is also given an initial value of x 
(X_min). Each simulation involves the same time increment46. 

• Simulation. The simulation consists in evolving Equation 1 with respect of time using the 
specified initial conditions.  

• Computing results. Successive values of xt are calculated using Equation 1. For each time 
increment, the old value of x (xt-1) is reintroduced in Equation 1 (feedback) in order to find 
the value of x for the current time increment.  

• No random component is introduced in the computation, the system is totally 
deterministic. All calculated values are kept for further drawings and analysis.  

A number of observations can be made from the comparison of Figures 16 to 20. Some of them 
are described in the following lines with particular emphasis on the way the system becomes 
more and more complex, and then chaotic. As it will be shown, route to chaos of this system is 
period-doubling.  

A first important observation can be made from the two first simulations (Figures 16A and 17A). 
Varying the initial condition (X_min) from one simulation to another will produce different 
results. The more the system evolves near the chaotic domain (with increased values of K), the 
more small differences of initial condition will produce huge differences in outcomes (results not 
shown). This is aligned with one of the characteristics of complex systems stating the sensitivity 
of complex/chaotic systems to initial conditions. 

Another important observation can be made from these simulations. Keeping the initial condition 
the same (X_min) and simulating the system with increased value of K shows that results are 
progressively becoming more and more complex, and eventually chaotic (Figures 17A, 18A, 19A 
and 20A). With K = 1, the system’s behaviour converge to a single value or attractor (Figure 
17A). With K = 3.0 (or greater) the trajectory no longer converges to a single value. In this last 
case, Figure 20A shows that it is not possible to count the number of attractors. Behaviour of the 
system appears to be erratic or random. 

                                                      
45 The parameter K is often an environmental or control parameter. It can take on any realistic value, such 
as 0.5, 1.0, or 1.87 (Williams, 1997). 
46 The same value of time increment has been used for all simulations. 
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In another perspective, Figures 17B, 18B, 19B and 20B show that the augmentation of the K 
value (from one simulation to another) progressively details the pattern47 in the phase space. For 
instance, Figure 20B shows a certain amount of order in the phase space, which is not apparent in 
time series diagram (Figure 20A).  
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A) Time series. B) Pseudo Phase Space. 

Figure 16 Discrete simulation of the logistic equation (parameters: K=1.0, X_min=0.1). 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (Unit)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
( t

 )

(k=1.0,  X_min=0.5)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X( t )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X 
( t

  -
 1

 )

(k=1.0,  X_min=0.5)

 

A) Time series. B) Pseudo Phase Space. 

Figure 17 Discrete simulation of the logistic equation (parameters: K=1.0, X_min=0.5). 

 

                                                      
47 This pattern is typical for this system using the same value of X_min. 
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A) Time series. B) Pseudo Phase Space. 

Figure 18 Discrete simulation of the logistic equation (parameters: K=3.0, X_min=0.1). 
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A) Time series. B) Pseudo Phase Space. 

Figure 19 Discrete simulation of the logistic equation (parameters: K=3.5, X_min=0.1). 
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A) Time series. B) Pseudo Phase Space. 

Figure 20 Discrete simulation of the logistic equation (parameters: K=3.8, X_min=0.1). 

Results from all the simulations that were made in this experiment are summarized in Table 3. 
This Table shows that there exist critical values for K (or thresholds) that delimitate modes for 
this system. Each mode has a predefined number of attractors and the system is able to evolve in 
only one mode at a same time.  

For instance, the condition K<3 will always show one attractor (mode 1); the condition 
3<K<3.449499 will always show 2 attractors (mode 2) and so on. The passage from one mode to 
another is called period-doubling48 because the number of attractors is always doubled. Another 
interesting observation is that period-doubling involves smaller increases of the K value as the 
number of attractors gets higher (or K gets higher).   

Figure 21 shows a different view of these results. It plots the possible values of attractors in 
function of K. In the case of K<3 for instance, only one value is possible, it is the attractor 
associated with mode 1. The number of attractors is raised exponentially with the raise of of K. At 
some value of K (for instance 3.569946), the system reaches the chaos state domain; the number 
of attractors is still finite but dramatically high. Some general observations for this experiment 
are:  

• initial conditions (X_min) have strong impacts on the system’s evolution;  

• the value of K has decisive impacts on the system’s state and on onset of chaos;  

• the route to chaos for this system is period-doubling. 

                                                      
48 Other names for period-doubling are: flip bifurcation or sub-harmonic bifurcation. 
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Table 3 Period-doubling for the logistic equation (adapted from Williams, 2001). 

Critical value of K  Number of 
corresponding 

attractors 

Comment 

K < 3 1 All trajectories for a given K lead to the 
same point attractor  

3 <= K < 3.449499 2 The population keeps fluctuating between 
two point attractors 

3.4449499 <= K < 3.544090 4 The population keeps fluctuating between 
four point attractors 

3.544090 <= K < 3.564407 8 The population keeps fluctuating between 
eight point attractors 

3.564407 <= K < 3.5568759 16 … 

… 32 … 

… … … 

Higher than 3.569946 Very high System (Logistic Equation) is in the chaos 
state. Trajectory’s route looks erratic, with 

no apparent order.  

K  
Figure 21 Bifurcation diagram for the logistic equation (Wikipedia, 2006). 
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It should be noted that these simulations have shown a transition to chaos that is entirely self-
generated only from this simple system; no external forces were involved. 

2.6.9.2 Other routes to chaos 

Other routes to chaos are not described in details because they are beyond the scope of this 
document. However, a brief introduction of intermittency and quasi-periodicity inspired from 
Williams (2001) is presented. The reader is invited to refer to this book for a more detailed 
description and further references. 

Intermittency is the second possible route to chaos. It manifests in systems showing periodic 
motion, it does not involve period-doubling. Regular oscillations are interrupted by occasional 
bursts of chaos or noise at irregular intervals. In mathematical modeling, the periodic motion 
(limit cycle) typically shows up under relatively low values of the control parameter. Gradually 
increasing the control parameter brings infrequent chaotic bursts in the time series. These bursts 
set in abruptly, rather than gradually. With further increase of the control parameter, chaotic 
bursts are more frequent and last longer, until the pattern eventually becomes completely chaotic. 

Quasi-periodicity is the third possible route to chaos. Systems showing chaos manifestations 
through quasi-periodicities involve motion or behaviour caused by two or more simultaneous 
periodicities whose different frequencies are out of phase (not commensurate) with one another. 
Since the frequencies are independent and lack a common denominator, the motion never repeats 
itself exactly. However, it can almost repeat itself, or seem at first glance to repeat itself. Hence, 
the name “quasiperiodicity”. It doesn’t show up readily on a time-series graph and usually 
requires more sophisticated mathematical techniques to be seen.  

2.6.10 Similarity between complex systems 

Similarity is a property that is both innate and accumulative to humans (Holt, 2000). It is used by 
human to group, interpret and understand real life objects49, their structures and behaviour.  

The comparison of similar phenomena appears to be fundamental for learning, knowledge and 
thought. It allows the ordering of things into categories and stimulates logical deductions based 
on the assumption that similar causes will have similar effects. Holt (2000)’s article emphasises 
on the fact that similarity can be used to discover patterns in the complexities of the natural 
world. It portrays similarity assessment as a generative technique for retrieving and analysing 
complex environmental and spatial information. It may help researchers describe and explore 
certain phenomena, its immediate environment and its relationships to other phenomena; patterns 
could be unearthed if the cached information which alludes such similarities was analysed. 

                                                      
49 Complex systems would be one. 
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3 Aspects of complexity 

An overview of concepts, properties, mechanisms and phenomena related to complexity theory 
and complex adaptive systems (CAS) is presented in this Chapter. For clarity purposes, only a 
limited number of references are cited all along this text. The reader is invited to refer to Couture 
(2006a) for a more complete list of references regarding presented subjects. 

3.1 Criteria for grouping and structuring notions of 
complexity theory 

Generally speaking, descriptors are key words used to identify, differentiate or describe items in 
an information storage and retrieval system. In this document, descriptors define criteria that will 
be used to group and structure concepts, properties, mechanisms (etc.) of complexity theory into a 
coherent integrated picture. 

The reading of the scientific literature dedicated to complexity theory, chaos and complex 
systems often shows that used descriptors are not exactly the same from one author to another; 
when they are, they are not always used in the same way. This contributes to harden the 
understanding of complexity theory.  

Descriptors listed in Tables 4, 5, 6, 7 and 8 (Annex A) were extracted from the scientific 
literature; they are used to illustrate this problem. Descriptors are: fundamental elements; 
characteristics; typical features; basics of CAS; key concepts; and basic complexity 
parameters. At first glance, these descriptors define criteria that appear to be relatively 
complementary and sufficient for grouping/structuring notions of complexity theory. 
Nevertheless, differences of interpretation of concepts may appear when one investigates how 
these descriptors are used; the semantic of descriptors is not exactly the same from one author to 
another. Some examples from these tables are:  

• The concept of correlation is considered as a fundamental element in Beech (2004) while 
it is considered as a characteristic in CALRESCO (2006). 

• The concept of adaptation is considered as a fundamental element in Beech (2004) while 
it is considered as a typical feature in CALRESCO (2006). 

• The concept of aggregation is considered as a fundamental element in Beech (2004) while 
it is considered as one of the basics of CAS in Ilachinski (1996) and Axelrod and Cohen 
(2001) and as a basic complexity parameter in Holland (1996). 

Another observation can be made from the scientific literature dedicated to complexity theory. 
Often, described concepts, properties, mechanisms (etc.) and complex phenomena do not make 
reference to their domain of applicability. For instance, these descriptions do not make reference 
to CASs’ logical levels (as defined in Section 2.6.1). For instance, the Typical features listed in 
Table 4 to 8 do not make this distinction; terms like adaptation or resilience should refer to the 
system as a whole (a higher level description of the CAS) while terms like redundancy or 
hierarchy should refer to its elements (a lower level description).  
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An effort has been made in this work to identify a structure that would ease the understanding of 
concepts of complexity theory. As it will be shown later in this text, the proposed structure is 
made of a set of four criteria, which take into account important commonalities that can be found 
in the scientific literature. It is based upon an extensive review of literature that was made on 
complexity theory, chaos and complex systems (Couture, 2006a). Figure 22 summarizes some of 
these important commonalities. Emergence of complex phenomena50 is a central topic; it results 
from interactions between CASs’ elements and its description (or modeling) involves the notion 
of level. Two levels are shown in Figure 22: rectangles R1 and R2 correspond to the Level 1 and 
rectangles R3 and R4 to Level 2. Descriptions of CASs are represented by rectangles R1 and R4 
while Manifestations of CASs are represented by R2 and R3. 

Descriptions Manifestations

Features and 
properties of the 

whole CAS

Properties and 
mechanisms of CAS’s 

elements

Emergence
(Complex phenom.)

(Central)

Interactions between 
CAS’s elements

Environment
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R4

R2R1
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Figure 22 Commonalities from the literature dedicated to complexity theory. 

Based on Figure 22, some commonalities are listed in the following points. 

• Boundaries defining CASs are subjective to the observer (Section 2.1.3). 

• CASs should be studied using multi-levelled structures (Holland, 1996).  

• CASs can be described at both levels (Figure 22).  

 Level 1 gives internal descriptions of CASs (R1: elements, internal 
interrelationships, rules, values, beliefs, models, etc).  

 Level 2 gives global descriptions of CASs (R4: performance, fitness, resilience, 
etc.).  

• Properties and mechanisms of CASs at Level 1 (R1) determine the types of interaction that 
happen between elements at Level 1 (R2).  

                                                      
50 Emergence can be considered as “supervenience”; a term borrowed from Psychology (Section 3.4.1.3). 
Description of emergence is given in Section 3.4.1. 
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• Properties, mechanisms and manifestations of CASs at Level 1 (R1, R2) are determinant for 
observed phenomena at Level 2 (R3, R4). 

• Interactions between elements at Level 1 (R2) trigger emergences at Level 2 (R3). 

• Interactions between elements at Level 1 (R2) may also influence mechanisms, features and 
properties at Level 1 (R1). 

• Complex phenomenon at Level 2 (R3) may influence back interactions at Level 1 (R2). For 
instance, long term evolution at Level 2 will influence short term activities at Level 1 
(Holland, 1996). 

• The description of the CAS’s environment is not part of the CAS’s description; it lies 
outside the CAS51.  

• Environment influences CASs at Level 1 (through its elements and interrelationships; R1 
and R2). 

• Both levels of CAS may influence its environment (R2 and R3). 

A choice has been made regarding the use of descriptors and criteria in this document52. This 
choice takes into account all described commonalities. A number of four descriptors defining four 
criteria that will be used for grouping and structuring concepts, properties, mechanisms and 
complex phenomenon are proposed in the following lines. They will be called Criterion. 

• Criterion 1: The basic conditions for CASs to exhibit emergence of complex 
phenomena (Level 1; Figure 22). This criterion gathers the minimal set of primary 
conditions that must be satisfied for CASs to show emergence of complex behaviour. Three 
have been identified, they described in Section 3.2. 

• Criterion 2: Properties and mechanisms at the level of interacting elements (Level 1; 
Figure 22). This criterion gathers together properties and mechanisms that are related to 
interacting elements of CASs. Some are described in Section 3.3.  

• Criterion 3: Complex phenomena at the level of CASs (Level 2; Figure 22). This 
criterion gathers together complex behaviour originating from the operation of CASs. Some 
are described in Section 3.4.  

• Criterion 4: Properties at the level of CASs (Level 2; Figure 22). This criterion gathers 
together global properties of CASs. Some are described in Section 3.5.  

Two levels (Figure 22) are used to describe CASs in this document. It is expected that this set of 
criteria will contribute to ease the building of understanding pictures of complexity theory and the 
identification and understanding of interdependencies between theoretical concepts.  

Figure 23 is a conceptual view showing how concepts, properties, mechanisms and complex 
phenomena can be grouped and structured using this set of criteria. Criterion 1 gathers three basic 
conditions53 for the occurrence of complex phenomena; it is central to the operation of all CASs 
(Criterion 1 is represented by inner yellow circle). These three conditions are related to elements, 
                                                      
51 CASs’ boundaries depend on observers’ perspectives (Section 2.1.3). 
52 Details related to this set of classification criteria and descriptors will be given in another publication. 
53 Section 3.2 describes Conditions 1, 2 and 3 of Criterion 1. 
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their types, roles, the interrelationships between them, internal rules, values, beliefs, models, etc. 
Not satisfying this set of three conditions will limit or even prevent the emergence of complex 
phenomena during operations.  

Criterion 2 gathers internal descriptions of CASs; it refers to the description of properties, 
features, mechanisms at the level of elements (Level 1 in Figure 22). Properties and mechanisms 
of elements may influence: 1- interrelationships between elements (Level 1); 2- the generation of 
emergences (Level 2); and 3- global properties of CASs (R4; Figure 22). Criterion 2 is 
represented by outer yellow circle in Figure 23.  

Criterion 1 and Criterion 2 are intimately interrelated and they are not orthogonal. The set of two-
sided arrows crossing the limit between the two yellow circles in Figure 23 depicts 
interrelationships. Some examples of these interrelationships are listed in the following lines. 

• The connectivity between elements of a CAS may have determinant influences on 
Conditions 2 of Criterion 1;  

• Redundancy among elements is related to Condition 1 of Criterion 1;  

• Decentralization of control, intelligence and decision making within CASs is related to 
Condition 3 of Criterion 1.  

Nbr of Elements
Relationships
Shared Rules

1- Nbr of Elements
2- Relationships
3- Shared Rules, 

Values, etc

Aggregation

Variability

Diversity

Coupling

Non-linearity

Decentralized 
control

Dependence on initial conditions, 
sensitivity to perturbations 

Primary Basic 
Conditions

Features, Properties 
and mechanisms at 

elements’ level

Redundancy

Tagging

Results in

System 
evolving at 

the Edge-of-
chaos

Performance
Fitness

Resilience
Robustness

Flexibility
Non-linearity

Others

“Emergence”
Self-Organization
Self-Adaptability
Self-Replication

Self-Repair
Self-Recover

Evolution

Features and properties 
at CAS level

Complex 
phenomena at 

CAS level

Connectivity Give CAS

Influence
back

Building Block

Autonomy
Independance

Coherence

Internal Complexity 
Level

Determinism
Dynamism

Feed back

Flow

Structure

Stigmergy

Human factors

 
Figure 23 Conceptual view of the set of criteria. 

The operation of CASs at the edge-of-chaos is represented by the two cycling arrows in Figure 
23. CASs’ specificities will be determined by conditions and descriptions gathered in Criteria 1 
and 2. As mentioned in sections 2.3, 2.4, 2.5.3.2, CASs are considered similar (at least from a 
theoretical point of view; see SFI). It is the different conditions and descriptions (gathered in 
Criteria 1 and 2) that make CASs different from one another. It seams logical that metrics should 
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capture all important aspects of these conditions and descriptions during operation; the latter are 
at the source of all manifestations of CASs. 

Operations under these specific conditions will make CASs exhibit emergence of complex 
phenomena. Criterion 3 refers to the types of complex phenomena CASs will exhibit (the upper 
green rectangle in Figure 23 lists some of them). They will also provide CASs global properties 
that are observable at Level 2 (R4 in Figure 22); Criterion 4 gathers these global properties (the 
lower green rectangle in Figure 23 lists some of them). 

To our knowledge, this set of criteria supports all past and current works in complexity theory; it 
takes into account concepts, properties, mechanisms and observations made on CASs. Consider 
for instance the following classical text from Waldrop (1992). Each concept (bolded in the 
reproduced text) may be grouped in one of proposed four criteria54: 

Many perplexing questions from a diverse range of disciplines shared four common 
characteristics.  

• First, these questions concerned systems that could be described as complex, meaning they 
have a large number of agents (Criterion 1, Condition 1) that interact with each other (1, 
Condition 2) in a large number of ways (1, Condition 2). 

• Second, in addition to being complex, these systems demonstrate the ability to self-organize 
(3 and 4), meaning that in the absence of a managing or controlling function (1, 
Conditions 1, 2, and 3) they spontaneously develop collective properties (4) and elaborate 
organizations (2 and/or 3). 

• Third, these complex self-organizing systems demonstrate the ability to adapt (3 and 4), or 
actively evolve in response to their environment (3 and 4). 

• Fourth, they demonstrate the ability (4) to avoid either excessive stability (4) or disorder 
(4), existing instead at the "edge of chaos," a balancing point between stability and change 
(1, Conditions 1, 2 and 3) where the system does not remain static (2, and 4), but also does 
not devolve into complete disorder (2 and 4). It is at the edge of chaos that a complex system 
can achieve a paradoxical kind of harmony (3 and 4) in which both self-organization (3 
and 4) and truly novel change (3 and 4) can occur.  

Properties, features, mechanisms and complex phenomena related to CASs are described in the 
following sections using this set of criteria.  

3.2 Basic conditions for CASs to exhibit emergence of 
complex phenomena 

This Section gathers together conditions related to Criterion 1 (Section 3.1). Criterion 1 is made 
of a minimal set of essential and orthogonal conditions for CASs to exhibit emergence of 
complex phenomena55. All conditions having influences on emergence that are considered as 

                                                      
54 Numbers in parenthesis refer to our classification criterion numbers. 
55 Many works have inspired the building of this set. Holland’s works had determinant influences (Holland, 
1992; 1995). 
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secondary importance in this document56 have been removed from this list; they are instead 
captured by Criterion 2 (Section 3.3). This set of primary conditions is: 

• Condition 1. The presence of a number of independent and interrelated elements forming 
CASs. Condition 1 includes composition, structures, roles, etc. Elements may evolve with 
respect of time in function of internal and/or external factors.  

• Condition 2. The presence of intricate interrelationships between elements of CASs. They 
often involve variable links and knowledge of each other. Interrelationships may evolve 
with respect of time in function of internal and/or external factors. 

• Condition 3. The presence of shared57 rules, values, beliefs, and internal models within each 
element of CASs. A set of rules that is shared by many elements of a CAS may represent an 
important attractor (Section 2.6.7) that will act as a driver for the whole CAS. Shared rules, 
values, beliefs and internal models will contribute to provide CASs global coherent and 
oriented behaviour. They may also evolve with respect of time. 

These three conditions appear in many major works dedicated to complexity theory but it seems 
that there is not an agreement on one definitive list of conditions. Holland (1992) for instance lists 
some common of properties that are shared by all CASs. They are reproduced in the following 
lines with references to the set of three conditions58. 

• CASs incorporate large numbers of parts (1) that are undergoing a kaleidoscopic array of 
simultaneous nonlinear interactions (2 and maybe 3). The non-linear interactions between 
elements of CASs make the whole greater (more important or useful) than the sum of parts.  

• It is the aggregate behaviour of the whole system that is of interest (1 and 2). Using the 
examples of Government economic statistics influencing the plans of individual businesses 
in an economy to note that the aggregate behaviour often feeds back to the individual parts 
modifying their behaviour (3). 

• Interaction between the parts of the system evolves over time (2 and maybe 3) as the parts 
adapt in an attempt to survive in the environment provided by the other parts. Elements are 
facing perpetual novelty, and the CAS typically operates far from a global optimum or 
equilibrium.  

• Complex adaptive systems anticipate (Criterion 3). Holland sees elements as developing 
rules (2 and 3) that become components of a model that anticipates the consequence of 
response. Description of this process is also described in Holland (1996).  

The three conditions of Criterion 1 also enclose Williams’ minimal set of ingredients for complex 
adaptive emergent systems to have complex dynamic behaviours (Williams, 2001). They are 
reproduced in the following lines with references to the set of three conditions. 

• A large number (1) of somewhat similar (1) but independent (3) items, particles, members, 
components or agents (1). 

                                                      
56 Secondary importance properties means here: properties that influence up to a certain point the 
emergence. In this document they are considered less primary for the manifestation of emergence but they 
must be taken into account in the description (or modeling) of emergence. 
57 Shared means that some of these rules for instance are present and used by many elements of the CAS. 
58 Numbers in parenthesis correspond to Conditions of Criterion 1. 
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• Dynamism – the particles’ persistent movement and readjustment. Each agent continually 
acts on and responds (2 and possibly 3) to its fellow agents in perpetually novel ways (2 
and possibly 3).  

• Adaptiveness: (Criterion 3; a complex behaviour) the system conforms or adjusts to new 
situations so as to insure survival or to bring about some advantageous realignment.  

• Self-organization, (Criterion 3; a complex behaviour) whereby some order inevitably and 
spontaneously forms.  

• Local rules (3) that govern each cell or agent59.  

• Hierarchical progression in the evolution (complex behaviour) of rules (2 and 3) and 
structures (1 and 2). As evolution goes on, the rules become more efficient and 
sophisticated, and the structure becomes more complex and larger. 

As mentioned in CALRESCO (2006): The richness of possible behaviour increases rapidly with 
the number of interconnections (Condition 2) and the level of feedback. For small systems we are 
able to analyse the state possibilities and discover the attractor structure (Condition 3). Larger 
systems (Condition 1, 2 and 3) however require a more statistical approach where we sample the 
system by simulation to discover the emergent properties.  

Primary conditions for CAS to exhibit complex phenomena in an environment and context are 
included in the three conditions of Criterion 1. These three orthogonal conditions are interrelated. 
Drastic changes or modifications to the composition or structure of this trio of conditions at Level 
1 {elements, interrelationships, and rules/values/beliefs/internal models} may potentially have 
hard to predict global consequences at Level 2. If the CAS’s dynamical stability has been 
modified by a perturbation, precise readjustments of the whole may be hard to achieve due to the 
presence of strong non-linearity. For instance, eliminating a shared rule within elements of an 
organization may trigger the evolution of its state toward the chaos state domain. Reinserting this 
rule in elements of the system may not re-establish the original state. 

3.3 Properties and mechanisms at the level of interacting 
elements  

This Section gathers properties and mechanisms that are related to Criterion 2 (Section 3.1). 
Properties and mechanisms described in this Section are lying at Level 1 of Figure 22. 

3.3.1 Aggregation  

The aggregation property was queued by Holland (1996). It enters the study of CAS in two 
senses. First it refers to a standard way of simplifying the understanding of complicated systems 
by aggregating similar things into categories and then treat them as equivalent. One possible use 
of categories is as following: categories are well understood building blocks (Section 3.3.3); they 
can be re-assembled in a different manner to understand a new complicated scene, to find new 
solutions to complex problems or to generate novelty.  
                                                      
59 Holland (1995) also describes how rules, values and internal models are used in elements of CASs. By 
evolving “rules” in his model ECHO, he reproduces long term evolution of CASs. 
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Holland’s second sense of aggregation is closely related to the first, but it is more a matter of 
what CASs do, rather than how they are modelled. It concerns the emergence of global complex 
large-scale behaviour from the aggregate interactions of less complex elements. Holland uses the 
ant example to explain this second sense of aggregation. Individual ants have highly stereotyped 
behaviour, and they often die when circumstances do not fit with stereotypes. On the other hand, 
the ant aggregate – the ant nest (or CAS) – is highly adaptive; it is able to face a wide variety of 
hazards.  

Aggregates (or CASs) may in turn act as elements and form a higher-level meta-CAS. At a higher 
level, meta-CASs may in turn aggregate and form a meta-meta-CAS, and so on. When this 
process is repeated several times, we get the hierarchical organization so typical of CAS (Section 
3.3.15). 

3.3.2 Autonomy and independence of elements  

Loosely speaking, an autonomous and independent element is an entity that interacts with its 
environment and acts independently from all other elements. It does not take commands from 
some seen or unseen leader, nor does an independent element have some idea of a global plan it 
should be following (Flake, 1998). It may be for instance independent financially, managerially, 
hierarchically, etc. An independent element does its own things and may be willing (or not) to 
collaborate/cooperate or compete with other elements of a CAS.  

Autonomy of elements is closely related to the decentralization of control that is typical of CASs 
(Section 3.3.11). Taking the example of Internet as a CAS, there is not an operational centralized 
control centre that dictate network devices what actions they must take. Such centers would have 
needed huge amount of resources for being able to achieve its mission; performance would be 
dramatically lowered. Instead, network devices are autonomous and they have the ability to 
decide where to send arriving packets of information. The control (and load of work) is 
distributed among devices of the network. This contributes to increase the performance of the 
whole network (in this example).  

3.3.3 Building blocks  

The concept of building block was queued by Holland; it is related to the concept of aggregation 
(Section 3.3.1). Building blocks are well understood entities that can be recombined into new 
larger-scale entities to favour the discovery of new ideas, solutions, situations, scenes or objects. 
Well known elements of solution may for instance be recombined in many different patterns in 
search of new higher-level solutions to complex problems. This recombination process is at the 
origin of the process of scientific discoveries (Holland, 1996); known and well mastered solutions 
are used in different combinations to find novelties. 

For instance, biological CASs such as the immune system cannot have a complete list of models 
of all possible invaders of the human body. A minimal set of relevant building blocks60 that takes 
into account past evolutions or experiences is needed. When an attack happens, immune system 
recombines known building blocks (or knowledge from past experiences) to find models that best 

                                                      
60 Small-scale models expressing some commonalities between invaders for the human body. 
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fit the unforeseen invader. Recombining relevant building blocks in different compositions and 
structures will eventually result in a model of the invader that is close to the real one. The higher 
is the number of choices of recombination, the higher is the possibility of generating the 
emergence of novelties. This use of building blocks to generate internal models is a pervasive 
feature of CASs (Holland, 1996).  

Elements of a loosely coupled CAS (Section 3.3.5) can be seen as building blocks that can be 
recombined in different ways to find new solutions, exhibit emergence of new phenomena. This 
process of building blocks recombination does not necessarily involve a centralized control or 
intelligence (Section 3.3.11) and may result in different types of internal structure of CASs 
(Section 3.3.15).  

3.3.4 Coherence  

Coherence among element of a CAS refers to a logical and consistent correlation of its elements. 
Coherence spans and correlates the separate lower level components into a higher level unity 
(De Wolf and Holvoet, 2005).  

The correlation of elements (Holland, 1996) may be enhanced by rules, values, beliefs and 
internal models (Section 3.2) if they are shared by many elements of a CAS. For instance, the 
beliefs “American Society is bad” is shared by all members (the elements) of terrorist 
organizations (the CASs). Values, beliefs, and rules make the global behaviour of the CAS more 
homogeneous or coherent (Beech, 2004).  

3.3.5 Coupling of elements  

The coupling of elements of CASs is related to Holland’s (1996) concepts of correlation and 
aggregate (Section 3.3.1).  

Elements of a CAS need to interact for being able to exhibit emergence; parallelism is not enough 
(De Wolf and Holvoet, 2005). Relationships between elements of CASs can be categorized as: 1. 
tightly coupled; 2. moderately coupled; and 3. loosely coupled (Beech, 2004; Marion and Uhl-
Bien, 2002). Tightly coupled elements display high degrees of interdependence such as in linear 
systems. Moderately and loosely coupled elements display low degrees of interdependence (such 
as for CASs evolving near the edge-of-chaos; Section 2.5.3).  

The number of connections between elements is another factor that influences the type of 
coupling between elements of CASs (Section 2.5.1). For self-organization to occur, the system 
must be neither too sparsely connected (so most units are independent) nor too richly connected 
(so that every unit affects every other). Most studies of Boolean Networks suggest that having 
about two connections for each unit leads to optimum organisational and adaptive properties 
(CALRESCO, 2006).   
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3.3.6 Determinism  

As mentioned in Chapter 2, systems studied in this document show behaviour that is exclusively 
driven by deterministic cause/effect relationships61. Systems near chaotic state domain show 
behaviour that appears random; actually they often pass random tests. One way to differentiate 
random data from chaotic data is to plot it on difference plots (Williams, 2001). They may help 
distinguish highly deterministic chaotic (or near chaotic) data from negligibly deterministic 
(“random”) data.  

Figure 24 shows the difference between random and chaotic behaviour. Both time series diagrams 
show the appearance of randomness while phase spaces show order for chaotic data and 
randomness for random data. Feedback is one of the factors that contribute to explain the 
presence of order in Figure 24. Simulations of the logistic equation have shown similar results 
(Section 2.6.9.1). 
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Figure 24 Data from random and chaotic systems (adapted from Williams, 2001). 

3.3.7 Diversity and redundancy  

Diversity may mean: the number of kinds of elements (defined by their roles, expertises, etc.) 
that is found in a CAS. A high diversity of elements of a CAS will provide the latter more choices 
(Section 3.3.3) or flexibility that can be explored. Redundancy within a CAS will contribute to 
raise the number of multi-way chains of causality (building blocks can be recombined in many 
new different ways to find new solutions or novelty). 

It is neither accidental nor random in CASs. If we remove one kind of agent (or element) from the 
system (CAS), creating a “hole”, the system typically responds with a cascade of adaptations 
resulting in a new agent that “fill” the hole. The new agent typically occupies the same niche as 

                                                      
61 Eliminating any random component eases the study of complex systems by removing noise. 
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the deleted agent and provides most of the missing interactions. This process is akin to the 
phenomenon called convergence in biology (Holland, 1996). 

3.3.8 Dynamic, equilibrium and edge-of-chaos 

There are many studies that describe the dynamic of CASs at or near the edge-of-chaos. Edge-of-
chaos state is characterized by stability and instability, competition and cooperation, order and 
disorder, etc (Chan, 2001). CASs evolving at the edge-of-chaos are not in equilibrium; they 
exhibit emergence of complex phenomena in search of new possibilities. In 1989, Nicolis and 
Prigogine said on this subject: when a physical or chemical system is pushed away from 
equilibrium, it could survive and thrive. If the system remains at equilibrium it will die. The “far 
from equilibrium” phenomenon illustrates how systems that are forced to explore their space of 
possibilities will create different structures and new patterns of relationships.  

In another study, Kaufman’s computer simulations demonstrate that: it is possible for the order of 
new survival strategies to emerge from disorder through a process of spontaneous self-
organization. Order may result from non-linear dynamical feedback interactions between 
elements of a CAS where each element goes about its own business (Chan, 2001).  

Chan states another interesting example from medical cardiology; the study of normal and 
abnormal heartbeat patterns. The rhythmic beating of the heart is very orderly but there exists a 
subtle but apparently fundamental irregularity. The interval between heartbeats varies in a 
disorderly and unpredictable manner in healthy individuals, particularly in young children. 
Regularity of the heartbeat interval is a sign of dinger – order in heart dynamics indicates 
insensitivity and inflexibility. Therefore, it can be said that complex adaptive systems function 
best when they combine order and chaos in an appropriate measure. 

The combination of both order and disorder within CASs contributes to improve their flexibility 
to find new solutions or new ways to operate (Section 3.3.3). As opposed to rigid traditional 
linear and hierarchical structures, this flexibility contributes to enhance CASs’ ability to re-
organize and self-adapt to changing environment. The ability of CASs to learn from past 
experiences and to integrate lessons learned for future uses (new found combinations) will 
condition its long term evolution. 

3.3.9 Feedback 

Feedback loops have been known since the time of Cybernetics in the 1950s and 60s (Fromm, 
2005b). Already W.R. Ashby noticed the importance of feedback in coupled systems for forms of 
self-organization which are more than transitions from ‘parts separated’ to ‘parts joined’ 
[Ash62].  

Fromm identifies two purposes of feedback:  

• (1) The feedback loops are used to control CASs. Feedback loops across different levels and 
complicated causal relationships can be found in stigmergy (Section 3.3.14) and swarm-
intelligence [Cam03]. Both are linked to causal relations across the system-environment 
boundary. The agents of the system affect the environment, which in turn influences the 
behavior of the agents (Section 3.6.2). 
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• (2) The feedback signal indicates at the same time the current state of the controlled 
element. An example involving stigmergy is given by Fromm (2005b): Pheromone trails 
control the movement of ants, but they also signal the place of the food and the “foraging” 
state of the colony.  

Flake (1998) describes feedbacks between a CAS and its environment and makes the difference 
between adaptive and non-adaptive systems. In a strictly non adaptive control system there is 
either no extra reinforcement information or the reinforcement is somehow trivially bundled into 
the observable state. (…) In a truly adaptive system, actions that were successful in previous but 
similar states may be discarded in favor of actions that were more successful. In a sense, 
feedback allows for a complex adaptive system to reprogram itself. This is completely in line with 
Holland’s model that uses feedback, credit assignment and building blocks recombination 
concepts to describe CAS adaptation through the discovery of new rules (Holland, 1996). 

Feedback can happen inside CASs (as shown in Figure 23) or between CASs and their 
environments. 

3.3.10 Flows  

This is one of Holland’s basics; it is considered as a property by this author (Holland, 1996). It is 
related to flows over a network of nodes and connectors. The nodes refer to elements of CASs 
and connectors refer to links allowing exchanges of resources between them.  

The triad {node, connector, and resources} exists for all CASs and none of them can be 
considered as fixed with respect of time. They are patterns that reflect changing adaptations as 
time elapses and experience accumulate.  

3.3.11 Hierarchical versus distributed control  

Bar-Yam’s concept of complexity profile (Section 2.6.3) is used to explain some limitations of 
rigid hierarchical command and control (Bar-Yam, 2003d). The key to this understanding is that 
each individual has a limited complexity. In particular, an individual is limited in ability to 
process information and to communicate with others (bandwidth) [12-15]. In an idealized 
hierarchy (Figure 25), only the single leader of the organization can coordinate the largest 
organizational units whose commanders are directly under his/her command. The coordination 
between these units cannot be of greater complexity than the leader. More generally, we can 
state that to the extent that any single human being is responsible for coordinating parts of an 
organization, the coordinated behaviors of the organization will be limited to the complexity of a 
single individual. Since coordinated behaviors are relatively large scale behaviors, this implies 
that there is a limit to the complexity of larger scale behaviors of the organization. Thus, using 
a command hierarchy is effective at amplifying the scale of behavior, but not its complexity. By 
contrast, a network structure (like the human brain) (Figure 25) can have a complexity greater 
than that of an individual element (neuron). While an arbitrary network is not guaranteed to have 
a complexity higher than that of an individual component, it is possible for such a network to 
exist. For high complexity tasks, we therefore consider hierarchical systems inadequate and 
look to networked systems for effective performance. 
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Consider the same example as in Section 3.3.2; packets of data that are traveling over Internet 
from one point to another through multiple network domains. There is not a centralized controller 
that decides in advance (for the whole Internet) the path the packet will take. To make good 
decisions this controller would needs to gather and maintain knowledge on traffic throughout the 
entire network; this is impossible (Fromm, 2005b; De Wolf and Holvoet, 2005). The path is 
rather built or decided as the packet encounter new routers along its route through network 
domains. Each router decides where to send packets based on a number of pre-identified 
local/regional parameters that change over time. Decentralised control is using only local 
mechanisms to influence the global behaviour. There is no central control, i.e. no single part of 
the system directs the macro-level behaviour (De Wolf and Holvoet, 2005). The actions of 
elements are controllable but the whole is not directly controllable. Today’s networks have 
overwhelmed this “top down” approach, and the industry has had to move toward decentralized 
control within networks that make decisions for themselves (ONCE-CS, 2006).  

Figure 25 shows three possible types of network topology: 1. Hierarchy; 2. Hybrid; and 3. 
Network (Bar-Yam, 2005). The exchange of information in hierarchic structures may be less 
effective than in network-like structures for finding novelty. Hierarchies are relatively rigid and 
permanent structures while network allows more choices to find solutions (Section 3.3.3); 
usually, their topology and composition are more variable with time.  

 
Figure 25 Types of organizational structure (Bar-Yam, 2005). 

Complex systems are often qualified as heterarchies as opposed to hierarchies (Jen, 2003). 
Heterarchy means: interconnected, overlapping, often hierarchical networks with individual 
components simultaneously belonging to and acting in multiple networks, and with the overall 
dynamics of the system both emerging and governing the interactions of these networks. Human 
societies in which individuals act simultaneously as members of numerous networks familial, 
political, economic, and professional (among others) are one example of heterarchies. 

It is worth ending this Section by reproducing Bar-Yam’s (2003d) comment on the 
decentralization of command and control: Distributed control is often discussed today as a 
panacea for problems of hierarchical control. While distributed control can help, it must be 
recognized that the concept of “distributed control” does not correspond to a specific control 
structure. Distributing control in and of itself does not lead to effective systems or solve problems 
with hierarchical control. It is the design of specific distributed control structures that are 
effective in specific types of tasks that provides a functional advantage. Still, we now recognize 
that there are many ways to achieve effectively functioning systems where functional behavior 
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and control is distributed and can be said to arise by self-organization, and that the traditional 
perspective that the only alternative to hierarchical control is anarchy is not correct. 

3.3.12 Internal complexity levels 

The internal complexity of CASs may take many complementary but interrelated aspects. Couture 
(Couture, 2006b) lists some formulations and measures that may be used for evaluating many 
aspects of this complexity. The following lines list some examples62. 

• The concept of internal complexity is well described by Jost (2003)63. The complexity of a 
CAS’s internal models depends among other things on the level of complexity of its 
environment. The complexity of CASs’ internal models should be equal or higher than the 
level of complexity of its environment (Bar-Yam, 2005). 

• The number of elements within a CAS and their intricate relationships using more or less 
complicated rules, beliefs and internal models (Section 3.2) are other factors that may 
influence CASs’ internal complexity. 

• The types of coupling between elements of a CAS and their variety may also influence 
CASs’ internal complexity (Section 3.3.7). The complexity increases when the variety 
(distinction) and dependency (connection) of parts or aspects increase in at least one of 
many possible dimensions, including the three ordinary spatial dimensions as well as the 
dimensions of geometrical structure, spatial scale, time or dynamics, or temporal or 
dynamical scale (Heylighen, 1996).  

It should be noted here that there is not an agreement on the list of metrics that should be used to 
measure aspects of CASs’ complexity. This difficulty originates from the fact that this science in 
still in evolution. It may also be caused by our reductionism ways of thinking and addressing 
problems. Some important questions to be answered are: 

• Do we, at this moment, use the best approaches to study complexity aspects of CASs?  

• What is really meant by holism?  

• How should we change our scientific approaches in order to better address complex 
problems?  

• What are the effects on metrics? 

These are important questions (among others) that remain to be answered and this author did not 
find scientific papers that provide complete answers. Once discovered, they will provide strong 
hints on how to measure complexity. 

3.3.13 Human aspects 

Human aspects are of considerable importance for military CASs and complex operations. They 
are factors that contribute to add internal complexity to CASs.  

                                                      
62 Please see also Section 3.6.2 and Section 4.2.1.1. 
63 Section 3.6.2 gives a description of Jost’s definition of “internal complexity”. 
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It is beyond the scope of this document to describe these aspects. The reader is invited to refer to 
Dr. Thagard’s extensive work for supplementary information and links 
(http://cogsci.uwaterloo.ca/Biographies/pault.html). Some aspects that are considered are human 
cognition processes such as: analysis, inference, learning, decision making, etc.  

3.3.14 Non-linearity  

Wikipedia’s definitions of linearity and non-linearity is as follow: a linear relationship is simply 
one whose graph is a straight line, so a linear connection between two things is one in which 
change on one side of the connection induces proportional change in the other. A nonlinear 
connection means that change on one side is not proportional to change on the other (Wikipedia, 
2006).  

Whole branches of mathematics are devoted to finding linear functions that are reasonable 
approximations when linearity cannot be directly established in problem analysis. Most of our 
mathematical tools, from simple arithmetic through differential calculus to algebraic topology, 
rely on the assumption of linearity. (…) Unfortunately, none of this work well for CASs (Holland, 
1996). Holland uses the Lotka-Volterra model as an example to show the importance of 
considering non-linearity in the predator-prey system. 

Non-linearity is a common property to all CASs operating at or near the edge-of-chaos. It reflects 
the fact that CASs are more then the sum of their parts64. Non-linearity is present among 
elements and interrelationships of a CAS; it contributes to make the whole harder to predict. 

3.3.15 Stigmergy 

Stigmergy is a mechanism for indirect communications between elements of CASs. Elements 
modify their environment in such ways that other elements can interpret these modifications (or 
marks) as messages. Wikipedia (2006) mentions on stigmergy: Stigmergy was first observed in 
nature - ants communicate to one another by laying down pheromones along their trails, so 
where ants go within and around their ant colony is a stigmergic system. (…) Stigmergy is not 
restricted to eusocial creatures, or even to physical systems. On the internet there are many 
emergent phenomena that arise from users interacting only by modifying local parts of their 
shared virtual environment. (…) The term is also employed in experimental research in robotics, 
multi-agent systems and communication in computer networks. In these fields there exist two 
types of stigmergy: active and passive. The first kind occurs when a robotic or otherwise 
intelligent "agent" alters its environment so as to affect the sensory input of another agent. The 
second occurs when an agent's action alters its environment such that the environmental changes 
made by a different agent are also modified. 

The importance of the stigmergy mechanism is becoming critical in our contemporary complex 
systems and society (Poussart, 2006a; 2006b). 

                                                      
64 A linear system is subject to the principle of superposition, and hence is literally the sum of its parts, 
while a nonlinear system is not (Wikipedia, 2006). 



 

DRDC Valcartier TM 2006-453 65 
 

 
 

3.3.16 Structure 

CASs tend to exist in many levels of organization, forming structures in which elements at one 
level are the building blocks for elements at the next higher level (Section 3.3.3). An example is 
cells, which make up organisms, which in turn make up an ecosystem (Dodder and Dare, 2000). 
Structure is closely related to the concept of boundary and level (Section 2.1.3 and 2.6.1). 
Boundaries help determine which elements form a CAS, their internal organization defines its 
structure.  

What is an element and what is a CAS is function of the level considered (the perspective). In 
Dodder and Dare’s example, elements are the cells and the CAS is the organ, which contains the 
cells. Using another higher-level perspective, organs may be considered as elements of the 
organism (the CAS). The internal structure of a CAS depends among other things on its type and 
on the type of problems it has to solve. 

Holland (1996) uses the embryogenesis of metazoans65 example to describe typical structures of 
biological CASs. The organism (CAS-L2 in Figure 26) is made of many different organs (CAS-
L1) that in turn are made of many kinds of cells (Units). As cells multiply with respect of time, 
new organisms are formed (CAS L1), which in turn make up an ecosystem at a higher level (CAS 
L2), and so on.  

The structure of biological CASs varies or evolves with respect of time, but also in function of the 
type of organism considered (internal rules; Section 3.2); multiplying cells may become a tiger or 
an elephant depending on the genetic information lying within each cell. Numerical simulations 
of the long term evolution of biological CASs’ involve crossovers and mutations of this genetic 
data (Holland, 1996).  

Man-made CASs have structures that may vary and evolve differently from biological organisms. 
Figure 26B shows an example of such structures. In this figure, blue arrows represent relatively 
permanent interrelationships between elements (the ones that stay rigidly structured or strongly 
coupled) while green arrows represent ephemeron interrelationships (moderately to loosely 
coupled elements). The latter are able to recombine rapidly in function of unforeseen situations or 
problems to solve for instance. Elements linked with green arrows offer more combination 
possibilities (Section 3.3.3) than the ones linked with blue arrows; they offer more choices. This 
raises the chances of finding new solutions to new unforeseen complex problems.  

A hockey coach for instance may use different combinations of players in his trios in order to 
adapt to different adverse teams. Only some combinations will be effective against players of a 
particular team. Using the same combinations of player against all adverse teams would probably 
not be the best strategy. A good coach would instead quickly find and use on-the-fly the optimal 
combinations of players. Optimum combinations correspond to higher potentials in the fitness 
landscape (Section 2.6.8). Figure 26B may correspond to Bar-Yam’s Hybrid Structure (Figure 
25). 

                                                      
65 The process whereby a fertilized egg progressively divides until it yields a mature many-celled organism 
that reproduces by producing another fertilized egg. 
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Figure 26 Two types of internal structures of CASs. 

3.3.17 Tagging  

Tagging is one of Holland’s basics of CASs. It is considered as a pervasive mechanism for 
aggregation and boundary formation in CASs; CASs use tags to manipulate symmetries (Holland, 
1996). This author uses the familiar example of a banner or flag (as tags) to rally members of an 
army or people of similar political persuasion. The header on a message that knits together 
members of a bulletin board or conference group is another example.  

Tags facilitate selective interactions. Holland’s description of tag give a very good idea of the 
inherent mechanism and consequences: Tags allow agents to select among agents or objects that 
would otherwise be indistinguishable. Well-established tag-based interactions provide a sound 
basis for filtering, specialization, and cooperation. This, in turn, leads to the emergence of meta-
agents and organizations that persist even though their component are continually changing. 
Ultimately, tags are the mechanism behind hierarchical organization – the agent / meta-agent / 
meta-meta-agent / … organization so common in CASs (Section 3.3.15). 

3.4  Complex phenomena at the level of CASs 

This Section describes emergence of complex phenomena (Criterion 3; Section 3.1). Emergence 
described in this Section manifests at Level 2 of Figure 22. 
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It is worth beginning this Section by saying that the emergence66 of complex phenomena may 
take many forms. Its manifestation may potentially have strong impacts on CASs’ identity, 
appearance, behaviour and long term evolution. Figure 27 proposes, for this Section only, four 
arbitrary descriptors67 that can be used to group complex phenomena; identity, intentionality, 
evolution and maintenance.  

Al Qaeda can be seen as a CASs that shows complex phenomena such as the ones depicted in 
Figure 27 (Beech, 2004; Marion and Uhl-Bien, 2002). Its elements (individuals and cells of 
people) have the consciousness of being part of this organization; the whole has an identity 
through its elements. This consciousness combined with shared values, beliefs, culture, and 
mental models contribute to insure a level of coherence of the whole (through interactions).  

This CAS has intents, it is able to learn, infer, and innovate in order to pose actions that are 
aligned with common interests and intent. It also has the ability to evolve by self-organizing and 
self-adapting its elements to different situations and environments. Its non-hierarchical interlinked 
distributed structure and internal flexibility contribute to ease its self-maintenance, self-recovery 
and self-repair in case of attacks. 

Terms depicted in Figure 27 appear to be aligned with DeWolf and Holvoet’s (2005) definition of 
emergence. As it will be shown in Section 3.4.1, it is the dynamical interactions68 between 
elements of a CAS (Level 1; Figure 22) that trigger the emergence of global complex phenomena 
(Level 2; Figure 22). Emergence evolves with respect of time and in function of many internal 
and external factors that concurrently act on (or influence) CASs’ elements and interrelationships 
between them. 

                                                      
66 Used definition in this document is the one of DeWolf and Holvoet (2005): A system exhibits emergence 
when there are coherent emergents at the macro-level that dynamically arise from the interactions between 
the parts (or elements) at the micro-level. Such emergents are novel w.r.t. the individual parts of the 
system.  
67 More work is needed to identify the set of orthogonal descriptors that would be sufficient to classify all 
aspects of any type of CASs. 
68 Beech (2004) mentions on interactions between elements of a CAS: Complexity Theory views (complex) 
behaviors as the (result of) constantly changing interdependent interactions. De Wolf and Holvoet (2005) 
add: The parts (elements of CASs) need to interact – parallelism is not enough. Without interactions, 
interesting macro-level behaviours (emergence) will never arise. 
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Figure 27 Types of complex phenomena exhibited by CASs. 

Figure 28 shows some interrelationships between selected CASs’ properties and complex 
phenomena69. Green rectangles (black outlines) represent CASs’ complex phenomena, yellow 
rectangles (yellow outlines) represent properties of CASs’ elements (at Level 1; Figure 22) and 
green rectangles (green outlines) represent features or properties of CASs (at Level 2; Figure 22). 
Arrows with the positive/negative (+/-) signs represent positive/negative contributions of the 
originating rectangle to the destination rectangle. 

It can be seen in this figure that emergence is a core principle for self-organization (Fromm, 
2005b), which in turn favour self-adaptation. Loosely coupled elements within a CAS contribute 
to increase the number of choices the latter has to solve problems and being more resilient to 
attacks for instance. The reason for this is that elements of a loosely coupled CAS form building 
blocks (Section 3.3.3) that can be re-combined in many ways, enhancing the probability of 
finding appropriate new solutions to unforeseen problems. Complex networks are said to be 
recursive. Through the process of aggregation and correlation (Holland, 1996) the network 
develops redundant multi-way chains of causality to accomplish its collective interests and 
contribute to the network’s resilience (Beech, 2004). 

The raised number of choices also contributes to increase the fitness of the whole in its 
environment because the number of available configurations is also increased. This increase of 
flexibility is often made at the price of a diminution of global performance; chances are that 
loosely coupled elements will encounter interoperability or communication limitations for 
instance, lowering performances of the whole.  

                                                      
69 Only a limited number of concepts are shown for clarity purposes. 
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Figure 28 Interrelationships between CASs’ phenomena, features and properties. 

On the opposite, tightly coupled elements often involve rigid structures (like in linear systems; 
Section 2.5.2). Their performance is increased because their elements are made to work always in 
the same ways and interoperability problems were solved at conception. This rigidness 
contributes to lower the degree of resilience and the flexibility of the whole CAS; it has limited 
redundant multi-way chains of causality. Linear systems are less able to re-combine in different 
configurations when unforeseen situations happen. 

3.4.1 Emergence – A Fundamental phenomenon of CASs 

The concept of emergence is neither a new concept (Ablowitz, 1939; Morgan, 1923; Peper, 1926) 
nor it is exclusive to any scientific field or domain. It first appeared in philosophy (Mill, 1843; 
Lewes, 1874) and is still the object of intense researches in the domain of CASs70. Economy 
(enterprises), biological ecosystems (species), the human brain (groups of neuron cells), 
developing embryos (groups of cells) and ant colonies (groups of ants) are all examples of 
complex systems (CASs) that manifest emergence.  

Emergence is a complex phenomenon that distinguishes CASs from other complicated 
multi-component systems (Prokopenko and Wang, 2004b); multiple links among the 
components may achieve efficient interaction and control with fairly predictable and often 

                                                      
70 See for instance: Steels (1992); Deneubourg et al. (1992); Gilbert (1995); Bonabeau and Dessales (1997); 
Bonabeau et al. (1998); Barabasi abd Albert (1999); and Deneubourg et al. (2002). Kubic (2003) lists some 
other papers that can be read as introduction to emergence. Some of them are: Cariani (1989); Bonabeau et 
al. (1995a and 1995b); Brooks (1991); Hillis (1988); Kelemen (2000); Klee (1984); Langton (1989); 
Matarié (1994); and Minsky (1986). 
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preoptimised properties. It is the intricate interactions between elements that make CASs able to 
exhibit emergence. Elements alone cannot produce emergence; again, the whole is greater than 
sum of its parts. Two main movements dedicated to the study of emergence were identified by 
DeWolf and Holvoet (2005)71. They are:  

• (1) The emergent evolutionism or proto-emergentism. The term emergence was taken up 
in the 1920s by a loosely joined movement in the sciences, philosophy and theology known 
as emergent evolutionism. (But the process of emergence itself remained hardly knowable.) 
The concept of emergence was hotly debated and mainly used against reductionism, which 
stated that a system can be reduced to the sum of its parts.  

• (2) The neo-emergence or complexity theory. This second movement tries to address the 
lack of understanding of emergence. Experiments with computer programs known as 
cellular automata showed that simple interactions between simple agents could give rise to 
surprisingly complex behaviour (Langton 1986, Holland 1996, Kauffman 1995, and others).  

There are many reasons why the concept of emergence gathers so much attention in the scientific 
literature. Some of them are given by Boschetti’s et al. (2005) state-of-the-art: 

• Emergent behaviour seems to be ubiquitous in Nature.  

• Standard analytical tools used in physics do not seem to be able to describe the generation 
of ‘novelty’’. 

• Computational tools have allowed us to model examples of emergence and shown that it is 
‘easy’ to generate emergent features. Nevertheless, how emergence works and what is it is 
still not clear. 

• Fundamental physical equations (theory of everything) still are of no use in describing 
macroscopic phenomena and the world as we see it. (Reference to the Theory of everything 
being the theory of nothing). The understanding emergence is a crucial missing component 
in our understanding of the world. 

• Because we believe the certain basic emergent properties are shared by very different 
systems, steps forward in our understanding and modeling of emergence would have huge 
practical implication for disparate applications.  

3.4.1.1 Definitions of emergence 

Currently, there is not an agreement on a definition of emergence. Some definitions are proposed 
in this Section, they were extracted from Boschetti et al. (2005a, 2005b). The one used in this 
document is from DeWolf and Holvoet’s (2005). 

• A property is emergent if it cannot be explained from the properties and interactions of 
the lower level entities. Kubik (2003), Shalizi (2001) and Crutchfield (1994) criticize this 
definition; mostly on the basis that such definition simply implies that we are currently 
unable to explain its relation to lower level entities. One day, with better scientific 
knowledge, we may be able to. Consequently such statement is based on a temporary state 
of knowledge of the observer rather than on an intrinsic property of a system. (…) This 

                                                      
71 Based on Goldstein’s (1999) paper. 
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point is very important and should be addresses in the framework of the paper on 
engineering control over agent based modeling. 

• A property is emergent if it is not displayed by the lower level entities. A problem with this 
definition is that basically everything can be seen as emergent. All macroscopic matter is 
made of atoms, and no individual atoms display the features of the macroscopic material 
(see Bickhard, 2000). It may be useful, though, if used within the context of specific features 
we may be interested of. Another reason why this definition should not be disregarded is 
that a considerable body of work has been done here, in particular in the CA literature. (…) 

• A feature is emergent if it can provide better predictability on the system behaviour, 
compared to the lower level entities. Shalizi (2001) and Crutchfield (1994) give a formal, 
information-theoretic definition of the above concept. Interestingly, while the idea of 
predictability naturally involves an agent (observer), the ‘measure’ of emergence they 
provide is observer independent, and thus an intrinsic property of a system. A practical 
limitation of this approach is that, while a measure is proposed in theory, it is quite hard to 
actually compute such measure in real systems. Still, the concept has obvious appeal from a 
practical perspective. 

• Another approach to emergence involves the concept of ‘downward causation’ (See 
Goldstein 2002, Bickhard 2000, Heylighen, 1991). Roughly, a feature is emergent if it has 
some sort of causal power on lower level entities. While we assume that lower level entities 
must have an ‘upward’ causation on the emergent features, this approach assumes a 2-way 
causal relation. As an example, we can imagine individuals organising into a city. Their 
actions affect how the city develops. And the development of the city itself affects the 
behaviour and interaction of the individuals living in it. (…) Nevertheless, this seems to be a 
quite workable definition, since it clearly goes beyond the reductionist approach to the 
analysis of complex system. We have so far been unable to find any example of how such 
approach can be tackled numerically or analytically though. 

• A few other approaches to emergence, although very different from each other, may 
somehow be related to the concept of ‘logical depth’, and we consequently will (arbitrarily) 
group them together. ‘Logical depth’ is an information-theoretic measure of the time a 
(universal) computer takes to perform a task (for a more formal definition see Bennett, 
1988). A system is then considered complex, and/or certain features emergent, if it exhibits 
high logical depth, or if a feature can not be computed any faster than the time Nature took 
to produce it, or if it can be modelled only via simulation on a computer. The arguments are 
discussed at different level of depth (from very trivial to extremely insightful) in Bedau 
(1997), Darley (1994), Bennett (1988, 1990), Kauffman (1996), D’Abramo (2002). On one 
side they can be trivialized to limiting emergent to what needs to be simulated on a 
computer, while on another level it discusses the limits of computability and modelling and 
the role of natural evolution as computation device. 

• Another broad category (which we also probably join arbitrarily) relates emergence to 
semantics and meaning. This emphases the importance of the context the features are 
analysed in. Obviously, this approach is observer-dependent. Belonging to this category is 
Edmonds 1999 (who refers more explicitly to linguists), Pattee 1997a,b (who analyses of the 
meaning of language and dynamics in biological evolution) and Kubik (2003). Vaguely 
related to this is also the hierarchical epsilon machine analysis of Crutchfield (1994). I 
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believe this approach, going past information theoretical measures and exploring 
semantics, would be extremely useful, especially for social sciences application. 

• Finally, we have the view of emergence linked to the concept of evolution and its 
computational simplification in the form of Genetic Algorithms and related ideas 
(Holland 1998, Boden 1994). This can be applied to biology as well as to social science, 
memes, ect. Views that Darwinian-type evolution is the only engine for emergence are stated 
in Heylighen (1991) and Pattee (1995, 1997) among others. 

Another interesting definition of emergence is proposed in the following lines. It is based on 
DeWolf and Holvoet’s (2005) review of literature on this subject and it is the one used in this 
document. 

A system exhibits emergence when there are coherent emergents at the macro-level that 
dynamically arise from the interactions between the parts (or elements) at the micro-level. Such 
emergents are novel w.r.t. the individual parts of the system.  

Some other ideas from other authors can be added to this definition: Emergent phenomena are 
typically persistent patterns with changing components (Holland, 1998). Fromm (2005a) 
mentions on these components: they are changeless and changing, constant and fluctuating, 
persistent and shifting, inevitable and unpredictable. Moreover an emergent property is a part of 
the system and at the same time it is not a part of the system, it depends on a system because it 
appears in it and is yet independent from it to a certain degree.  

To our knowledge, these two last paragraphs represent a good definition of emergence because 
they put in relation all relevant concepts in a concise and complete formulation. 

3.4.1.2 The Flock of birds classical example 

Examples of emergence and self-organization are numerous in nature and in computational 
sciences (Flake, 1998). The numerical simulation of flock of birds is a classical CAS example 
showing emergence. In this example, flying birds are independent computational entities that are 
showing spatial arrangements that are similar to the ones of migrating gooses. The simulation 
consists of numerically simulating the formation of structures within a flock of flying birds by 
specifying a set of simple rules that are shared by all birds (Flake, 2003). Typical V structures 
emerge with respect of time. 

These simulations do not impose rules at the level of the flock; there is not for instance a bird that 
controls all other birds. Each individual computational entity has its own set of simple rules 
(called tricks by Fromm, 2005a), which for instance takes into account the distance and angle 
between birds. Emergence results from the interactions between these computational entities. If 
the flock forms, it does so from bottom-up as an emergent phenomenon, not top-down (Flake, 
1998). 

Once the emergent V structure has emerged, some external changes from the environment may 
induce the emergence of new spatial arrangements. The detection of a flying predator by one of 
the flying birds will for instance alter this V structure. This bird will naturally change its own 
flying direction in order to get rid of the predator (based on the same set of internal rules). All 
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other birds will react accordingly, even if they did not see the predator; knowing that something is 
happening. Neighbours of neighbours will do the same and so on; a new structure will then 
emerge. The emergence of this new structure is also the result of interactions between flying birds 
that are guided by the same shared set of internal rules.  

Similar evolutions of spatial arrangement can be seen in shoals of fishes when a predator 
suddenly arises nearby. This disturbance does not break the order in the spatial arrangement; it 
only modifies it, triggering the emergence of new patterns. Emergent patterns are broken if 
disturbance effects overtake CAS’s ability to adapt based on internal rules. This would happen for 
instance if the predator actions (flying toward and within the flock) are much faster then the flock 
global harmonious reactions.  

3.4.1.3 Description and characteristics of emergence 

There are at least three characteristics that summarize the concept of emergence (CALRESCO, 
2006). They are reproduced in the following lines. 

• First is the idea of 'supervenience' (72), this means that the emergent properties will no 
longer exist if the lower level is removed (i.e. no 'mystically' disjoint properties are 
involved).  

• Secondly the new properties are not aggregates. Emergence is directly related to the idea 
that the whole is greater than the sum of all its parts taken separately. Emergence of a 
phenomenon cannot be decomposed into parts; it is said to be irreducible.  

• Thirdly there should be causality - emergent properties are not epiphenomenal (either 
illusions or descriptive simplifications only). This means that the higher level properties 
should have causal effects on the lower level ones - called 'downward causation' (Figure 
22), e.g. an amoeba can move, causing all its constituent molecules to change their 
environmental positions (none of which however are themselves capable of such 
autonomous trajectories). This implies also that the emergent properties 'canalize' (restrict) 
the freedom of the parts (by changing the 'fitness landscape', i.e. by imposing boundary 
conditions or constraints). 

Irreducibility represents a serious problem for architects and engineers trying to conceive CASs 
that would deliver pre-determined emergences or capabilities. Standish (2001) mentions on this: 
Of considerable interest is, given a system specified in its micro language, does it have emergent 
properties? There is no general procedure for answering this question. One has to construct a 
macro description of the system. If this macro description contains atomic concepts that are not 
                                                      
72 Supervenience is a term borrowed from Psychology. It is defined as: a dependency relation between 
'higher-level' (e.g. mental) and 'lower-level' (e.g. physical) properties. Informally, a group of properties X 
supervenes on (alternatively, is supervenient on) a group of properties Y exactly when the X-group 
properties are determined by the Y-group properties, where "determined by" is taken non-specifically. 
Formally, X-group properties supervene on Y-group properties if and only if either of the following holds 
for all objects a and b: a and b cannot differ in their X-group properties without also differing in their Y-
group properties. If a and b have identical Y-group properties, then they also have identical X-group 
properties. If a and b do not have identical X-group properties, then they also do not have identical Y-
group properties. (All of these formulations are logically equivalent, so if one of them holds, all of them 
do.) (Wikipedia, 2006) 
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simple compounds of micro concepts, then one has emergent properties. (…) emergence is not 
due to the failure of the micro description as a modeling effort. An emergent phenomenon is 
simply one that is described by atomic concepts available in the macro language, but cannot be 
so described in the micro language. 

DeWolf and Holvoet (2005) give another set of characteristics related to emergence. They are 
reproduced in the following lines: 

• Micro-Macro effect: This is the most important characteristic and is mentioned explicitly in 
most literature. A micro-macro effect refers to properties, behaviours, structures, or 
patterns that are situated at a higher macro-level and arise from the (inter)actions at the 
lower micro-level of the system.  

• Radical Novelty: The global behaviour is novel w.r.t. the individual behaviours at the 
micro-level, i.e. the individuals at the micro-level have no explicit representation of the 
global behaviour. In terms of reductionism this is formulated as: the macro-level emergents 
are not reducible to the micro-level parts of the system (= non-reductionism).  

• Coherence: Coherence refers to a logical and consistent correlation of parts. Emergents 
appear as integrated wholes that tend to maintain some sense of identity over time (i.e. a 
persistent pattern).  

• Interacting Parts: The parts need to interact – parallelism is not enough. Without 
interactions, interesting macro-level behaviours will never arise.  

• Two-Way Link: In emergent systems there is a bidirectional link between the macro-level 
and the micro-level. From the micro-level to the macrolevel, the parts give rise to an 
emergent structure (see ‘micro-macro effect’ above). In the other direction, the emergent 
structure influences its parts.  

• Dynamical: In systems with emergence, emergents arise as the system evolves in time.  

• Decentralised Control: Decentralised control is using only local mechanisms to influence 
the global behaviour. There is no central control, i.e. no single part of the system directs the 
macro-level behaviour. The actions of the parts are controllable. The whole is not directly 
controllable. 

• Robustness and Flexibility: The need for decentralised control and the fact that no single 
entity can have a representation of the global emergent, implies that such a single entity 
cannot be a single point of failure. Emergents are relatively insensitive to perturbations or 
errors. Increasing damage will decrease performance, but degradation will be ’graceful’: 
the quality of the output will decrease gradually, without sudden loss of function. The failure 
or replacement of a single entity will not cause a complete failure of the emergent. This 
flexibility makes that the individual entities can be replaced, yet the emergent structure can 
remain.  

• Diversity: Diversity of elements, relationships and/or rules or values can be added to the 
list. The greater the diversity in an organisation, the greater the ‘possibility space’ (or 
emergence) which it can explore. 

Emergence also manifests when the system evolves in the zone of creative adaptability between 
stable and unstable states of complex dynamical systems, dynamically maintained in a situation 
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sometimes referred to as self-organized criticality (Bak, 1996), far from equilibrium (FFE), or the 
edge of chaos (Holland, 1996, 1998; Kauffman, 1993, 1995; Langton, 1989) (Shetler, 2002).  

Fromm (2005a) used results from other authors73 to build a new taxonomy for emergence. It is 
based on different feedback types and the overall structure of causality or cause-and-effect 
relationships, which fits perfectly to the classification of Eppstein for CA. Using this taxonomy, 
the different types of emergence can be grouped roughly through the four following types or 
classes: 

• Type I contains no feedback at all, only “feed-forward”.  

• The major characteristic of Type II is simple feedback: (a) positive or (b) negative.  

• Multiple feedbacks, learning and adaptation are important for Type III. John H. Holland 
said about emergence in adaptive systems: “Any serious study of emergence must confront 
learning” (Holland, 1998). Type III appears in very complex systems with many feedback 
loops or complex adaptive systems with intelligent agents. It is the class with a large amount 
of external influence during the process of emergence (the internality/ externality dimension 
of Heylighen and Bar-Yam’s system to environment relational property).  

• Type IV emergence is characterized in the words of Heylighen [Heylighen91] by multi-level 
emergence and a huge amount of variety in the created system, i.e. the number of possible 
states of the emergent system is astronomical due to combinatorial explosion. It is the form 
of emergence which is responsible for structures on a higher level of complexity which 
cannot be reduced, even in principle, to the direct effect of the properties and laws of the 
elementary components. 

In terms of constrained generating processes or roles, Type I corresponds to fixed roles, Type II 
to flexible roles, Type III to the appearance of new roles and the disappearance of old ones and 
Type IV corresponds to the opening of a whole new world of new roles.  

Intentional emergence of Type I is predictable, weak emergence of Type II is predictable in 
principle, multiple emergence of Type III is not predictable at all, and strong emergence of Type 
IV is not predictable in principle (Fromm, 2005a). 

3.4.2 Self-organization and self-adaptation 

A description of the essence of self-organization is given for network systems in CALRESCO 
(2006). Elements74 of CASs are constantly reassessing their need preferences and the degree to 
which they will compromise to bond75 with other elements. The CAS adapts through the process 
of compromise and competition, called correlation, in which each entity (element of the CAS) 
accepts, rejects or changes its relationship with other agents (elements) based upon its needs and 
the changing environment. (…) function emerges when system components self-organise into 
highly versatile organisational structures that try to react to external constraints or an external 
environment. In complex networks adaptation is spontaneous, because innovation emerges from 

                                                      
73 Chalmers (2002); Bedau (2002); and Bar-Yam’s (2004). 
74 Recall that elements of CASs are autonomous. 
75 Kauffman referred to the interdependent bonding of system’s elements as “coupling” (Beech, 2004). 
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the constituent parts rather than a single directing intelligence; for many types of CAS, control is 
decentralized among elements (Section 3.3.12).  

What is usually referred to as self-organization is the spontaneous formation of well organized 
structures, patterns, or behaviors, from random initial condition. Systems that self-organize 
possess a large number of elements or variables, and thus very large state space (Rocha, 1998). 
Most of the time, the purpose of a CAS is not explicitly designed, programmed, or controlled. Its 
elements interact freely with each other and with the environment, mutually adapting so as to 
reach an intrinsically “preferable” or “fit” configuration (attractor and fitness landscape; 
Sections 2.6.7 and 2.6.8), thus defining the purpose of the system in an emergent way. 

A given CAS is always bound to the complexity its attractor allows (Rocha, 1998). The study of 
self-organization of real-life CASs is equivalent to investigating their attractors, their form and 
dynamic (CALRESCO, 2006). When started with some initial conditions they (CASs) tend to 
converge to small areas of this space (attractor basins) which can be interpreted as a form of 
self-organization. This process of self-organization is often interpreted as the evolution of order 
from a disorder start (Rocha, 1998).  

Rocha (1998) also mentions that the process of self-organization is often interpreted as the 
evolution of order from disorder start; it manifests by an apparent increase of order. Extropy is 
the term used to denote the tendency of systems to grow more organised, in opposition to the 
entropy expectation (CALRESCO, 2006). Apparently, this fact contradicts the second law of 
thermodynamics that captures the tendency of systems to disorder (Prokopenko and Wang, 
2004b). Actually, self-organisation and the loss of entropy occur at the macro level, while the 
system dynamics on the micro level generates increasing disorder (Rocha, 1998). 

 Self-organization may be carried on in different ways depending on the type of CAS considered. 
Fromm (2005b) lists some of them. 

• Multi-agent systems: Self-organization in Multi-Agent Systems (MASs) is closely connected 
to the phenomenon of “emergence”, contrary to other systems.  

• Physical systems: In physical systems with many particles, self-organization is associated 
with self-organized criticality [Bak96], critical points and phase transitions.  

• Network systems: In net systems with connected nodes, self-organization is realized 
through rewiring (small-world nets) or “preferential attachment” (scale-free nets).  

• Living systems: Self-organization in living systems is related to self-regeneration, 
metabolism and autopoiesis. 

3.5 Properties at the level of CASs  

This Section gathers together properties of CASs as global entities. They are related to Criterion 
4 (Section 3.1). Properties described in this Section are lying at Level 2 of Figure 22. 
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3.5.1 Ability of CASs to generate novelty  

Novelty arises from the operation of CASs because their behaviour are not readily understood 
from the behaviour of their elements. Intricate non-linear interactions between elements of a CAS 
trigger the emergence of complex behaviour (at Level 2; Figure 22) that is more than the sum of 
each element’s individual behaviour.  

The global behaviour is novel with respect to the individual behaviours at the micro-level; the 
individuals at the micro-level have no explicit representation of the global behaviour (De Wolf 
and Holvoet, 2005).  

3.5.2 Dependency on initial conditions and perturbations 

CASs are sensitive to initial conditions and perturbations (see Section 2.6.9.1 for an example), 
variations of inputs characteristics or rules are not correlated in a linear fashion with outcomes 
(Chan, 2001). Two identical CASs operating in the same environment, which input conditions are 
slightly different will not behave the same way. This is particularly true if they operate near the 
edge-of-chaos (Williams, 2001). Chaologists refer to such trait as sensitive dependence on initial 
conditions, or simply sensitivity to initial conditions. (“Initial” in this sense means any time at 
which we begin comparing system’s behaviours).  

Edward Lorenz was among the first to study this dependency in the 1960s. Using computers he 
simulated the long term evolution of weather by using a simplified version of the Navier Stokes 
equations (Section 2.6.7.4). By slightly varying initial values of temperature, pressures and other 
parameters, he found solutions showing new type of behaviour patterns. Very small variations in 
initial conditions in the weather system (the CAS) led to unpredictable behaviours, even if all 
elements in the complex system were causally connected, in a deterministic way76. The current 
state of the weather is not a predictor of what it will be at mid and long time scales, because tiny 
disturbances can produce exponentially divergent behaviour.  

Lorentz found that to improve weather predictions at these time scales, he had to significantly 
raise the precision of numeric variables (the number of bits of each numeric variable of the 
Navier Stokes equation).  

The consequences of Lorentz’s mathematical discovery are profound; precise long term 
predictions of weather would demand an infinite precision of computer variables.  

More generally, real systems, especially living organisms, are fundamentally unpredictable in 
their behaviours (Chan, 2001). Long-term prediction and control of CASs are therefore believed 
to be very hard or impossible. Unpredictability is the most common interpretation of sensitive 
dependence on initial conditions (for systems at the edge-of-chaos). “Unpredictable” here refers 
to the future state, condition, or behaviour. State more formally, extreme sensitivity to initial 
conditions, combined with the inevitable measuring errors, round off errors, and computer 
precision, imposes limits on how accurately we can predict the long-term temporal behaviour of 
any chaotic process. Beyond a certain time, long-term behaviour looks random, is 
indeterminable, and cannot be reliably predicted (Williams, 2001).  
                                                      
76 The simulation of the Logistic Equation shows similar results (Section 2.6.9.1). 
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There are two direct implications to this limitation:  

• (1) Measurements of any variable or parameter over time will not improve long term 
forecasts of system’s behaviours operating near the chaos state domain. 

• (2) Tiny variations will probably cause strong unpredictable variations of system’s 
behaviour at mid to long time scale. 

Another important fact about initial conditions is described by Williams (2001): initial conditions 
are irretrievably lost. The equation or systems behaviours are not reversible. Attractors result in 
the merging of historical positions. Thus irreversibility is inherent in the concept. Many scenarios 
can result in the same outcome; therefore a unique logical reduction that a state arose from a 
particular predecessor (backward causality) is impossible, even in theory.  

3.5.3 Evolution 

The long term evolution of CASs is the result of the sum of all internal modifications over time. 
For instance, elements, interrelationships, rules, values, beliefs and internal models may 
experience permanent and determinant changes over time.  

The simulation of Holland’s (1996) model reproduces long term evolution of CASs. 

3.5.4 Fitness  

The fitness of a network or CAS is proportional to its degree of emergence and resilience; said 
another way, its ability to self-propagate and recuperate. A fit network has to have three main 
elements: first it must have a multitude of individual entities; second those entities must be 
compelled by a need to interact; and third the network must possess a balance of loose, moderate 
and tight coupling appropriate to its needs (Beech, 2003).  

Tightly coupled networks are vulnerable for disruption because damage to one part of the 
network can easily surge across numerous linkages causing network wide damage. A multitude of 
loose and moderately coupled interrelationships allows network to dissipate the impact of 
assaults or environmental changes (Beech, 2003). 

3.5.5 Resilience  

Beech (2004) defines the resilience of complex networks as: their capability to absorb or 
recuperate from assaults on its constituent parts. The resilience of CASs can be attributed 
primarily to their self-organizing characteristics. He mentions that strong hierarchical 
organizations for instance cannot be as resilient as CASs because the power of complex networks 
resides not within its leadership or a few capabilities, but within its ability to spontaneously adapt 
to changes in the surrounding environment. Consequently, multidirectional and redundant 
pathways of interdependent relationships allow networks to survive assaults on its constituent 
parts.  

Coupling between elements of CASs may also influence its resilience.  
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3.5.6 Robustness 

There is not an agreement on definition of robustness; it is still the object of discussion among the 
scientific community. The discussion group from the Santa Fe Institute 
(http://discuss.santafe.edu/robustness/) proposes many variants of this definition.  

In another study, Jen (2003) makes the difference between stability and robustness and then 
provides more precisions on what is meant by robustness. Her definitions are reproduced in the 
following lines. 

Robustness (I): Robustness is a measure of feature persistence for systems, or for features of 
systems, that are difficult to quantify, or to parametrize (i.e., to describe the dependence on 
quantitative variables); and with which it is therefore difficult to associate a metric or norm. 

Robustness (II): Robustness is a measure of feature persistence in systems where the 
perturbations to be considered are not fluctuations in external inputs or internal system 
parameters, but instead represent changes in system composition, system topology, or in the 
fundamental assumptions regarding the environment in which the system operates.  

Robustness (III): Robustness moreover is especially appropriate for systems whose behavior 
results from the interplay of dynamics with a definite organizational architecture. Examples of 
organizational architectures include those based on modularity, redundancy, degeneracy, or 
hierarchy, (and heterarchy) among other possibilities, together with the linkages among 
organizational units.  

Note that robustness is meaningful for heterarchical and hierarchical systems only when 
accompanied by specification of the “level” of the system being so characterized. In other words, 
presence or absence of robustness at one level does not imply presence or absence at another 
level, and perhaps the most interesting cases are those in which the interconnections among 
components not themselves robust give rise to robustness at the aggregate level [20, 34]. 

3.5.7 Self-organized criticality  

The definition of self-organized criticality used at the Santa Fe Institute77 is reproduced in the 
following lines. 

• In physics, a critical point is a point at which a system changes radically its behavior or 
structure, for instance, from solid to liquid. In standard critical phenomena, there is a 
control parameter which an experimenter can vary to obtain this radical change in 
behavior. In the case of melting, the control parameter is temperature.  

• Self-organized critical phenomena, by contrast, is exhibited by driven systems which reach 
a critical state by their intrinsic dynamics, independently of the value of any control 
parameter.  

They give the example of Bak’s sand pile: The archetype of a self-organized critical system is a 
sand pile (Bak, 1991; 1997). Sand is slowly dropped onto a surface, forming a pile. As the pile 
                                                      
77 See: http://www.santafe.edu/~hag/internet/node9.html. 
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grows, avalanches occur which carry sand from the top to the bottom of the pile. At least in 
model systems, the slope of the pile becomes independent of the rate at which the system is 
driven by dropping sand. This is the (self-organized) critical slope.  

Critical states of a system are signaled by a power-law distribution (Section 2.6.4) in some 
observable.  

• In the case of a solid-liquid transition, one can measure the heat-capacity of the system.  

• In the case of sand-piles, one can measure the distribution of avalanche sizes.  

• In the present case of internet access, curiosity is measured.  

The analogy with sand piles is clear: a grain dropped onto the pile corresponds to an initial 
access to the document. The size of an avalanche corresponds to depth of reading of a document. 
In order to maintain a critical slope in a sand pile in a finite geometry, sand is removed at the 
edges of the pile. One can think of the sand pile as sitting on a table. Sand falls off as it reaches 
the edge of the table. The same process could be operating in the case of hypertext access to a 
document: once readers have achieved a certain depth in the document, they may decide that the 
document is sufficiently useful to them that they should obtain a hardcopy. At that point, they will 
stop issuing http requests and then issue a ftp request to retrieve the full document. 

3.6 The Perception and understanding of complexity 

The text contained in this Section is inspired from following works (among others): Xing and 
Manning (2005); Fioretti and Visser (2004); Flynn et al. (2996); Rocco et al. (2002); Hilburn 
(2004); Koros et al. (2003); and Histon and Hansman (2002). 

3.6.1 Objective formulation and subjective perception of complexity 

A clear distinction is made in this Section between: 1. the intrinsic complexities of a system (the 
objective formulation of complexity), 2. its perception by human (the subjective perception of 
complexity) and 3. its understanding by human (the subjective understanding of complexity). 
The example used to make this distinction is depicted in Figure 29.  

Figure 29 shows an external observer (the stick man), which is observing a CAS that is evolving 
in its environment. The observer uses some means (represented by the blue lens) to acquire the 
information from the CAS and its environment78. These means may possibly transform the 
information all along its path toward the observer79. Three points of view are presented in this 
figure; 1. the observer looking at the CAS; 2. the observer looking at the CAS’s environment; and 
3. the CAS looking80 at its environment. Only the first point of view is considered in the 
following description. 

                                                      
78 The information may take the form of visual signs, sound, electronic signs, data, etc. 
79 Color changing arrows represent this transformation. 
80 Let us assume that this CAS is made of people that have the ability to examine their environment. 
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Figure 29 External observation of a system in its environment. 

The intrinsic complexity is a property that is inherent to the observed complex system; it is 
objective as it is normally independent of any observer or observation. It starts to loose some of 
its objectivity when it is expressed using current ways of describing (or formulating) the 
complexity of systems (Couture, 2006b lists and describes some of them). The main reason for 
this is that there is not a general consensus in the scientific literature on which aspects of 
complexity should be described and how. Complexity theory has not yet reached the necessary 
level of maturity and many questions remain to be addressed. For instance, two descriptions81 of 
the same complex problem would probably present notable differences, especially when these 
descriptions involve not yet mature theoretical concepts.  

The observer in Figure 29 makes subjective choice of the means82 (the lens) for observing the 
CAS and its evolving complexity. The observer’s perception of the system’s complexity is thus 
subjective to this choice. Edmonds (1999) for instance notes that: complexity necessarily depends 
on the language used to model a system. He argues that effective complexity depends on the 
framework chosen from which to view/model the system of study. Edmonds’ language and 
framework for viewing the complexity is equivalent to subjective means (lens)83 in our example. 
Two observers will probably have different perspectives of the same system if they are observing 
its complexity aspects through two different sets of means. Their perceptions depend on chosen 
language, devices and other technologies.  

Once the information has been acquired through means, human’s cognitive processes start. They 
build an understanding of the captured data. This process involves cognitive mental models 
(often referred to as internal models in this document), knowledge from past experiences and 
analysis abilities to interpret perceived information and to build an understanding of the system’s 
complexity. Fioretti and Visser (2004) mention about interpretation of organizational complexity: 
in order to further our understanding, complexity should be understood in terms of the human 
cognition of a structure or behavior. (…) complexity as numerosity, diversity, and 

                                                      
81 If they are made by two people using concepts from complexity theory. 
82 The lens may for instance represent: metrics, language, protocols, sensors, computers-based software, 
hardware tools for presentation and interactions, etc. 
83 The framework may also refer to the “objective formulation” of complexity. 



 

82 DRDC Valcartier TM 2006-453 
 
 
 

unpredictability matters because of the increasing demands it imposes on decision makers 
concerned with attaining overall organizational effectiveness. But such demands are cognitive in 
nature.  

Human cognitive models are not exactly the same from one person to another. For this reason, the 
understanding of one complex situation or problem might not be exactly the same from one 
observer to another, even if the means for acquiring the information are exactly the same. In this 
sense, human understanding is subjective to used mental models of understanding.  

Figure 30 generalizes the above example by showing that any CAS in operation will acquire 
information through sets of means in order to understand complex aspects of other CASs or 
environments. Actually, environments may be made of other blue, red and brown CASs, and 
other natural or man made or natural complex systems. The understanding of the environment is 
necessary to improve decision making process, operations planning and inferences (Fioretti and 
Visser, 2004).  

Blue & Brown 
Complex Adaptive 

Systems

Environment, 
Contexts

External
Observer

Red Complex 
Adaptive Systems

 
Figure 30 CASs’ mutual observations. 

The use of concepts of complexity theory has proven to be useful for building human 
understanding of complex military situations (Marion and Uhl-Bien, 2002; Bar-Yam, 2003d; and 
Beech, 2004 are good examples). In some cases they help identify vulnerable parts of red CASs 
and they guide neutralization operations.  

R&D efforts are currently deployed in air traffic control (ATC) domain to improve ways 
operators perceive and understand complex situations. These works aim at studying ATC through 
the lens of complexity theory in order to find the most appropriate bi-dimensional visual screens 
that would best improve the subjective perception and understanding of complex situations. They 
are finding solutions that contribute to ease and faster the building of understanding of complex 
situations in contexts of high stress. Military complex operations using complex systems present 
similar problems and needs. 
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Figure 31 involves the same set of symbols as the ones depicted in Figure 29. It shows an 
example of a ATC controller dealing with three air planes (CASs84). The operator is part of the 
complex situation because s/he has deterministic effects on the whole system; her/his constant 
security guidance and orders strongly influence the whole.  
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Air Traffic 
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Controller

Complex 
Adaptive 
System 
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Complex 
Adaptive 
System 
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Complex 
Adaptive 
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Figure 31 Observation and control of a complex adaptive system in air traffic control. 

3.6.2 Internal and external complexity, and adaptation 

The environment within which CASs evolve is always more complex than CASs themselves. As 
shown in Figure 3285, the input a CAS receives or extracts from its environment has regularities 
as well as aspects that appear random to the system (Jost, 2003). Only the regularities are useful 
for the system because by its very nature, a system will itself be defined by regularities that it 
constructs from its input and that are maintained through and expressed by internal processes. So 
the system needs external regularities that it can translate into these internal ones while random 
input at best is useless and at worst detrimental for the system. It is the CAS’s internal models 
(used to represent or understand aspects of its environment) that determine which part of potential 
input is meaningful and regular and which part is devoid of meaning and structure, and random. 
In that situation, adaptation consists in increasing the former at the expense of the latter, under 
the capacity constraints imposed by the system’s internal structure. 

The CAS will use appropriate strategies to increase the amount of meaningful inputs in order to 
better adapt to its environment. As mentioned by Jost (2003), CASs try to increase their external 

                                                      
84 The content of green rectangle including the controller can be considered as a huge complex adaptive 
system. From their point of view, airplanes are also complex systems but in the whole’s perspective, they 
are considered as “complex adaptive sub-systems” (Section 2.1.3). 
85 Figure 32 is a conceptual view showing a CAS that is separated from its environment. This “error” was 
intentionally made for this description only; CAS operates “in” its environment. 
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complexity (86) and to reduce their internal complexity (87) meaning that when the system wants to 
handle additional, new (and more complex) input, to increase its external complexity, it may then 
also first increase its internal complexity (through the creation of internal redundancy and new 
combinations of building blocks for instance) and thereby create the potential for a subsequent 
reduction of the internal complexity on another time scale perhaps. (…) Each of these processes 
will operate on its own time scale(s), but they are also intricately linked and mutually dependent 
upon each other.  

Strategies can be used to increase the quantity and quality of meaningful information CASs 
capture. As external complexity is evaluated by what can be processed by internal models, and as 
these models are constructed according to which the CAS operates and is modulated by external 
input (Jost, 2003), it can be said that: 

• The CAS may modify or re-adjust on-the-fly the means (the lens in Figure 32) to improve 
the capture and the transformation of the information related to its environment. The aim 
will be to improve the subjective perception of external complexity (Section 3.6.1). The pre-
selection of what88 is transmitted to the CAS can be made at this level. 

• How this information is presented to human belonging to the CAS can be improved in many 
ways. Listed references at the beginning of this Section give good examples of such 
improvements for Air Traffic Control. 

• The CAS may recompose, restructure or recombine its teams of data interpreters. Internal 
redundancy, flexibility, complementarities of expertises and knowledge are factors that may 
contribute to help this process. 

• The subjective understanding of external complexity may be enhanced if human’s internal 
models of understanding are improved. This will contribute to make external data less 
random and more useful to the CAS.  

In military operations, the environment is often dangerous and complex. It influences the CAS in 
many ways (Figure 32). The CAS must adapt by generating on-the-fly appropriate functions that 
will in turn influence elements of this environment. Rocha (1998) states similar ideas for 
cognitive systems: the self-organizing system must be structurally coupled to some external 
system (external to its boundaries) which acts on structural changes of the first and induces some 
form of explicit or implicit selection of its dynamic representation: selected self-organization. 

                                                      
86 Jost (2003) defines external and internal complexity as: External complexity measures the amount of 
input, information, energy obtained from the environment that the system is capable of handling, 
processing. (…) Internal complexity measures the complexity of the representation of this input by the 
system (or internal models). 
87 The aim of the system then is to handle as much input, as many data as possible with as simple a model 
as possible. 
88 Ideally, the aim would be to reduce the amount of information and to enhance its quality and ease its 
interpretation and understanding by human. 
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Figure 32 Internal and external complexity. 

In summary, Figure 32 shows that the global dynamic the CAS in its environment reflects 
permanent mutual influences between both of them, perpetual re-adjustments of means (the lens) 
for the perception of complexity and the perpetual improvement of internal models for the 
understanding of this complexity; its potential for adaptations, however, is determined essentially 
by its internal form (Jost, 2003).  
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4 Using complexity theory 

It is not possible to catalogue the huge amount of problems and solutions that have been 
addressed so far by scientists engaged in the complexity theory89. Nevertheless, a brief overview 
of trends and suggestions are provided in this Chapter.  

The reader should note that the content of this Chapter does not pretend to be complete. The fifth 
document of this work to be published in 2007 (see Section 1.3) will provide a more complete 
review with examples.  

4.1 Overview of current trends  

4.1.1 Trends in research activities 

In there overview of works related to complexity theory, Dodder and Dare (2000) find that 
research activities in this domain tend to fall under three categories:  

• (1) Recognizing Patterns of Complexity. Santa Fe Institute (SFI, 2006) is a good example 
of organization that promotes the idea of exploiting the commonalities between complex 
CASs in order to find underlying principles of complexity theory (Holland, 1996). Some 
examples of concerns are: To what extent can we draw comparisons across systems? How 
do we improve our analytical methods for recognizing and describing the patterns in these 
systems, in terms of both their structure and dynamic behaviour? Why do some networks or 
systems persist, despite the continual changeover in the components of the systems? To what 
extent can we separate a common set of “systems” features or properties that are not 
context dependent? 

• (2) Measuring Complexity. Using SFI approach, is it possible to find measures of 
complexity that are not sensitive to contexts? How CASs originating from different domains 
or disciplines can be compared? Edmonds (1999) provides a good review of literature.  

• (3) Modeling Complexity. The issue of modeling encompasses two important endeavours.  

 First: how can computer-based modeling be developed further? What are the 
limitations of these tools?  

 Second: in studying complexity and phenomena such as emergence, how does one 
create a “model” without resorting to either extreme of reduction (dissecting and 
studying the parts in isolation) or abstraction (describing the emergent patterns and 
macro-structures without much of the detail). A model cannot contain all of the 
details and complexity of the real life system, but how can one ensure that the model 
has captured (all) the critical aspects?  

Work made at SFI has fostered a unique dialogue across a broad range of disciplines pertaining to 
both the natural and social sciences. Commonalities of patterns and complex phenomena from 

                                                      
89Couture (2006a) provides an incomplete but sufficient list of scientific documents, experts, organizations 
and journals that helps the finding of information that is related to this theory as well as complex systems. 
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CASs have contributed to the building of bridges between independent disciplines and resulted in 
an increase of exchanges of concepts and methodologies between them. Consequently, as 
complexity theory develops, it has also provoked thought as to the existence of “universal laws of 
complexity”. Yet, the diversity and constantly evolving nature of complex systems seems to place 
a limit to the amount of generalizable “laws” that can be derived through complexity. As 
summarized by Goldenfeld and Kadanoff (1999): “Up to now, physicists looked for fundamental 
laws true for all times and all places. But each complex system is different; apparently there are 
no general laws of complexity. Instead, one must reach for “lessons” that might, with insight 
and understanding, be learned in one system and applied to another.” (Dodder and Dare, 
2000).  

The R&D community on complexity is establishing a forum for interaction, as well as a 
language, terminology and set of methods for describing and analyzing complex systems. Couture 
(2006a) lists for instance many experts, organizations, projects, journals, and conferences on this 
field and Couture (2006c) provides a Glossary of most used terms. Most references in Couture 
(2006a) provide indications that the ideas have increasingly gained acceptance in disciplinary 
circles, although there continues to be some skepticism as to how far complexity science can 
progress in providing answers to the burgeoning set of questions and issues it has generated. 
(Dodder and Dare, 2000). 

4.1.2 The Current types of complexity  

Dodder and Dare (2000) identified three categories (or types) that are often used to group 
characterizations of system’s “complexity”. They are:  

• (1) Static complexity. This type of complexity includes notions of hierarchy, connectivity, 
detail, intricacy, variety, and levels/strength of interactions; it refers to structural or physical 
aspects of a system’s complexity. Static complexity is to a certain extent context dependent, 
since the structural complexity would appear much differently on the micro versus macro-
level scale, and would change as one redefines the scope and boundaries of the system. 

• (2) Dynamic complexity. This type of complexity includes notions of behaviour, processes 
of cause and effect, feedback, fluctuations and stability, cycles and time scales. It deals with 
the temporal evolution of complex phenomena that may result from both the adaptation of 
the systems, as well as adaptation of the individual agents in the system.  

•  (3) Informational complexity. This type of complexity is related to the measurement of 
complexity, which can be thought of as the complexity involved in describing or evaluating 
a complex system. It can reflect both the static complexity, e.g. the intricacy of a network, as 
well as the dynamic complexity, e.g. the complexity of the processes involved in the creation 
of a system. 

Other types have been identified. Chris Lucas (CALRESCO, 2006) adds for instance: the 
Evolution complexity90 and the Self-organization complexity91; the ways these types are 
orthogonal with the ones of Dodder and Dare (2000) is not clear. Nevertheless, they must be 
considered because they add new aspects to the description of complexity. 

                                                      
90 This type appears to be related to the long term evolution of CASs. 
91 This type describes the system functions in terms of how they relate to the wider outside world. 
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4.1.3 The Current formulations and measures of complexity  

The questions “How complex is a system and to what degree?” are the objects of preoccupation 
for many scientists from many fields92; it is still a difficult subject (Edmonds, 1999). Answers to 
these questions will enhance our capability to understand complex systems.  

Dodder and Dare (2000) mentions that the approaches to the measurement of complexity have 
tended to couple two complementary aspects: knowledge and ignorance of the system. With 
respect to the latter, the degree of entropy or ignorance provides one measure of complexity by 
determining the disorder of the system, which in turns establishes a measure of our ignorance 
about a system. With respect to the knowledge of a systems, “one apparently crucial element in 
any reasonable measure of complexity is the information processed or exchanged by the system 
under study” (Lloyd, 1990). Shannon’s information theory uses this quantity of information as an 
indicator of complexity. Another widely explored measure is the Algorithmic Information Content 
(AIC), which relates complexity to the minimum amount of information needed to describe the 
system, as measured by the shortest computer program that can generate that system.  

An ideal set of metrics for measuring the complexity of systems would capture all the information 
in order to address all aspects of the complexity. As mentioned in Section 3.1, Criteria 1 and 2 
provide good hints for the identification of basic metrics. Some domains of measurement are also 
proposed by CALRESCO (2006) in the following lines. 

• Metrics to explain emergent structures (for instance self-organization). 

• Metrics to evaluate relative complexity (hierarchical multi-parameter). 

• Metrics to allow control of complex systems (steering points). 

• Metrics that lead to the generation of effective models (abstractions). 

• Metrics that lead to statistical predictors (constraints). 

• Metrics to solve outstanding problems (breakthroughs). 

• Metrics that allow the demonstration of possible new applications (novelty). 

• Metrics to quantify the laws of order and information (if any). 

This ideal set would also combines how much information is required to describe a system’s 
regularities, as well as the magnitude of the irregularities - i.e. what is the combination of 
deterministic and chaotic behaviour that gives rise to the complexity of the system? (Dodder and 
Dare, 2000). 

As mentioned by CALRESCO (2006), aspects to be measured cannot always be represented with 
numerical parameters; such measure may involve qualifiers like good, better, cooperative, etc. 
Measures may also involve interrelated aspects of complexity that happen at different time scales; 
measures are not static entities. Their intrinsic composition and structure may change or evolve 
with respect of time: Measures should evolve with respect of time to follow the evolution of 
complexity in a system over time, in order to follow its path of increasing or decreasing 

                                                      
92 Including for instance Thermodynamics, Information Theory, Statistical Mechanics, Control Theory, 
Applied Mathematics, and Operations Research. 
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complexity (Dodder and Dare, 2000). The ultimate goal of measures and measurement is to allow 
for a mathematics that can distinguish systems as easily as can humans, recognizing and 
classifying the patterns found therein (CALRESCO, 2006).  

The reader is invited to refer to Couture (2006b) and Edmonds (1999) for an overview on how 
complexity is currently formulated and measured. 

4.2 The Use of complexity theory – Some suggestions 

The structure of this Section is being inspired from the traditional scientific methodology. It 
proposes some suggestions for integrating complexity concepts at each of its step. Figure 33 
depicts the proposed methodology for studying complex problems93. 

A) Build a Comprehensive Global Picture of Complexity Theory (SOTA)

B) Describe Complex Systems, Environment, Contexts, etc. (Uses A)

C) Analyse Problems, Critical Properties, Phenomena (Uses A, B)

D) Model (Uses B, C, & Relevant Works in Sci. Literature)

E) Simulate, Analyse, Visualize; Rehearsal Process (Uses D)

M&S
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Figure 33 The Proposed methodology for studying complex problems or systems. 

The methodology contains four steps (the numbers in the green rounded squares of Figure 33). 
They are: 

1. Build a comprehensive integrated picture of all concepts of complexity theory (represented by 
the rectangle labelled A in Figure 33). The goal is to understand all aspects of this theory that 

                                                      
93 A detailed description of this methodology, tools and framework will be given in another document. 
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will be relevant for the military domain. This step was already made in Couture (2006a, 
2006b, 2006c) and this document. 

2. Select, describe and analyse a case study using this theory (rectangles B and C in Figure 33). 

3. Model and simulate the case study using appropriate approaches, techniques and tools 
(rectangles D and E in Figure 33). 

4. Update and improve a complexity framework with all this information and lessons learned 
(rectangle F in Figure 33). 

Steps 2, 3 and 4 constitute an iterative and incremental process. It should be made for every 
case study. Next sections provide more details for steps 2, 3 and 4.  

4.2.1 Step 2B: Description and problem formulation 

The identification and description of all critical aspects of complex problems should be achieved 
prior to the building of models or simulations. Some concerns that might have to be addressed are 
proposed in the following lines. 

• Identify and describe all relevant aspects of systems and discover all interdependencies 
between them. Identify and describe boundaries (Section 2.1.3), structure (Section 3.3.15), 
dynamic, command, control, elements, their types, interrelationships, behaviour, properties, 
types and degrees of complexity, etc. 

• Identify and describe all relevant aspects of environments and discover all interdependencies 
between them. Examples of environments are: cities, crowds, open fields, mountains, bad 
weather, bad terrain, etc. 

• Identify and describe all relevant aspects of contexts and discover all interdependencies 
between them. Examples of contexts are: maintenance of peace, traditional war, 
humanitarian missions, etc.  

• Identify and describe potential critical aspects and discover all interdependencies between 
them. These are parts of the problematic that must not be forgotten during this process 
because of their major impacts or importance on systems or operations. 

• Formulate (model) and describe all aspects of internal and external complexity and complex 
phenomena and formulate (model) all interdependencies between them.  

• Identify the relative importance of each aspect of complexity and all cause/effect 
relationships. 

• Identify and describe interrelationships between the CAS and its environment; which 
elements are involved, which communication links are used, how, when, etc. 

• Identify and describe needed emergences (capabilities) and start the identification of 
potential sources, mechanisms for the manifestation of emergence. 

• Pose the problems using this information and all relevant theoretical concepts, past lessons 
learned, study cases, etc. 
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• Build a complete and coherent description of the problem. When possible, integrate this 
description in architecture description. 

• Find measures of complexity aspects that could be used during operation. Find how and 
when to use them.  

• Identify and understand all potential effects of simplifications or approximations during 
modeling. The lost of critical aspects may have dramatic effects on end results of analysis. 

4.2.1.1 The Level of complexity of systems 

It is necessary to evaluate the level of complexity of systems. Some criteria that can be used for 
this task are proposed by CALRESCO (2006) (See also Couture (2006b)). This list does not 
pretend to be complete nor is it definitive but it constitutes a good starting point.  

• Connectivity Profile (Section 3.3.5). Elements of a system have many inputs and many 
outputs but as described in Kauffman’s experiment, elements are not too linked for not 
being into the chaos State Domain. This is the fan-in and fan-out structure.  

• Learning Availability. Elements of a system have the ability to learn from experience and to 
integrate lessons learned. They are able to evolve or change their rule sets and optimise 
(canalize) transitions.  

• Operation Parallelism. Parallelism and autonomy of elements of a system are good 
indicators of adaptability and speed response. 

• Interaction Variability: Links allowing interrelationships between elements of a system can 
be modified with respect of time in function of evolving needs. This may allow for instance 
data prioritization.  

• Feedback Loops (Section 3.3.9). Outputs have a way to feed back into the beginning of the 
process, so the results of actions early in chains can be monitored.  

• Control Ability (Section 3.3.11). All variables have control paths for stability (uncontrolled 
variables could indicate chaos potential). But control does not prevent change, just acts to 
limit runaway effects.  

• Basins of Attraction (Section 2.6.7). Many trajectories are available to the system for 
attaining its attractors (goals), giving flexibility of response and creative freedom.  

• External Boundaries (Section 2.1.3). System boundaries are neither closed nor totally 
open. The first is stagnation, the second panic. Filtering of information is necessary. The 
definition of the boundary of a system may also change with respect of time in function of 
evolving needs. 

• System Function. Multiple objectives or functions exist, giving a multi-dimensional fitness 
and resilience to single dimensional fluctuations (Section 3.5.4, 3.5.5).  

• Building Blocks (Section 3.3.3). Sub-systems at various sizes are found, giving a modular, 
fractal, structure, each with higher level characteristics that reflect those seen in the parts 
(elements of the system).  
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• Emergent Properties (Section 3.4). Unplanned phenomena emerge during operations. For 
instance, the systems self-organize from intricate interactions between elements. There is 
not an external control that drives this self-organization.  

• System Resilience (Section 3.5.5). Most internal or external perturbations leave overall 
function intact, but some show unexpected global effects. A power law spread of fluctuation 
size and duration is found.  

• Distributed Control (Section 3.3.11). Control is distributed throughout the system; local 
decisions are made by parts or modules (elements) within overall constraints.  

• Information Flow (Section 3.3.10). Increasing information flows can indicate a move from 
stability to chaos. Introducing information technology tends to do this naturally in social 
systems, unless checked.  

• Output Variability. Increasing swings (increasing instabilities) in results (e.g. sales for a 
company) can indicate a move towards chaos (Section 2.5, 3.5.2).  

• Many others. 

A system that shows some of these properties is likely to be better analysable using complexity 
theory than by linear determinism or reductionism methods. Bar-Yam’s MSCA approach and 
complexity profile should also be considered (Section 2.6.3). 

4.2.2 Step 2C: Problem analysis  

The analysis of the described problem should be achieved. Some aspects that might be 
investigated are proposed in the following lines.  

• Concurrently use theory of systems, complexity theory and middle-out approach, available 
past lessons learned and case studies at all phases of the problem analysis and resolution.  

• Recombine measures, knowledge, observations (Section 3.3.3) in order to find novelties. 
The diversity and complementarities of a high number of measures and observations are 
factors that may ease the discovery of novelties through the recombination process (Holland, 
1996). 

• Identify from this analysis other potential critical aspects related to this problem. Pose 
hypotheses on potential sources, causes, mechanisms, solutions, approximations, etc.  

• Integrate this information and start modeling. 

4.2.2.1 Potential approaches and techniques for problem analysis 

Once a system has been identified as complex it must be studied using appropriate approaches 
and techniques. This Section reproduces CALRESCO’s (2006) propositions on potential 
approaches and techniques. It is not a comprehensive review since almost every researcher in this 
new field has their own emphasis. 

• Entropy (Couture, 2006c adds extropy). This golden oldie is a good place to start, since it 
traditionally measures the opposite of order (or information in Shannon's formulation). 
Unfortunately there are so many types of entropy that the concept proves less than useful in 
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practice. The main problem is that a single figure does not distinguish symmetrical or 
otherwise equally complex systems, and it says nothing about the actual structure present.  

• Algorithmic Information Theory (Couture, 2006b). This technique, developed by both 
Kolmogorov and Chaitin, looks to describing complex systems by using the shortest 
computer program which can generate the system. Thus the length becomes a measure of 
the complexity. The drawback is that this has a high value for random noise (which we don't 
think complex). Such an approach also takes little account of the time needed to execute the 
program. Work is ongoing to address these issues, but again it reflects a single parameter.  

• Phase Transitions (Section 2.6.9). Self-organizing systems are found to move from static or 
chaotic states to a semi-stable balance between. This property relates to the physics idea of 
phase transitions (e.g. the state change from ice to water), pioneered by Wilson. Attempts to 
quantify this point are seen in Langton's work on lambda and similar measures. Chief 
disadvantage is that such analysis is so far restricted to low dimensional systems (few 
variables).  

• Self-Organized Criticality (Section 3.5.7). This technique, due to Bak, has much in common 
with Phase Transitions, but concentrates on the characteristic power law distribution of 
events (seen around the phase boundary) as an indication of self-organization. This allows 
the treatment of higher dimensional systems, but still gives little information about their 
inherent nature.  

• Algorithmic Chemistry. Another approach takes account of the fact that system parts 
interact freely, thus can be thought of as chemical elements, their reactions form compounds 
and eventually an autocatalytic set results (forming the system), which is self-maintaining. 
The mathematical analysis of such systems is largely due to Fontana. This treatment of the 
parts, whilst allowing innovation, doesn't quantify any emergent structure that results, just 
concentrations of components.  

• Attractors (Section 2.6.7). Identifying the possible stable structures in connected systems 
requires the concept of attractors, and this idea is employed in work on neural networks by 
Hopfield, feature maps by Kohonen, and discrete networks by Wuensche. This is the best 
current technique for analysing internal network structure, but is difficult to do for realistic, 
high dimensional, systems.  

• Coevolution. Using the biology concept of fitness allows us to model systems as ecologies, 
where the parts coevolve with each other. This can be extended to model multiple systems, 
as in Kauffman's NKCS model, and we can derive system wide fitness measures. A 
drawback is that there are so many possible models that practical work can only sample 
them, generating purely statistical indicators.  

• Symbolic Dynamics (Holland, 1996). Derived from linguistics, this treats systems as 
grammars and investigates rules of combination and structure. It is possible to include 
context in this formulation and thus this can be applied to environmentally situated systems, 
as seen in the classifier work of Holland. This is promising, but identifying the rules of 
existing systems is a major problem.  

• Far From Equilibrium (Section 2.5.3). The analysis of non-equilibrium systems is also at 
an early stage, and is characterised by work on dissipative systems in physics (Prigogine) 
and autopoiesis in biology (Maturana/Varela). These self-maintaining systems are self-
organizing structures, but again little direct attention is paid to pattern.  
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• Dr. Bar-Yam’s MSCA approach and complexity profile should also be considered (Section 
2.6.3). 

4.2.3 Step3D: Modelling  

Wikipedia (2006) defines model as: An abstract model (or conceptual model) is a theoretical 
construct that represents something, with a set of variables and a set of logical and quantitative 
relationships between them. Models in this sense are constructed to enable reasoning within an 
idealized logical framework about these processes and are an important component of scientific 
theories. Idealized here means that the model may make explicit assumptions that are known to 
be false in some detail. Such assumptions may be justified on the grounds that they simplify the 
model while, at the same time, allowing the production of acceptably accurate solutions. Models 
are thus approximate representations of real life objects or concepts. 

This same reference defines the process of modeling as: the process of generating a model as a 
conceptual representation of some phenomenon. Typically a model will refer only to some aspects 
of the phenomenon in question, and two models of the same phenomenon may be essentially 
different, that is in which the difference is more than just a simple renaming. This may be due to 
differing requirements of the model's end users or to conceptual or esthetic differences by the 
modellers and decisions made during the modelling process. Esthetic considerations that may 
influence the structure of a model might be the modeller's preference for a reduced ontology, 
preferences regarding probabilistic models vis-a-vis deterministic ones, discrete vs continuous 
time etc. For this reason users of a model need to understand the model's original purpose and 
the assumptions of its validity.  

The building of models should make intensive use of results of Section 4.2.1 and 4.2.2. Some 
aspects that should be investigated are listed in the following lines. 

• Decide which aspects of real life operations, systems, environment and contexts will and 
will not be integrated in models. This process defines used approximations. They may have 
profound effects on behaviour resulting from simulations. 

• When appropriate, identify levels, resolutions, and scales (Section 2.6.1). The modeling and 
simulation of behaviour of complex oceanic currents for instance often involves models that 
are well defined at mid and large scales; at micro scales they only approximate physics laws 
of friction.  

• When appropriate, conceive mechanisms allowing models to integrate interrelationships 
between levels. This may help the linking between sources and manifestation of emergence 
for instance. 

• Find how to integrate and link these models in traditional architecture descriptions (when 
available).  

• Avoid one-size-fits-all types of models or solutions.  
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4.2.4 Step 3E: Experimentation through simulation  

Wikipedia (2006) defines simulation as: an imitation of some real thing, state of affairs, or 
process. The act of simulating something generally entails representing certain key 
characteristics or behaviors of a selected physical or abstract system. 

This same reference defines computer simulation as: A computer simulation is an attempt to 
model a real-life situation on a computer so that it can be studied to see how the system works. By 
changing variables, predictions may be made about the behaviour of the system.  

The simulation of models means: the running of numerical models over time.  

The form of simulation to be made should be identified. Is it for instance a one shot simulation or 
a batch of simulations, which is made of many similar but slightly different simulations that 
provide huge amount of data? Is it prognostic or diagnostic? Is it virtual or constructive? How 
results from these simulations will be interpreted? What are the possible methods or techniques?  

What can be expected (and not) from these simulations should also be identified and understood. 
The choice of models, simulators, environments, contexts and other parameters must be made 
based on the types of analysis that need to be achieved; what types of results are expected from 
these simulations? As an example, two simulations using two different models of the same CAS 
in the same environment and context will generally give results showing different aspects of the 
same complex phenomenon. Aspects that need to be studied will influence choices.  

Modeling and simulation (M&S) appears to be an important tool in complexity theory. 
Nevertheless, precautions should be taken all along the process to keep models and simulators 
coherent and close to the reality. This Section proposes some of them that might have to be taken 
into consideration. 

• Use appropriate types of simulator (Section 4.2.4.1 and Couture (2006a) lists some of them). 
The type of simulator used to simulate models over time should be chosen in function of the 
type of CAS and also in function of the type of analysis to be made.  

• Use appropriate space scales. Will the models to be simulated evolve in one, two or three 
dimensional space? What is the spatial resolution of this space? Will this space be regularly 
divided (cells) or not? What are the effects on results? For instance, choosing low resolution 
in space may remove small scales complex effects from results. 

• Use appropriate time scales. Is the time evolution of simulations are constant (constant 
delta-time) or is it variable (event based)? In the case of a constant delta-time, what are the 
effects of this value on results? Choosing a high value of delta-time may remove small time 
scales complex effects from results. 

• Understand all effects of simplifications or approximations.  

• Do prognostic and diagnostic types of simulations. 

• Avoid black box types of simulators and models; the ones that do not allow the study and 
modification of their internal structure and composition. Favour the ones that can be opened, 
studied, merged with others and enhanced.  
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• Avoid one-size-fits-all types of simulator. Instead, use many different models with many 
simulators and compare results to detect different aspects of complex phenomenon and 
complexity. 

4.2.4.1 Potential types of simulation  

Some types of simulation and techniques are proposed by CALRESCO’s (2006). They are 
reproduced in the following lines.  

• Game Theory. From political science, we have the theory of interactions based on decisions 
and relative advantage, usually associated in our field with Axelrod. This quantifies 
decision fitness at an individual pair level, but is harder to apply to more diffuse systems. 
The important aspect here is the distinguishing of positive from negative evolutionary paths 
- goal directed behaviours.  

• Spin Glasses. This technique, again from physics, uses a lattice of interacting points and is 
chiefly seen in complexity work under the guise of cellular automata, which can be used to 
model many physical phenomena (as in the work of Rucker). The technique, whilst excellent 
for simulation, proves mathematically difficult, but is important in relation to the 
demonstration of emergence, higher level structure.  

• Time Series Analysis. Based on communications theory, we look here to identifying 
regularities in the behaviour of a system over time, trying to quantify cyclic or chaotic 
(strange) attractors. It is often applied to financial systems, e.g. at Santa Fe. Chief 
drawback is that the system must have a lot of data available for analysis, but the advantage 
is that limits can be placed on the system behaviour.  

• Fuzzy Logic. In the analysis of nonlinear systems we need a way of quantifying many 
interacting variables and fuzzy logic provides this, generating a result that maps all possible 
interactions of the inputs. This technique, due to Zadeh, has yet to be applied widely to 
complexity ideas, but has importance in the potential to treat multiple conflicting variables 
in decision systems.  

• Multiobjective Optimization. This idea, from operational research, recognises the inter-
dependency of multiple values in real world cases, and when combined with evolutionary 
computation allows us to study the dynamics of epistatic systems and the multiple global 
optima (Pareto fronts) common to such systems. There are many techniques involved here, 
some involving synergic considerations, for an overview see our introduction PMO.  

• System Dynamics. Largely due to Forrester, this computer modelling technique looks to 
quantify how the dynamics of systems, based upon our assumptions of how the 
parts/variables are interconnected (their dependency structure), differs from our beliefs 
about such dynamics. It highlights the difficulties of predicting actual complex systems 
behaviour when our views are constrained by the results of over-simplified reductionist 
experiments.  

• Evolutionary Dynamics. By statistically measuring the diversity, cumulative activity and 
innovations of evolving systems it becomes possible to classify these in terms of their open-
ended evolutionary potential. The technique, due to Bedau, Snyder & Packard, allows the 
emergent behaviour of artificial and natural systems to be determined, but does require an 
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historical record of their component activity to be available. Few, if any, artificial systems 
currently show any unbounded emergent potential however.  

• Multi-Agent Systems. This technique, based upon artificial life ideas, studies the dynamics 
of collections of interacting autonomous agents. The self-organization that results from 
different initial assumptions and sets of agent values helps quantify how different features of 
real systems can arise, and evaluates their stability to perturbations caused by changes to 
internal structure and goals. It can be applied to many levels of reality and was pioneered in 
the social sciences by Epstein and Axtell.  

4.2.5 Step 3E: Interpretation and validation of results 

Interpretation and validation of results from simulations are then achieved. Appropriate 
theoretical concepts, methodologies and techniques should be used.  

An important problem that may arise while analysing and interpreting this data is related to the 
dependency of interpretations on used theoretical concepts, means and tools. Section 3.6 
describes this dependency in terms of subjective perception and subjective understanding. The 
means used to perceive data and the mental models used to build understandings of this data may 
have strong influences on interpretations. 

The analysis and interpretation of results from these simulations may ease the building of a 
framework for addressing the problematic.  

4.2.6 Step 4: Improvements and optimizations 

Once results from simulations have been interpreted, improvements to models, simulators and 
frameworks can be achieved. New found specificities of the simulated CAS may for instance be 
compared with the ones of real life observations and then used as basis for further improvements 
and optimizations.  

4.2.7 Iterate  

The whole process should be iterated many times, using previous iterations’ results, knowledge 
and lessons learned as a basis for next iterations’ improvements. 
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5 Concluding remarks 

An effort has been made to present concepts of complexity theory in a simple but structured 
manner. This study does not purport to be comprehensive. The principal goal of this document 
and companions (Couture, 2006a, 2006b and 2006c) is to aid understanding of these concepts and 
to promote their utilization for practical purposes. 

5.1 Main observations 

Many high-level observations can be made from this work. Some key observations are briefly 
described below. 

• Complexity theory is still evolving, and is the object of intensive R&D all around the world. 
It has not reached its final point of maturity. The basic principles and concepts are not 
always interpreted the same way by different authors. 

• Complexity theory appears to be an overarching science, and its concepts may be used in 
different disciplines or domains.  

• Theoretical concepts are not easy to understand. Some reasons are: 

 There is no single text book that defines all the concepts of complexity theory in a 
consistent and structured manner. Unfortunately, the reader must read numerous 
books and papers in order to fully perceive the current picture or feeling of this 
science. Many authors promote their own approach, methodologies, tools and 
solutions while ignoring those of others. 

 Authors often refer to CAS as a generic entity without providing illustrative 
examples.  

 Many concepts are abstract and their subtleties are hard to grasp. Moreover, our 
mental models based on the linear reductionist approach are ill suited for 
understanding such highly interrelated and interdependent concepts.  

 As mentioned above, authors from different disciplines often interpret key concepts 
differently. 

 Some concepts and phenomena are still not fully understood. One of them is 
emergence.  

• It is hard to identify the underlying principles of complexity theory. The task of formulating 
a unifying theory for CASs is particularly difficult because the behaviour of the latter is 
more than a simple sum of the behaviours of its parts. CASs are highly non-linear and our 
usual tools for generalizing observations into theory are badly blunted (Holland, 1996). 

• The traditional, linear reductionist approach alone cannot address complex problems. A 
holistic strategy encompassing both the top-down and bottom-up (middle-out) approaches 
appears to be better suited to the study of CASs. New techniques are needed for 
investigating and visualizing complex phenomena, particularly the design, engineering and 
maintenance of CASs. 
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• Complex phenomena are not easy to model. Emergence is one example. It originates from 
the interaction of CASs elements and manifests at the next higher level of CASs. No models 
have yet been designed to show how and why emergence takes place in a CAS. 

• Security concerns: The rate of threat propagation has followed the rate of penetration of 
computer, software and network technologies around the world. We have no reason to think 
that the threat propagation rate will decrease in the near to medium term. This arms race 
suggests that security measures associated with CASs will have to be improved 
continuously, making use of complexity concepts at all levels; local, regional, national and 
international. Some concerns that need to be addressed are vulnerability of data, systems and 
software; threat awareness, prevention and response; and training. 

• It is possible to use theoretical concepts of complexity theory in current military operations, 
systems, design, engineering, maintenance and training. A framework for the military 
application of the concepts of complexity theory is currently under development at DRDC 
Valcartier. 

• Transformations and changes in military operations and systems are no longer considered a 
clearly definable, (static) final objective, but an ongoing (dynamical) process (Calhoun, 
2004).   

• The challenges of developing and sustaining large and complex military systems have 
grown significantly in the last decade. Today’s complex systems and systems-of-systems 
require architecting and engineering for maximum flexibility and robustness. Some needs 
are expressed by Rhodes (2004): 

 Engineered solutions must be capable of adapting to changes in mission and 
requirements; 

 They must be expandable/scalable, and designed to accommodate growth in 
capability; 

 They must be able to reliably function given changes in threats and environment; 

 They should be effectively/affordably sustainable over their lifecycle; 

 They should be developed using products designed for use in various 
platforms/systems; 

 Finally, they should be easily modified to leverage new technologies. 

• Technology improvements alone are not enough: Reliance on technology to gain advantage 
over an enemy is expensive, and typically only results in a temporary advantage before the 
enemy finds some creative way to regain parity. Even the most significant technologic 
advances are only truly effective as a complement to doctrinal or conceptual innovation 
(Calhoun, 2004). 

5.2 Future Works 

The aim of this document was to present key theoretical concepts of complexity theory, not 
including the architecting and engineering aspects.  

The next logical steps to be made in thie overarching project are the following: 
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• Present complexity theory concepts to CF clients.  

• With CF clients, assess the potential for addressing current and future military 
problems.  

• Formulate a few test cases to model and/or simulate and/or implement.  

• Evaluate the results with CF clients.  

• Capture the lessons learned in a complexity framework. 

• Iterate. 

The following are some important questions that will be considered during this process. 

• How are the concepts of complexity theory perceived and understood by humans? Which 
aspects should be presented to operators? How and when? Should allowance be made (and 
how) for situations of high stress. What factors should be considered? 

• How should the military use systems and conduct operations to deal with increasingly 
complex situations such as a three-block war? 

• What patterns of system behaviour should we anticipate with the use of new and complex 
military systems? How can we exploit such patterns? 

• What are the processes and other factors that keep complex systems coordinated and stable 
despite highly variable environments? 

• How can lessons learned be saved and used on the fly as building blocks to face unforeseen 
situations? 

• How should we improve the ability of complex systems to learn and infer?  

• How should complex systems be controlled? What are the levels of control? 

• Which tools (with what capabilities) could potentially be used to improve the control of 
systems and operations? 

• How can military systems be designed and/or improved to facilitate the emergence of 
capabilities that will fit best in unforeseen situations? What are the potential sources of 
emergence? How and when can we use them? 

• What are the patterns that could potentially be used as building blocks at all stages of the 
military system procurement?  

• How can complex systems be made more secure? What are the key vulnerable points of 
complex military systems in specific situations, environments and contexts? How do the 
systems evolve over time? 

• How should complex systems be designed and specialized in order to enhance robustness, 
system fit with environment, performance and their ability to quickly self-repair, self-
recover, self-organize and self-adapt to current and future unforeseen situations?  

• How can we equip military systems with the necessary resilience to attack? 

• Many others that were not yet considered. 
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Annex A Examples of Descriptors and Criteria 

Table 4 Descriptors used in complexity theory (Beech, 2004). 

Descriptor Descriptor’s features 
Fundamental 
elements of self-
organizing networks. 

Adaptation. Complex networks are referred to as “adaptive” 
or “dynamic”, because they are constantly changing their 
interrelationships based upon the needs of individual agents 
and environmental impacts. 

 Correlation. Individual agents within the network are 
constantly reassessing their need preferences and the degree 
to which they will compromise to bond with other agents. 
Consequently, the network adapts through the process of 
compromise and competition, called correlation, in which 
each entity accepts, rejects or changes its relationship with 
other agents based upon its needs and the changing 
environment. 

 Coupling. Kauffman referred to the interdependent bonding 
of agents as “coupling,” and Marion categorized these 
relationships as loose, moderate or tight.  

 Aggregation and recursion. Holland referred that these sets 
of agents bond through the process of correlation and are 
united by shared purpose or interest as “aggregates”. 
Aggregates may accumulate with many other sets of agents 
or structures to form meta-aggregates and further connect 
with yet other structures that accomplish diverse functions or 
roles to then form meta-meta-aggregates. 

Table 5 Descriptors used in complexity theory (CALRESCO, 2006). 

Descriptor Descriptor’s features 
Network 
characteristics. 

The evolution of a system into an organized form in the 
absence of external pressures. 

 A move from a large region of state space to a persistent 
smaller one (attractor), under the control of the system 
itself.  

 The introduction of correlations (pattern) over time or 
space for previously independent variables operating 
under local rules. 

Typical features. Absence of external control. Autonomy. 
 Dynamic operation. Time evolution. 
 Fluctuations. Noise/searches through options. 
 Symmetry breaking. Loss of freedom/heterogeneity. 
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 Global order. Emergence from local interactions. 
 Dissipation. Energy usage/far-from-equilibrium. 
 Instability. Self-reinforcing choices/nonlinearity. 
 Multiple equilibria. Many possible attractors. 
 Criticality. Threshold effects/phase changes. 
 Redundancy. Insensitivity to damage. 
 Self-maintenance. Repair/reproduction metabolisms. 
 Adaptation. Functionality/tracking of external variations. 
  Complexity. Multiple concurrent values or 

objectives. 
 Hierarchies. Multiple nested self-organized levels. 

Table 6 Descriptors used in complexity theory ( Ilachinski, 1996; Axelrod and Cohen, 2001). 

Descriptor Descriptor’s features 
Basics of CAS. Aggregation. 
 Building blocks. 
 Diversity. 
 Nonlinearity. 
 Tagging. 
 Flows. 
 Internal models. 

Table 7 Descriptors used in complexity theory (Ilachinski, 1996). 

Descriptor Descriptor’s features 
Key concepts. Variation. 
 Interaction. 
 Selection. 

Table 8 Descriptors used in complexity theory (Holland, 1995). 

Descriptor Descriptor’s features 
Basics or 
characteristics. 

Aggregation (seen as a property).  

 Tagging (seen as a mechanism).  
 Nonlinearity (seen as a property). 
 Flows (seen as a property). 
 Diversity (seen as a property). 
 Internal model (seen as a mechanism).  
 Building Blocks (seen as a mechanism).  
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