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Abstract 
 
Incremental search methods reuse information from previous searches to find solutions to a 
series of similar tasks much faster than is possible by solving each search task from scratch. 
Heuristic search methods, such as A*, use task-specific information in the form of 
approximations of goal distances to focus the search and typically solve search problems 
much faster than uninformed search methods. In LPA*, incremental and heuristic search were 
combined to further reduce replanning times. D*Lite is an application of a modified LPA* to 
the goal-directed robot navigation task in unknown terrain. Conventional graph search 
methods, such as repeated applications of A*, could be used when replanning paths after 
discovering previously unknown obstacles; however, resulting planning times could be 
prohibitively long. D* uses a clever heuristic to speed up replanning by one or two orders of 
magnitude over repeated A* searches by modifying previous search results locally. D*Lite, 
building on LPA*, implements the same navigation strategy as D*, but is algorithmically 
different. It is an attractive alternative to D* which is simpler to understand, implement, and 
debug. It involves only a single tie-breaking criterion when comparing priorities and does not 
need the nested if statements with complex conditions required in D*. Furthermore, D*Lite 
has been demonstrated to be at least as efficient as D*. In this paper, an implementation of 
D*Lite is described and its performance is compared with repeated A* searches in solving 
goal-directed robot navigation tasks in unknown terrain. 

Résumé 
 
Les méthodes de recherche incrémentale réutilisent l’information obtenue des recherches 
antérieures pour trouver des solutions à une série de tâches similaires de manière plus rapide 
qu’il le serait de résoudre chaque tâche de recherche depuis le début.  Les méthodes de 
recherche heuristiques telle que A*, utilisent l’information spécifique à une tâche sous forme 
d’approximations de la distance des objectifs pour axer la recherche. Normalement, ces 
méthodes solutionnent les problèmes de recherche beaucoup plus rapidement que les 
méthodes de recherche non informée. Dans LPA*(zone commune des modules rentrants), on a 
combiné les recherches incrémentales et heuristique pour mieux réduire les durées de re-
planification. D*Lite et une application d’une LPA* modifiée, pour une tâche de navigation 
robotique guidée par un but, dans un terrain inconnu. Les méthodes de recherches en graphes 
traditionnelles, telles que les applications successives de A*, pourraient être utilisées pour re-
planifier les parcours après avoir découvert les obstacles antérieurement inconnus ; les durées 
prolongées de planification qui en résultent pourraient cependant être prohibitives. D* utilise 
une heuristique ingénieuse qui accélère la re-planification de un à deux ordres de grandeur par 
rapport aux recherches successives A*, ceci en modifiant localement les résultats des 
recherches antérieures. D*Lite, construisant à partir de LPA*, implémente la même stratégie 
de navigation que D*, mais est différente au niveau de l’algorithme. Cette alternative D* est 
intéressante parce que plus facile à comprendre, à implémenter et à mettre au point. Elle 
consiste en un seul critère décisif concernant la comparaison des priorités et elle n’exige pas 
les énoncés imbriqués si ni les conditions complexes requises en D*. De plus, D*Lite s’est 
révélé être au moins aussi efficient que D*.  Cet article comprend la description d’une 
implémentation de D*Lite et on y compare son rendement avec les recherches successives A* 
concernant les tâches de navigation robotique guidée par un but, dans un terrain inconnu.  
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Executive summary 
 

Path Planning with D*Lite 

D. Mackay; DRDC Suffield TM 2005-242; Defence R&D Canada – Suffield; 
December 2005. 

Background 

Autonomous vehicle navigation, the facility of moving from one position to another without 
operator supervision, is a key component of Unmanned Ground Vehicle (UGV) systems. Path 
planning, the Artificial Intelligence (AI) approach to autonomous vehicle navigation, enables 
the incorporation of a priori knowledge of the environment. It allows a UGV to act 
intelligently, obeying out-of-bounds restrictions, etc., and not simply react to perceived 
obstacles in its path. Drawing on the wealth of the AI literature in this area, the path planning 
algorithm D*Lite has been identified as a candidate for incorporation into Defence R&D 
Canada’s UGV platforms. The D*Lite path planner combines aspects of A* search, the classic 
AI heuristic search method, and incremental search to plan near-optimal paths in partially 
known environments. Incremental search methods reuse information from previous searches 
to find solutions to series of similar tasks much faster than is possible by solving each search 
task from scratch. D*Lite is reported to be at least two orders of magnitude faster than 
repeated A* searches. D*Lite is algorithmically similar to the very successful D* path planner 
but is much simpler to understand and thus to extend. D*Lite is at least as efficient as D* (in 
terms of the number of nodes examined in the process of finding a path to a goal) and is 
quicker. In this paper, the development and implementation of D*Lite is described and the 
results of some performance tests conducted in simulation are presented. 

Principal results 

The D*Lite algorithm was tested in simulation, navigating through partially known, eight-
connected grid worlds of varying sizes, fractions of traversable cells, and numbers of 
unknown obstacles. The performance of the D*Lite algorithm was compared to that of 
repeated A* searches on the same grids. The performance metrics used were the number of 
node expansions and allocations required. The number of node expansions and allocations 
required by D*Lite were always less than or equal to that required by repeated A* searches, 
becoming dramatically less with additional replanning episodes. 

Significance of results 

The D*Lite algorithm has been shown to be a much more efficient path planner than repeated 
A* searches in solving the robot navigation problem in partially known terrain. 
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Future work 

The performance tests need to be repeated, obtaining execution times, in addition to the node 
expansion and allocation metrics, to allow a direct comparison with the performance of other 
implementations of D*Lite and similar path planners. More importantly, the algorithm needs 
to be exercised outside of simulation in the real world. 
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Sommaire 
 

Path Planning with D*Lite 

D. Mackay; DRDC Suffield TM 2005-242; R & D pour la défense Canada – 
Suffield; décembre 2005. 

Contexte 

La navigation d’un véhicule autonome, la facilité avec laquelle ce dernier se déplace d’une 
position à une autre sans être surveillé par un opérateur est la composante clé des systèmes de 
Véhicules terrestres sans pilote (UGV). La planification du parcours qui est la méthode 
d’intelligence artificielle de navigation des véhicules autonomes, permet d’incorporer la 
connaissance a priori du milieu. Elle permet à un UGV d’agir intelligemment, en obéissant 
aux restrictions hors limites, etc., et ne réagit pas simplement aux obstacles qu’il a perçus sur 
son parcours. On a tiré parti de la richesse de la documentation en intelligence artificielle qui 
existe dans ce domaine pour identifier l’algorithme de la planification de parcours D*Lite 
comme étant un candidat pouvant être incorporé dans les plateformes UGV de R & D pour la 
défense Canada. Le planificateur de parcours D*Lite combine les aspects de la recherche A*, 
la méthode de recherche heuristique classique d’IA avec la recherche incrémentale pour 
planifier un parcours quasi optimal dans des milieux partiellement connus. Les méthodes de 
recherche incrémentale réutilisent l’information obtenue des recherches antérieures pour 
trouver des solutions à des séries de tâches similaires de manière plus rapide qu’il le serait de 
résoudre chaque tâche de recherche depuis le début. On indique que D*Lite est plus rapide 
d’au moins deux ordres de grandeur que les recherches successives A*. Au niveau de son 
algorithme, D*Lite est similaire au planificateur de parcours très efficient D* mais il est plus 
facile à comprendre et par conséquent à étendre. D*Lite est au moins aussi efficient que 
D*(en termes du nombre de nœuds examinés durant le processus de trouver un parcours vers 
un but) et il est aussi plus rapide. Cet article décrit la mise au point et l’implémentation de 
D*Lite et présente les résultats de certains tests de rendement en simulation. 

Résultats principaux 

L’algorithme D*Lite a été testé en simulation, navigant à travers huit maillages de mondes 
connexes partiellement connus, d’une variété de tailles, de fractions de cellules traversables et 
d’obstacles inconnus. On a comparé le rendement de l’algorithme D*Lite à celui des 
recherches successives A* sur les mêmes maillages. Les paramètres de rendement utilisés 
étaient le nombre d’expansions et d’attributions de nœuds requis. Le nombre d’expansions et 
d’attributions de nœuds requis par D*Lite était toujours inférieur ou égal à celui requis pour 
les recherches successives A*, diminuant énormément avec les épisodes additionnels de re-
planification.  
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La portée des résultats 

L’algorithme D*Lite s’est révélé être un planificateur de parcours beaucoup plus efficace que 
les recherches successives A* pour résoudre le problème de la navigation robotique dans les 
terrains partiellement connus.  

Les travaux futurs 

Il faut répéter les tests de rendement pour obtenir des durées d’exécution en plus des 
paramètres d’expansion et d’attribution de nœuds, ceci pour permettre de comparer 
directement le rendement avec celui des autres implémentations de D*Lite et autres 
planificateurs de parcours similaires. Il est surtout important que l’algorithme soit 
expérimenté sans simulation dans le monde réel.  
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1 Introduction

For the past several years, under the Autonomous Land Systems project, the guidance and control of
Unmanned Ground Vehicles (UGVs) has been investigated at Defence R&D Canada – Suffield. Au-
tonomous vehicle navigation, the facility of moving from one position to another without operator
supervision, is a key component of a UGV system.

A UGV, tasked with navigating its way from its current location to a goal location, can simply
follow the heading to the goal and reactively avoid obstacles as it encounters them, always returning
to head directly towards the goal. This approach is simple and does not require building a map of
the world, but without an hierarchy of behaviours to control the UGV, it is problematic. The UGV
can become stuck in a cul de sac, turning one way and the other, and yet not able to back out. Also,
without a representation of the world, the UGV is not able to handle a priori knowledge. This is
an important shortcoming in a military context in which a UGV should reasonably be expected to
obey out-of-bounds areas.

Alternatively, autonomous vehicle navigation can be thought of in terms of an Artificial Intelligence
(AI) search task. Again, consider a UGV tasked with navigating its way from its current location to
a goal location. However, in this case, the UGV has a priori knowledge about its environment and
incorporates this into a map of its environment. The UGV begins by searching the map for the best
(shortest, least costly, etc.) path and then attempts to follow this path to the goal. As the UGV tracks
the path, it continually senses its environment and incrementally adds to its map. Should it discover
that its path is blocked, it then plans a modified path to the goal. This approach to autonomous
vehicle navigation, having AI search as its theoretical underpinnings, is provably complete, i.e., if
a path exists to the goal, it will (eventually) be found. It is also allows a priori information to be
seamlessly incorporated into the map.

In this paper, path planning, the AI search approach to autonomous vehicle navigation is explored.
A particularly effective search technique, called D∗Lite [1], is examined in detail. The remainder
of this document begins with some background into the general area of graph search as it relates
to path planning. Next, the development of D∗Lite from classic A∗ search is briefly described.
Then the implementation of D∗Lite is presented, followed by some performance comparsions
between D∗Lite with repeated A∗ searches solving the robot navigation through unknown terrain
problem. And, finally, future work is proposed to address some unresolved questions regarding the
implementation of the D∗Lite algorithm.

DRDC Suffield TM 2005-242 1



2 Background

Before describing particular graph search techniques applicable to the autonomous vehicle navi-
gation problem, we need to consider generic graph search and A∗ search. In so doing, we will
introduce some of the termininology found in the literature that will be useful in describing the de-
velopment of the D∗Lite search algorithm. The following description of generic graph search and
the A∗ algorithm[2] is largely adapted from Nilsson[3], some specifics related to the A∗ algorithm
are taken from Rich and Knight[4].

2.1 Graph Search
A graph is a (not necessarily finite) set of nodes or vertices; pairs of nodes are connected by arcs or
edges. If these arcs are directed from one member of a pair to the other, the graph is referred to as
a directed graph. If a node si is connected to a node sj by a directed arc from si to sj , node sj is
said to be a successor or child of node si and node si is said to be a predecessor or parent of node
sj . A tree is a special case of a graph in which each node has at most one parent. A node in the tree
without a parent is called a root node. A node in a tree having no successor is called a tip node or
a leaf. The depth of a node in a tree is the depth of its parent plus one; the depth of a root node is
zero.

A sequence of nodes (si, · · · , si+j , · · · , sk) with each si+j a successor of si+j−1 for j = 1, · · · , k
is called a path of length k from node si to node sk. If a path exists from node si to node sk , then
node sk is said to be accessible from node si. Node sk is also said to be a descendant of node si

and node si is said to be an ancestor of node sk.

Often it is convenient to assign positive costs to the arcs in a graph, representing the cost of transi-
tioning from a node to one of its successors. The cost of an arc from node si to node sj is denoted
c (si, sj).

A graph may be specified either explicitly or implicitly. In an explicit specification, the nodes and
arcs (with associated costs) are explicitly given in a table. The table might list every node in the
graph, its successors, and the costs of the associated arcs. Obviously, an explicit specification is
impractical for large graphs and impossible for those having an infinite set of nodes.

In typical applications, the control strategy generates (makes explicit) part of an implicitly specified
graph. This implicit specification is given by the start node s, representing the initial database, and
the rules that alter databases. A successor operator applied to a node gives all of the successors
of the node (and the costs of the associated arcs) by applying the rules to that node. This process
of applying the successor operator to a node is referred to as expanding the node. Expanding s,
and the successors of s, ad infinitum makes explicit the graph specified implicitly by node s and
the successor operator. A graph search control strategy, then, can be viewed as making explicit a
sufficiently large portion of a graph so as to include a goal node. In the context of the autonomous
vehicle navigation problem, a database is the state of the vehicle in the world representation and the
rules essentially enumerate the possible moves the vehicle can make within the world representation.

A general graph search algorithm can be informally defined as shown in Figure 1. This procedure

2 DRDC Suffield TM 2005-242



Graph Search()

Create two empty lists Open and Closed .1

Create a search graph G consisting solely of sstart; put sstart on Open.2

repeat3

if (Open is empty) then4

return error

Select the first node u on Open, remove it from Open and put it on Closed .5

if (u == sgoal) then6

return u
(Following the backpointers from u to sstart in G will recover the path.)

Expand u , generating the set {Succ(u)} , the successors of u and install them as7

successors of u in G .
foreach (s ∈ {Succ(u)}) do8

if (s /∈ Open and s /∈ Closed) then9

Establish a backpointer from s to u .10

Add s to Open.11

else12

Decide whether or not to redirect its backpointer to u .
if (s ∈ Closed) then13

Decide for each successor of s , whether or not to redirect its
backpointer.

Reorder the Open list according to some arbitrary scheme or heuristic merit.14

until a goal node is found

Figure 1: Graph Search

is general enough to encompass a wide variety of special graph search algorithms. The procedure
generates an explicit graph, G , called the search graph, and a subset, T , of G , called the search tree.
The search tree is defined by the back pointers set up at {1 : 10} . 1 Each node (except sstart) in G
has a pointer directed to just one of its parents in G , which defines its unique parent in T . At {1:3}
in the algorithm, the nodes on Open are those (tip) nodes of the search tree not yet selected for
expansion. The nodes on Closed are either tip nodes selected for expansion which did not produce
successors in the search graph or non-tip nodes of the search tree. The procedure orders the nodes
on Open at {1:14} such that the best of these is selected for expansion. The ordering can be based
on various arbitrary criteria or on some heuristic. Heuristic information can be reagrded as a rule
of thumb guiding the search in a fruitful direction. Whenever the node selected for expansion is a
goal node, the algorithm terminates successfully. The successful path can be recovered by tracing
backward via each node’s backpointers from the goal node to the start. The algorithm terminates
unsuccessfully when the search tree has no remaining tip nodes that have not yet been selected for
expansion, i.e., when the Open list is empty.

If the search graph was a tree, then none of the successors generated in {1 : 7} could have been
generated previously. Every node with the exception of the root node is the successor of only one
node in a tree and is thus generated only once when its parent is expanded. Thus, in this special
case, the members of the set of successors at {1 : 7&8} are not on either Open or Closed , so each
member of the set of successors can be added to Open and installed in the search tree as a successor
of the current node, u. The search graph is the search tree throughout the execution of the algorithm

1This refers to source line 3 in Figure 1; this notation is used throughout the balance of the document.
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and there is no need to change the parents of the nodes in T .

However, if the implicit graph being searched is not a tree, it is possible that some of the members
of the set of successors have already been generated, i.e., they may already be members of Open or
Closed . The problem of determining whether a newly generated node is identical to one generated
previously can be computationally expensive. When the search process generates a node that it
had generated before, it finds a path to it other than the one already recorded in the search tree. If
this path is less costly than the one found so far, then the search tree is adjusted by changing the
parentage of the regenerated node to its more recent parent.

If a node s on Closed has its parentage in T changed, a less costly path has been found to s. The
less costly path may be part of less costly paths to the successors of s in the search graph. In this
case, a change in the parentage in T of some of the successors of s in G may be in order. Because
G is finite, the process of propagating the costs of the new paths downward to the successors of s

in G is straightforward and finite.

2.2 Uninformed Search

If no heuristic information for the problem domain is used in ordering the nodes on Open , some
arbitrary scheme must be used at {1 : 14} . The resulting search scheme is called uninformed. Two
types of uninformed search are described here for purposes of comparison, depth-first and breadth-
first search.

The first type of uninformed search orders nodes on Open in descending order of their depth in the
search tree. The deepest nodes are put on the list first; nodes of equal depth are ordered arbitrarily.
The search that results from such an ordering is called depth-first search because the deepest node
in the search tree is always selected first for expansion. To prevent the search from following some
fruitless path forever, a depth bound is typically provided.

The second type of uninformed search orders nodes on Open in increasing order of their depth in
the search tree. The search that results is called breadth-first because expansion of nodes in the
search tree proceeds along contours of equal depth. Breadth-first search is guaranteed to find an
optimal path to a goal node, if such a path exists. If no path exists, the algorithm will exit with
failure for finite graphs or will never terminate for infinite graphs.

2.3 Heuristic Search

Uninformed searches are exhaustive and, in principle, will find a solution to a path finding problem
if one exists. However, they are often infeasible because of the size of the problem space; expanding
too many nodes before a solution is found. A more efficient alternative to uninformed search uses
task-dependent information to limit the number of nodes selected for expansion before a solution is
found. In the context of the goal-directed robot navigation problem, the euclidean distance to the
goal is an example of task-dependent information that can focus the search. Information of this sort
is usually called heuristic information and searches using it are called heuristic search methods.

4 DRDC Suffield TM 2005-242



The particular heuristic search method described here is the A∗ search. As in the generic graph
search, two lists of nodes are employed:

• Open - nodes that have been generated and have had the heuristic applied to them but which
have yet to be examined (i.e., had their successors generated). Open is actually a priority
queue in which the elements with the highest priority are those with the most promising
value of the heuristic function.

• Closed - nodes that have already been examined. These nodes need to be kept because in
searching a graph rather than a tree, each node generated must be checked to see that it has
not already been generated.

Heuristic information can be used to order the nodes on Open so that the search expands along
those sectors of the frontier thought to be most promising. In order to apply such an ordering, a
method of estimating the merit or promise of each node generated is required. Call this function
f to indicate that it is an approximation of a function f ∗ that gives the true merit of the node. For
many applications, it is convenient to define this function as a sum of two components g∗ and h.
The function g∗ is a measure of the cost of getting from the initial state to the current state. Note
that g∗ is not an estimate, it is the actual cost of traversing from the initial state along the optimal
path to the current node. The function h is an estimate of the additional cost of traversing from the
current node to the goal. This is the place where knowledge about the problem domain is exploited.
The combined function f , then, represents an estimate of the cost of getting from the initial state to
the goal along the path that generated the current node. If more than one path is generated for the
current node then the algorithm records the best one. Note that because g∗ and h are added, it is
important that h must be a measure of the cost of getting from the current node to the goal rather
than a measure of the goodness of the current node.

Each node must also store a backpointer to its parent or generating node in order to trace the optimal
path from the goal back to the start node, sstart. The pseudocode for the A∗ algorithm2 is presented
in Figure 2. When a better path has been found to a node r ∈ Closed , the improvement must be
propagated to node r’s children. Node r maintains pointers to its children; each child in turn points
to its children, until each branch either terminates with a node that is on Open or has no children.
The purpose of the propagate function is to migrate the new cost information down through the
Closed list. This is accomplished by performing a depth-first traversal of the underlying graph
starting at node r, changing each node’s g∗ function value (and hence f function value), terminating
each branch when a node with no children is reached or when a node is encountered for which an
equivalent or better path has already been found. This is an easy condition to check. Each node,
that has been explored, has a pointer back to its best known parent. As the propagation proceeds
from a node, check to see if the child points back to the node being explored as its best parent.
If so, continue the propagation. If not, then the child’s g∗ value already reflects a better path of
which it is a part. The propagation may stop here; but it’s possible that with the new value of the g∗

function being propagated downward, the path that is being followed may become better than the
path through the current best parent. Compare the two; if the path through the current parent is still

2Nilsson[3] refers to this algorithm as A , reserving the name A
∗ for the algorithm in which the heuristic function h

is a lower bound on the perfect estimator h
∗.
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A∗ Search()

Open.insert(sstart )1

Closed ← empty2

sstart.g* ← 03

sstart.f ← sstart.h4

repeat5

if Open is empty then6

return error

u← X ∈ {Open|X = arg minOpen(X .f )}7

Open.delete(u )8

Closed .insert(u )9

if u is the goal then10

return u

{Following the backpointers from u will recover the path.}

foreach s ∈ {Succ(u )} do11

s.parent ← u12

s.g* ← u.g* + cost(u, s)13

if s ∈ Open then14

sold ← Y ∈ {Open|s == Y }15

u.child(sold) //Make sold a child of u.16

if s.g* < sold.g* then17

sold.parent ← u //Make u the parent of sold.18

sold.g* ← s.g*19

sold.f ← sold.g* + sold.h20

delete(s)21

else22

if s ∈ Closed then23

{If a better path to sold is found, the improvement must be propagated
to sold’s children.}
sold ← Y ∈ {Closed |s == Y }24

u.child(sold)25

if s.g* < sold.g* then26

sold.parent ← u27

sold.g* ← X .g*28

sold.f ← sold.g* + sold.h29

propagate(sold )30

delete(s)31

else32

{s was not already on either Open or Closed .}
Open.insert(s)33

u.child(s)34

s.f ← s.g* + s.h35

until a goal node is found

Figure 2: A∗ Search
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propagate(r)

foreach s ∈ {Succ(r )} do

if s.parent == r then

{The current child, s, is a member of the candidate path being updated (i.e.,
its parent is node r).}
s.g* ← r .g* + cost(r , s)
s.f ← s.g* + s.h

propagate(s)

else

{The current child, s, is a member of another candidtate path (i.e., its best
parent is not node r). Compare the cost to arrive at this child via node r

against the cost to arrive via its best parent node.}
if r .g* + cost(r , s) < s.g* then

s.parent ← r

s.g* ← r .g* + cost(r , s)
s.f ← s.g* + s.h

propagate(s)

Figure 3: Propagate

better, stop the propagation. If the currently propagating path is better, reset the parent and continue
propagation. The pseudocode for the propagate function is presented in Figure 3.

Several interesting observations can be made concerning the A∗ algorithm. The first concerns the
role of the g∗ function. It lets one choose which node to expand next based not only on how good
the node itself looks (as measured by the h function) but also on how good the path is thus far.
By incorporating g∗ into f , the node that appears closest to the goal will not always be chosen as
the next node to expand. This is useful if the path itself is of concern. If it is not, and the manner
in which the goal is reached is of no concern, then g∗ can be defined to be always 0, thus always
choosing the node which appears to be closest to the goal. If the path involving the fewest steps is
desired, then the cost of going from a node to a successor can be set to a constant value, usually
1. If, on the other hand, the cheapest path is desired, then the g∗ function should reflect the actual
costs. Thus the A∗ algorithm can be used to determine a minimal-cost path or simply any path as
quickly as possible by varying the g∗ function.

The second observation involves the h function, the estimator of h∗, the distance of a node from
the goal. If h is a perfect estimator of h∗, then A∗ will converge immediately to the goal with no
search at all. The closer h is to the perfect estimator, the closer the convergence will be to the direct
approach. If, on the other hand, the value of h is always 0, the search will be controlled by g∗. If
the value of g∗ is 0, the search strategy will be completely random. If the value of g∗ is always 1,
the search will be breadth-first. All nodes on one level will have lower g∗ values, and thus lower
f values, than will all nodes on the next level. If, on the other hand, h is neither perfect nor 0 and
can be guaranteed to never overestimate h∗, then the A∗ algorithm is guaranteed to find an optimal
(as determined by g∗) path to a goal, if one exists. In practice, this is of very little use since the
only way to guarantee that h never overestimates h∗ is to set it to zero, resulting in a breadth-first
search, admissible but inefficient. In the autonomous vehicle navigation problem, however, if the
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shortest path is being sought, then an admissible heuristic is the Euclidean distance to the goal as it
will never overestimate the actual distance that must be travelled.

A third observation that can be made concerning the A∗ algorithm has to do with the relationship
between trees and graphs. The algorithm was stated in its most general form as it applies to graphs.
It can, of course, be simplified to apply to trees by not bothering to check whether a new node
already exists on Open or Closed . This makes it faster to generate nodes but may result in the
same search being conducted many times if nodes are often duplicated.

Under certain conditions, the A∗ algorithm can be shown to be optimal in that it generates the
fewest nodes in the process of finding a solution to a problem.
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3 D
∗
Lite Algorithm

The D∗Lite algorithm [1] was devised to solve the autonomous vehicle navigation problem. It
is an adaptation of Koenig’s Lifelong Planning A∗ (LPA∗ ) [5] which in turn is a derivation of
A∗ search incorporating incremental search. Incremental search methods reuse information from
previous searches to find solutions to similar problems much faster than is possible by solving each
search task from scratch.

By way of a concrete introduction to the problem, consider a goal-directed robot navigation task in
unknown terrain in which a robot always observes which of its adjacent cells are traversable and
then moves into one of them. From a start cell, the robot has to move to a goal cell. It always
computes the shortest (or least cost in some sense) path from its current location to the goal under
the assumption that cells with unexplored cells are traversable. It then follows this path until either
it successfully reaches the goal or it observes an untraversable cell and is forced to recompute a
shortest path from its current location to the goal. Figure 4, adapted from Koenig and Likhachev [1],
shows the goal distances of all traversable cells and the shortest path fom the robot’s current cell
to a goal cell. The top maze shows the initial path and the lower maze the situation after the robot
has moved and discovered that its initial planned path is blocked. All of the cells in the world, with
the exception of those adjacent to the start location, are unexplored before the robot has moved and
are assumed to be traversable; these cells are painted white. Some cells, however, are known to
impassable a priori, hence the robot plans an intial path around them; these cells are painted black.

In the top maze, the shortest path from the start location, S, to the goal location, G, is shown. This
is determined by greedily decreasing the goal distance. In the lower maze, the cells whose goal
distances have changed as a result of discovering that the planned path is blocked are shown in
gray. Note that the majority of these changed cells are irrelevant to the replanned path. D∗Lite

is an efficient replanner because it identifies those cells that have changed and are relevant to the
replanning task.

In what follows, the incremental development of the D∗Lite , starting from the LPA∗ , is presented.

3.1 Notation

Let S denote the finite set of vertices of the graph. Let Succ(s) ⊆ S denote the set of successors
of vertex s ∈ S and similarly, Pred(s) ⊆ S denote the predecessors of vertex s ∈ S. The cost of
moving from vertex sa to sb ∈ Succ(sa) is denoted by 0 < c (sa, sb) ≤ ∞ . The task of LPA∗ is
to maintain a shortest 3 path from a given start vertex sstart ∈ S to a given goal vertex sgoal ∈ S,
knowing both the topology of the graph and the current edge costs. The start distance of a vertex s

is the length of the shortest path from the start vertex sstart to the vertex s and is denoted by g∗(s).
3Although reference is made to the shortest path, it should be understood that LPA

∗ is equally applicable to finding
a path minimizing some other cost metric, as determined by the edge costs, not just distance.
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18 17 S 15 14 14 S 8 8 8 8 8 8 8 8 8 8

S S S S S 13 S 7 7 7 7 7 7 7 7 7 7

14 13 12 12 12 12 S 7 6 6 6 6 6 6 6 6 6

14 13 12 11 11 11 S 7 6 5 5 5 5 5 5 5 5

14 13 12 11 10 10 S 7 6 5 4 4 4 4 4 4 4

14 13 12 11 10 9 S S S 5 4 3 3 3 3 3 3

14 13 12 11 10 9 8 7 6 5 4 3 2 2 2 2 2

S S S S S 9 S S S 5 4 3 2 1 1 1 2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 G 1 2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 1 2

14 13 12 11 10 9 8 7 6 5 4 3 2 2 2 2 2

14 13 12 11 10 9 8 7 6 5 4 3 3 3 3 3 3

14 13 12 11 10 9 8 7 6 5 4 4 4 4 4 4 4

14 13 12 11 10 9 8 7 6 5 5 5 5 5 5 5 5

21 20 19 18 17 17 S 8 8 8 8 8 8 8 8 8 8

S S S S S 16 S 7 7 7 7 7 7 7 7 7 7

15 15 15 15 15 15 S 7 6 6 6 6 6 6 6 6 6

15 14 14 14 14 14 S 7 6 5 5 5 5 5 5 5 5

15 14 13 13 13 13 S 7 6 5 4 4 4 4 4 4 4

15 14 13 12 12 S′ S S S 5 4 3 3 3 3 3 3

15 14 13 12 11 11 S 7 6 5 4 3 2 2 2 2 2

S S S S S 10 S S S 5 4 3 2 1 1 1 2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 G 1 2

14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 1 2

14 13 12 11 10 9 8 7 6 5 4 3 2 2 2 2 2

14 13 12 11 10 9 8 7 6 5 4 3 3 3 3 3 3

14 13 12 11 10 9 8 7 6 5 4 4 4 4 4 4 4

14 13 12 11 10 9 8 7 6 5 5 5 5 5 5 5 5

Figure 4: Simple Maze Search
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3.2 Forward LPA
∗

The LPA∗ algorithm is shown in Figure 5. LPA∗ maintains an estimate g(s) of the start distance
g∗(s) of each vertex s, analogous to the g-values of an A∗ search. LPA∗ carries them forward
from search to search. LPA∗ also maintains a second kind of estimate of the start distances; the
rhs-values are one step lookahead values based on the g-values and thus potentially better informed
than the g-values. The rhs-values always satisfy the following relationship

rhs (s) =

{

0 if s = sstart

minsa∈Pred(s) (g (sa) + c (sa, s)) otherwise. (1)

A vertex is said to be locally consistent if and only if its g-value is equal to its rhs-value, otherwise
it is locally inconsistent. If and only if all vertices are locally consistent, then the g-values of
all vertices are equal to their start distances. However, LPA∗ does not make all vertices locally
consistent after some edge costs have changed. First, it does not recompute start distances that
have been computed before and have not changed. And, second, it uses heuristic information, in the
form of an estimate of the distance to the goal, to focus the search and updates only the g-values that
are relevant to the computation of a shortest path. The heuristic estimate h (s, sa) of the distance
between vertices s and sa must satisfy

h (s, sgoal)

{

= 0 if s = sgoal

≤ c (s, sa) + h (sa, sgoal) otherwise. (2)

for all vertices s ∈ S and sa ∈ Succ(s).

The LPA∗ algortihm is provably complete; it terminates and finds a shortest path if one exists. If
g (sgoal) = ∞ after the search then no path exists between sstart and sgoal. Otherwise, one can
trace a shortest path from sstart to any vertex su by, starting at vertex su, and always moving from
the current vertex s to any predecessor spred of s that minimizes g(spred) + c(spred, s) (ties can
be broken aritrarily) until sstart is reached. Thus, LPA∗ doesn’t explicitly maintain a search tree,
instead it uses the g-values to encode it implicitly.

3.2.1 Similarity to A
∗

Both A∗ and LPA∗ maintain a priority queue with heuristic information such that the most promis-
ing vertices are expanded first. LPA∗ ’s priority queue contains only the locally inconsistent ver-
tices, those whose g-values LPA∗ potentially needs to update to make them locally consistent. The
priority of a vertex s in the queue is its key value k (s), a vector of two components:

k(s) = [k1(s); k2(s)]
k1(s) = min(g(s), rhs(s) + h(s, sgoal))
k2(s) = min(g(s), rhs(s)).

(3)

The first component of the key, k1 (s), corresponds to the f -value, f(s) = g∗(s) + h(s, sgoal),
used by A∗ and the second component, k2(s), corresponds to the g-values used by A∗ . Keys are
compared (and maintained in the priority queue) in lexicographic order;

k(s) ≤ k(sa) iff
{

either k1(s) < k1(sa)
or k1(s) = k1(sa) and k2(s) ≤ k2(sa).

(4)
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CalculateKey(s)

1 return [min(g(s), rhs(s))+h(s, sgoal); min(g(s), rhs(s))]

Initialize()

2 U ← 0
3 for (s ∈ S) do rhs(s)← g(s)←∞
4 rhs(sstart)← 0
5 U .Insert(sstart, CalculateKey(sstart))

UpdateVertex(u)

6 if (u 6= sstart) then rhs(u)← mins∈Pred(u)(g(s)+c(s, u))
7 if (u ∈ U) then U .Remove(u)

8 if (g(u)6=rhs(u)) then U .Insert(u, CalculateKey(u))

ComputeShortestPath()

9 while (U .TopKey()< CalculateKey(sgoal) or rhs(sgoal)6=g(sgoal)) do

10 u← U .Pop()

11 if (g(u)>rhs(u)) then

12 g(u)←rhs(u)

13 for (s ∈ Succ(u)) do UpdateVertex(s)

14 else

15 g(u)←∞
16 for (s ∈ Succ(u) ∪ {u}) do UpdateVertex(s)

Main()

17 Initialize()

18 while (1) do

19 ComputeShortestPath()

20 Wait for changes in edge costs.
21 for (all directed edges (u, v) with changed costs) do

22 Update the edge cost c(u, v).
23 UpdateVertex(v)

Figure 5: Forward LPA∗ Search
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Thus, when LPA∗ expands the vertex in the priority queue with the smallest key value first. This
is similar to A∗ which also expands the vertex in the priority queue with the smallest f -value if
it breaks ties towards the smaller g-value. In addition, the keys of vertices expanded by LPA∗

are nondecreasing over time just like the f -values of vertices expanded by A∗ , if the heuristic
information is consistent.

3.2.2 Algorithm Description

The function Main() first calls Initialize() at {5 : 17} to start the search. Initialize() sets the g-values
of all vertices to infinity and the rhs-values according to Equation 1 at {5:3&4} . Initially, sstart is
the only consistent vertex and is inserted into the empty priority queue at {5:5} . This initialization
guarantees that the first call to ComputeShortestPath() performs an A∗ search, i.e., it expands the
same vertices as A∗ would, in exactly the same order. It is important to note than in an actual
implementation, Initialize() only needs to initialize those vertices that are encountered during the
search and not all of the vertices in the search space. This is significant because search spaces are
typically large and only a small fraction of the vertices contained therein may be visited during the
search. The member function TopKey() returns the key value of the vertex at the top of the priority
queue or [∞;∞] if the queue is empty, and Pop() removes and returns the vertex with the minimum
key from the priority queue.

At this point, LPA∗ then waits for changes in the edge costs at {5 : 20} . If any edge costs have
changed, UpdateVertex() is called to recompute the rhs-values and keys of the vertices potentially
affected by the changed edge costs. In addition, if any of the vertices potentially affected have
become locally consistent or inconsistent, their membership in the priority queue is adjusted.

The member functions Remove() at {5 : 7} and Insert() at {5 : 8} , called by UpdateVertex() ,
remove a vertex from and insert a vertex onto, respectively, the priority queue.

Finally, ComputeShortestPath() at {5 : 19} is called which repeatedly expands locally inconsistent
vertices in the order of their priorities. A locally inconsistent vertex is called locally overconsistent
if and only if g(s) > rhs(s). A locally inconsistent vertex is called locally underconsistent if and
only if g(s) < rhs(s). When ComputeShortestPath() expands a locally overconsistent vertex at
{5 : 12&13} , it sets its g-value equal to its rhs-value, making it consistent. When expanding a
locally underconsistent vertex at {5 : 15&16} , ComputeShortestPath() sets its g-value to infinity.
This makes the vertex either locally consistent or overconsistent. If the expanded vertex was locally
overconsistent, then the change of its g-value can affect the local consistency of its successors.
Similarly, if the expanded vertex was locally underconsistent, then the change of its g-value can
affect the local consistency of itself and its successors. Thus, ComputeShortestPath() must invoke
UpdateVertex() for all of the vertices potentially affected by the change in their g-values, modifying
their rhs-values, checking their consistency, and adding them to or removing them from the priority
queue as appropriate at {5 : 6 − 8} . ComputeShortestPath() expands vertices until sgoal is locally
consistent or until the key of the next vertex to be expanded is no less than that of sgoal. This is
similar to A∗ that expands vertices until it expands sgoal at which point the g-value of sgoal equals
its start distance and the f -value of the node to expand next is no less than the f -value of sgoal.

If g(sgoal) = ∞ after the search, then there is no path from sstart to sgoal. Otherwise one can trace
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CalculateKey(s)

1 return [min(g(s), rhs(s))+h(sstart, s); min(g(s), rhs(s))]

Initialize()

2 U ← 0
3 for (s ∈ S) do rhs(s)← g(s)←∞
4 rhs(sgoal)← 0
5 U .Insert(sgoal, CalculateKey(sgoal))

UpdateVertex(u)

6 if (u 6= sgoal) then rhs(u)← mins∈Succ(u)(c(u, s)+g(s))
7 if (u ∈ U) then U .Remove(u)

8 if (g(u)6=rhs(u)) then U .Insert(u, CalculateKey(u))

ComputeShortestPath()

9 while (U .TopKey < CalculateKey(sstart) or rhs(sstart)6=g(sstart)) do

10 u← U .Pop()

11 if (g(u)>rhs(u)) then

12 g(u)←rhs(u)

13 for (s ∈ Pred(u)) do UpdateVertex(s)

14 else

15 g(u)←∞
16 for (s ∈ Pred(u) ∪ {u}) do UpdateVertex(s)

Main()

17 Initialize()

18 while (1) do

19 ComputeShortestPath()

20 Wait for changes in edge costs.
21 for (all directed edges (u, v) with changed costs) do

22 Update the edge cost c(u, v).
23 UpdateVertex(u)

Figure 6: Backward LPA∗ Search

back a shortest path from sstart to sgoal by always transitioning from the current vertex s, starting at
sgoal, to any predecessor spred that minimizes g(spred) + c(spred, s), breaking ties arbitrarily, until
sstart is reached. This is similar to A∗ if it does not use backpointers.

3.3 Backward LPA
∗

It was pointed out in the simple maze search example, that during execution of goal-directed nav-
igation as the robot moves towards the goal and discovers obstacles, many goal distances remain
unchanged. By reversing the search direction in LPA∗ , we can take advantage of this situation to
improve the efficiency of the search. In the forward version of LPA∗ , presented in Figure 5, the
search starts with the start vertex and proceeds to the goal vertex and thus its g-values estimate the
start distances. The backward version, presented in Figure 6, searches in the opposite direction,
starting with the goal location and proceeding to the start location; its g-values are estimates of the
goal distances. The backward version is derived from the original by reversing all edges of the graph
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and exchanging the start and goal vertices. The heuristic information h(s, sa) now must satisfy

h (sstart, s)

{

= 0 if s = sstart

≤ c(sa, s) + h(sstart, sa) otherwise. (5)

for all vertices s ∈ S and sa ∈ Pred(s). Following execution of the backward LPA∗ , if
g(sstart) = ∞ then no path exists between sstart and sgoal. Otherwise, one can trace a shortest
path from sstart to any vertex su by always moving from the current vertex s, starting at sstart, to
any successor sa of s that minimizes c(s, sa) + g(sa), until su is reached.

3.4 D
∗
LiteBasic

D∗LiteBasic is built on the backward LPA∗ algorithm. It repeatedly determines shortest paths
between the current vertex and a goal vertex in the face of changing edge costs as the robot moves
towards the goal vertex. As with the LPA∗ variants, it makes no assumptions about the manner in
which the edge costs change; they can increase or decrease, in close poximity to the robot or far from
it, and they can change as a result of sensing a change in the world or simply by revising a priori
estimates. As a result, D∗LiteBasic can be used to solve the goal-directed navigation problem
in unknown terrain. The terrain is modeled as a directed graph with edge costs representing the
cost of edge traversal; unexplored edges have a small nonnegative cost and untraversable edges
have a large positive cost. The goal-directed navigation strategy can be implemented by applying
D∗LiteBasic to this graph with sstart being the current vertex of the robot and sgoal the goal
vertex. In implementing D∗LiteBasic , shown in Figure 7, to solve the goal-directed navigation
problem in unknown terrain, the main routine was extended to take into account the movement of
the robot.

Since the robot moves and thus changes sstart, the heuristic estimate needs to satisfy

h (sstart, s)

{

= 0 if s = sstart

≤ c(sa, s) + h(sstart, sa) otherwise. (6)

for all vertices s ∈ S and sa ∈ Pred(s) and for all sstart ∈ S. This only changes the priorities
of the vertices in the priority queue but does not affect which vertices are consistent and therefore
the makeup of the priority queue itself is unchanged. When an edge cost change has occurred,
D∗LiteBasic must update the affected vertices and then perform a reordering of the priority queue.
Given that the number of vertices on the queue could be very large, this could be a very expensive
operation. Many of the vertices affected may also be irrelevant to the evolution of the planned path.

3.5 D
∗
Lite

An improvement to D∗LiteBasic , shown in Figure 8, borrows from D∗ [6] a method to avoid
repeatedly reordering the priority queue. After the robot has moved from vertex s to vertex sa

where it detects changes in edge costs, the first element of the priority keys can have decreased
by at most h(s, sa), the heuristic estimate of the distance from vertex s to vertex sa. The second
component of the key does not depend on the heuristic estimate and is thus unchanged. If h(s, sa)
was subtracted from the first element of the priorities of each of the vertices in the priority queue,
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CalculateKey(s)

1 return [min(g(s), rhs(s))+h(sstart, s); min(g(s), rhs(s))]

Initialize()

2 U ← 0
3 for (s ∈ S) do rhs(s)← g(s)←∞
4 rhs(sgoal)← 0
5 U .Insert(sgoal, CalculateKey(sgoal))

UpdateVertex(u)

6 if (u 6= sgoal) then rhs(u)← mins∈Succ(u)(c(u, s)+g(s))
7 if (u ∈ U) then U .Remove(u)

8 if (g(u)6=rhs(u)) then U .Insert(u, CalculateKey(u))

ComputeShortestPath()

9 while (U .TopKey < CalculateKey(sstart) or rhs(sstart)6=g(sstart)) do

10 u← U .Pop()

11 if (g(u)>rhs(u)) then

12 g(u)←rhs(u)

13 for (s ∈ Pred(u)) do UpdateVertex(s)

14 else

15 g(u)←∞
16 for (s ∈ Pred(u) ∪ {u}) do UpdateVertex(s)

Main()

17 Initialize()

18 ComputeShortestPath()

19 while (sstart 6= sgoal) do

20 // if (g(sstart)=∞) then there is no known path

21 sstart ← arg mins∈Succ(sstart)(c(sstart, s)+g(s))
22 Move to sstart

23 Scan the graph for changed edge costs
24 if (any edge costs changed) then

25 for (all directed edges (u, v) with changed costs) do

26 Update the edge cost c(u, v)

27 UpdateVertex(u)

28 for (s ∈ U) do U .Update(s, CalculateKey(s))

29 ComputeShortestPath()

Figure 7: D∗Lite Basic Search
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CalculateKey(s)

1 return [min(g(s), rhs(s))+h(sstart, s)+km; min(g(s), rhs(s))]

Initialize()

2 U ← 0
3 km ← 0
4 for (s ∈ S) do rhs(s)← g(s)←∞
5 rhs(sgoal)← 0
6 U .Insert(sgoal, CalculateKey(sgoal))

UpdateVertex(u)

7 if (u 6= sgoal) then rhs(u)← mins∈Succ(u)(c(u, s)+g(s))
8 if (u ∈ U) then U .Remove(u)

9 if (g(u)6=rhs(u)) then U .Insert(u, CalculateKey(u))

ComputeShortestPath()

9 while (U .TopKey < CalculateKey(sstart) or rhs(sstart)6=g(sstart)) do

11 kold ← U .TopKey()

12 u← U .Pop()

13 if (kold < CalculateKey(u)) then

14 U .Insert(u, CalculateKey(u))

else

15 if (g(u)>rhs(u)) then

16 g(u)←rhs(u)

17 for (s ∈ Pred(u)) do UpdateVertex(s)

18 else

19 g(u)←∞
20 for (s ∈ Pred(u) ∪ {u}) do UpdateVertex(s)

Main()
21 slast = sstart

22 Initialize()

23 ComputeShortestPath()

24 while (sstart 6= sgoal) do

25 // if (g(sstart)=∞) then there is no known path

26 sstart ← arg mins∈Succ(sstart)(c(sstart, s)+g(s))
27 Move to sstart

28 Scan the graph for changed edge costs
29 if (any edge costs changed) then

30 km = km+h(slast, sstart)

31 slast = sstart

32 for (all directed edges (u, v) with changed costs) do

33 Update the edge cost c(u, v)

34 UpdateVertex(u)

35 ComputeShortestPath()

Figure 8: D∗Lite Search
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one would obtain lower bounds on the priorities used in the D∗LiteBasic algorithm. However,
since h(s, sa) is the same value for each vertex in the queue, it’s not necessary to actually perform
the subtraction since it doesn’t affect the order of vertices in the queue. Then, when new priorities
are computed, their first components will be h(s, sa) too small relative to the prioirities already in
the priority queue. Thus, h(s, sa) must be added to the first component of the priority as each new
vertex is added to the priority queue. When the robot moves again and detects further edge cost
changes, the new h(s, sa) plus the previous value must be added. A new variable km is used to
hold this running sum (at {8:30} ) and whenever new priorities are computed km must be added to
the first component (in CalculateKey() at {8 : 1} ). In this way, the order of vertices in the priority
queue is unaffected when the robot moves and the priority queue doesn’t need to be reordered. The
priorities, on the other hand, after km has been added to the first component, will always be lower
bounds on the priorities used in D∗LiteBasic .
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4 Implementation

The D∗Lite algorithm is coded in C++ as a template class, DStarLiteSearch . The template param-
eter, class State , is a user-defined type encapsulating the state variables of an element in the search
space. Internal to the DStarLiteSearch class, an element of the search space is represented by an
instance of the class Node . The Node class encapsulates:

• the g, rhs, and h values,

• the key values, computed from the previous three, used to order the priority queue,

• a pointer to the State class instance to which this Node corresponds,

• a backpointer to the predecessor of this instance, and

• a pointer to a drawable representation so that the developing path can be displayed.

In this way, there is a clear separation between the workings of the D∗Lite algorithm and the
representation of the planning space. The DStarLiteSearch class needs to know very little about its
template parameter, class State , in order to update path costs and expand the search. The State
class only needs to provide functions to:

• compute the heuristic estimate of the distance from the current node to the start node4,

• determine the neighbours of this State , and

• return the a priori and sensed costs of moving to an adjacent State .

Currently, the path planner maintains a global traversability map, updated as the robot moves to-
wards the goal; the State class interfaces with this global map and gathers traversal costs from
it.

Defence R&D Canada’s D∗Lite implementation departs from Koenig’s in a number of respects.
In this implementation, backpointers are employed, simplifying walking the planned path. Once
the start node, the robot’s current location, has been reached, backpointers identify the optimal path
to the goal. This avoids the recomputation, inherent in Koenig’s description because it lacks back-
pointers, associated with walking a planned path. In addition to the open list, Open , D∗Lite main-
tains a closed list, Closed , as in A∗ search. Both lists are implemented as std::vector<Node *>

instances. D∗Lite maintains Open as a priority queue (a minimum heap) using the Standard
Template Library[7] functions push heap , pop heap , and a binary functor, HeapCompare() , for
pairwise comparison of the key values. Examined nodes that are no longer candidates for expan-
sion are removed to Closed . D∗Lite dynamically allocates Node instances using a fixed block
size allocator to minimize memory allocation expense. Every Node * pointer is either a member
of Open and a candidate for further expansion or on Closed and may be placed on Open if its
costs change. This minimizes the number of allocations to find a path to the goal and simplifies
deallocation.

4Recall that D
∗

Lite ’s search direction is reversed from that in A
∗ search.
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Separating the D∗Lite algorithm from the planning representation simplifies experimentation with
alternate planning spaces. An abstract planning space also eases the develoment of more sophis-
ticated planners incorporating either additional dimensions or more complex node traversal costs.
For example, incorporating vehicle dynamics to build a dynamics-aware path planner.
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5 Testing

In an effort to gauge the performance of the D∗Lite in solving the autonomous vehicle navigation
problem in unknown terrain, a number of simulations were conducted in a rectangular 2D grid
world. These included examinations of the effect of the size of the world and the fraction of free
space in the world. The performance of the D∗Lite algorithm is compared to that of repeated A∗

searches.

Grid World

The grid world is eight-connected, the robot can move from its current cell forward or backward,
left or right, or diagonally into an adjacent free cell. If a neighbour cell can not be reached, the cost
of traversal to that cell is 10; otherwise, the cost of traversal is ≤ 10, in fact for these tests, it is 1. It
may be known a priori that a neighour cell can not be reached, i.e., the neighbour cell in question
is an obstacle, or it may be discovered to be an obstacle as the robot approaches it. To provide this
capability, each cell of the grid world maintains two arrays of traversal costs. The first contains
the a priori cost of traversal that would be incurred by the robot in moving from this cell to each
of its neighbour cells. The second contains the costs of traversal that can be sensed. As the robot
moves, it senses the costs of traversal to the cells within its sensing radius of its current location by
querying those cells for their sensed costs of traversal. For all of the simulations described here, the
sensing radius was set to its default value of 1.

To construct a grid world instance, an array of traversability values is generated automatically in
a pseudorandom fashion while maintaining a specific fraction of traversable cells. Two arrays are
actually used; the first, the plan array, contains a priori traversability information and the second,
the sense array, will contain modified traversability information that the robot can sense as it moves
in the world. Initially, the second is just a copy of the first. The sense array is edited manually to
provide additional obstacles that can be discovered as the robot moves. The plan and sense arrays
are then used to generate each cell’s cost of traversal arrays, as described above. Each time the
simulation is started, the grid world is constructed anew from the plan and sense arrays.

The start and goal locations for these tests were set to the lower left cell and the upper right cell
of the grid world, respectively. For a traversable fraction of ≤ 50%, the likelihood of generating
a world in which no path exists between the start and goal locations is significant. Grid worlds in
which this was the case were edited manually to provide a clear path in proximity to the start and
goal locations.

Discovered obstacles are provided in a two-step process. First, an initial path was planned between
start and goal. Then a location on the path was chosen and manually marked as a discovered
obstacle. When the planner is rerun, the robot will discover that its initial path is blocked and will
be forced to replan.
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Performance Metrics

Both A∗ and D∗Lite maintain a priority queue with the most promising node for expansion always
at the front of the queue. In this implementation, the underlying representation of the priority queue
is a heap. Although this is an efficient representation, heap operations are nonetheless expensive.
Both push heap and pop heap require reordering the heap, typically an O(n log2 n) operation[8].
For A∗ and similar searches that maintain a priority queue, one can reasonably expect that the num-
ber of node expansions (equivalent to the number of insertions and hence reorderings of the priority
queue) would be a good metric for comparison of algorithm performance. Searching Closed to
determine if a node has already been instantiated is also an expensive operation, O(n). A direct
measure of the length of time spent searching Closed isn’t available.5 However, every node allo-
cated is either on the Open or Closed , so the number of allocations gives some indication of the
level of effort required to obtain a solution to a search problem and thus provides another useful
metric for comparison of algorithm performance. In the tests described in the following sections,
the number of node expansions and the total number of node allocations required by D∗Lite and
repeated A∗ searches are compared.

Effect of Traversable Fraction

To examine the effect on traversable fraction on path planning algorithm performance, 100x100
grid worlds were constructed with three traversable fractions: 50%, 60%, and 70%. Five replicates
were generated for each traversable fraction. For each grid world, a single discovered obstacle was
provided to force replanning using the method described in section 5. With repeated A∗ search, an
initial path was planned, then the planner was restarted from the point at which the obstacle was
discovered. The number of node expansions and allocations is the sum of the values from both the
initial and the replanning searches. The D∗Lite planner was simply run from the start location to
the goal, allowed to discover the obstacle and forced to replan. The number of node expansions and
allocations for the D∗Lite planner include the replanning episode, but azise from a single execution
of the planner. In Figure 9, the number of node expansions and node allocations in a search in a
100x100 grid world with a single discovered obstacle are plotted for three traversable fractions:
50%, 60%, and 70%. Each datum is the average of the five replicates and the error bar represents
±1 sample standard deviation.

As the traversable fraction increases, both the number of nodes expanded and allocated decreases.
This simply reflects the greater ease with which a path can be planned when less of the terrain is
impassable. With a 100x100 grid world and only a single discovered obstacle, there appears to be
little difference in the performance of the D∗Lite and repeated A∗ searches, measured with these
performance metrics. The number of node expansions required is essentially the same for both
D∗Lite and repeated A∗ . The only significant difference is the higher number of node allocations
required by repeated A∗ in comparison to D∗Lite . Again, this is to be expected since D∗Lite and
A∗ plan exactly the same initial path. After encountering the discovered obstacle, D∗Lite retains
all of the nodes allocated during the initial search, and, in particular, the nodes on the segment of
the initial planned path lying beyond the discovered obstruction. During the replanning episode,

5An oversight; it should have been recorded.
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Figure 9: Effect of traversable fraction on the number of node expansions and allocations for a
100x100 grid world.
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Figure 10: Effect of grid size on the number of node expansions and allocations.

D∗Lite only need expand enough nodes to find a traversable connection between the robot’s posi-
tion at the point it discovered that the path was obstructed and a point beyond the obstruction on the
minimal cost tree rooted at the goal node. Whereas the planner using a repeated A∗ search during
replanning must find a completely new path from the point at which the obstacle is detected. Thus
with repeated A∗ searches many nodes are reallocated during a replanning episode.

Effect of Grid World Size

The grid world used in the previous section to examine the effect of the traversable fraction was
quite small, only 100x100 cells. To determine the effect of grid size on algorithm peformance,
path planning searches were conducted on three square grids: 100x100, 200x200, and 500x500. As
in the traversability fraction simulations, five replicates were used. In this case, however, a path
was planned in each replicate grid world, first with a single discovered obstacle and then repeated
with an additional discovered obstacle. The results of these tests are shown in Figure 10. With an
increasing grid size, both the number of node expansions and the number of allocations during the
search are increased. This is the case for both D∗Lite and repeated A∗ searches. The numbers
of node expansions and allocations required in repeated A∗ searches in a 500x500 grid world are
both clearly significantly higher than those required by D∗Lite . With the addition of a second
discovered obstacle, this effect is even more pronounced. However, with the addition of a second
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Figure 11: Effect of the number of obstacles discovered during search in a 500x500 grid world on
the number of node expansions and allocations.

obstacle the numbers of node expansions and allocations required in the D∗Lite search appeared
not to change significantly.

Multiple Discovered Obstacles

To examine the effect of multiple discovered obstacles on the algorithm performance in greater
detail, path planning searches were conducted on 500x500 grid worlds with up to four discovered
obstacles. As with the other tests, five replicates of each grid world were used. The number of node
expansions and allocations for zero through four discovered obstacles are shown in Figure 11.

The number of node expansions required increased with the number of discovered obstacles in a
linear fashion for both repeated A∗ and D∗Lite searches, however, the rate of increase observed
with repeated A∗ searches was twice that observed with D∗Lite . The number of node allocations
increased with the number of discovered obstacles with repeated A∗ searches as expected from the
discussion in section 5. In contrast, the number of node allocations required with D∗Lite appeared
to be almost constant.
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6 Discussion and Conclusions

D∗ [6] has been reported to solve the robot navigation problem in unknown terrain one to two orders
of magnitude faster than repeated A∗ planning from scratch when the previously planned path is
discovered to be blocked. Similar or slightly better performance has been reported for D∗Lite [1].

A direct comparison with the results reported in this paper is not possible because execution times
were not recorded. Also, the nature of the grid worlds used here may invalidate a direct comparison.
The pseudorandom placement of impassable cells, while maintaining a specified fraction of the total
traversable, results in grid worlds that appear uniformly cluttered. There are neither large discrete
obstacles nor large open spaces, except those generated by chance and this doesn’t happen often.
In particular, there aren’t complex structures like cul de sacs that do occur in the real world. The
uniform nature of the grid worlds and the fact that the states of the vast majority of the cells are
known a priori (Only a few cells were changed to created obstacles that would be discovered as
the robot follows the initial path to the goal.) resulted in an overly large number of nodes being
examined during the initial planning episode. This is in stark contrast to most real world scenarios
in which the granularity of a priori knowledge of the environment, consisting of large areas of the
terrain assumed to be traversable interspersed with discrete obstacles, would be high. In this case,
an initial planning epsiode would result in significantly fewer nodes having been examined since,
with only a relatively few obstacles known a priori, the majority of those nodes examined would
have been assumed to be traversable. Not until the robot actually traced the planned path would
the previously unknown obstacles be discovered. During replanning, additional nodes would need
to be examined, but in general, one could expect that more nodes would be examined during a
traverse of a uniformly cluttered grid world than would be examined during a traverse of grid world
of comparable size generated from real world terrain.

Regardless of the nature of the grid worlds used here, the same conclusion can be drawn, D∗Lite is
much more efficient than repeated A∗ searches in solving the robot navigation problem is partially
known terrain.

A major question remains unanswered; how well will the D∗Lite algorithm scale to a real world
problem? A 1 km square discretized with 0.5 m resolution, currently the resolution of the Raptor
vehicle’s traversability map, results in a planning grid with 4 × 106 nodes; much larger than the
grids investigated here. Unfortunately, this implementation of D∗Lite has not yet been tested on
a real platform negotiating real terrain. Due to a problem with the stability and accuracy of the
heading estimation on the Raptor vehicle, consecutive local traversability maps obtained with the
vehicle driving slowly forward in a straight line did not align at all well in the world frame. D∗Lite

was thus not able to build a coherent internal world map using the local traversability map data
and without a coherent internal world map, path planning is impossible. If it turns out that scaling
is a problem, i.e., D∗Lite isn’t able to provide planning information in a timely manner, alternate
world representations or simply a coarser planning space resolution may provide some help. Framed
quadtrees[9], which effectively compress the planning space, have proven to be particularly useful
representations for sparse environments.
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7 Future Work

There remains much to be done to validate this implementation of D∗Lite and to determine if it
will ultimately prove to be useful.

First, the tests described in this paper should be repeated, recording execution times to allow a direct
comparison with the performance of other implementations of D∗Lite and similar path planners.
Second, more realistic grid worlds with larger discrete obstacles should be employed. In addi-
tion, the effect of the proportion of the environment that is known a priori on the performance of
D∗Lite should be determined. And, most importantly, the algorithm needs to be exercised on a real
vehicle negotiating real terrain.

If D∗Lite scales well to the real world problem, the potential exists that it could be extended.
There’s no reason to restrict the D∗Lite algortihm to the domain of a grid world. Like A∗ , it’s
domain is not the physical model or an abstraction of it, such as an eight connected grid world
or occupancy grid, it’s the set of transitions from one state in the world to another state in the
world. And it’s the cost of these transitions that are used in the planning heuristic. One could in
principle plan using as the robot’s adjacent states the set of states that are reachable (kinematically
or dynamically). For instance, at time t, the robot’s adjacent states could be the set of states whose
predicted locations are the endpoints, at some time t + δt, of the path segments resulting from a
discrete set of steering angles.
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