
Using software analysis tools to

understand military applications
A qualitative study

P. Charland
D. Dessureault
M. Lizotte
D. Ouellet
C. Nécaille
DRDC Valcartier

Defence R&D Canada – Valcartier
Technical Memorandum

DRDC Valcartier TM 2005-425
August 2006

Using software analysis tools to
understand military applications
A qualitative study

P. Charland
D. Dessureault
M. Lizotte
D. Ouellet
C. Nécaille
DRDC Valcartier

Defence R&D Canada - Valcartier
Technical Memorandum
DRDC Valcartier TM 2005-425
August 2006

Author

Philippe Charland

Approved by

Guy Turcotte

Head System of Systems

Approved for Release by

Gilles Bérubé

Chief Scientist

© Her Majesty the Queen as represented by the Minister of National Defence, 2006

© Sa majesté la reine, représentée par le ministre de la Défense nationale, 2006

Abstract

Although some studies have already been conducted to evaluate the effect of reverse
engineering and visualization tools on programmers’ understanding, most of them
were conducted under conditions which do not prevail in the industry. They involved
undergraduate and graduate students performing comprehension tasks on relatively
small scale programs. Also, they either focused exclusively on the static or dynamic
aspect of the software under examination. This technical memorandum describes the
design and reports the observations of a qualitative study conducted to assess the value
added by one reverse engineering and two dynamic analysis tools. The software
examined were three large scale military applications written in C++ and Java. In this
study, five participants had to perform 31 comprehension tasks, taking into
consideration both the static and dynamic aspects of the applications under
examination. The tasks were intended to be as close as possible to the ones performed
during an understanding effort at the architectural level on large scale software.
Although it was observed that the tools aided the participants to understand the
applications under examination, some deficiencies were observed. These stem from
the fact that the tools do not always provide the appropriate viewpoints, abstraction
levels, and filters needed to understand the architecture of applications of considerable
size. This is especially true in the case of the dynamic tools.

Résumé

Bien qu’un certain nombre d’études aient déjà été menées afin d’évaluer l’effet des
outils de rétro-ingénierie et de visualisation sur la compréhension des programmeurs,
la plupart d’entre elles ont été accomplies dans des conditions qui ne prévalent pas
dans l’industrie. Elles impliquaient des étudiants de premier et de deuxième cycle
exécutant des tâches de compréhension sur des programmes relativement de petite
taille. De plus, ces études portaient exclusivement soit sur l’aspect statique ou
dynamique des logiciels examinés. Le présent mémorandum technique décrit la
conception et rend compte des observations d’une étude qualitative qui a été menée
afin d’évaluer la valeur ajoutée d’un outil de rétro-ingénierie et de deux outils
d’analyse dynamique. Les logiciels examinés par ceux-ci étaient trois applications
militaires de grande taille écrites en C++ et en Java. Lors de cette étude, cinq
participants ont eu à accomplir 31 tâches de compréhension, prenant en considération
tant l’aspect statique et dynamique des applications sous observation. Ces tâches
avaient comme intention d’être aussi près que possible de celles qui sont exécutées
lors d’un effort typique de compréhension au niveau de l’architecture sur des logiciels
de grande taille. Bien qu’il fût observé que les outils aient aidé les participants à
comprendre les applications à l’étude, quelques points faibles ont été observés. Ces
derniers découlent du fait que les outils ne fournissent pas toujours les points de vue
appropriés ainsi que les niveaux d’abstraction et filtres requis pour comprendre
l’architecture d’applications de taille considérable. Ceci est particulièrement vrai dans
le cas des outils dynamiques.

DRDC Valcartier TM 2005-425 i

This page intentionally left blank.

ii DRDC Valcartier TM 2005-425

Executive Summary

Over the years, the needs of the Canadian Forces (CF) for systems interoperability
have significantly increased. As the CF demand greater systems interoperability, their
software architects need techniques and tools to comprehend the architecture of
existing systems before making them interoperate in order to build a system of
systems. There already exist a variety of commercial and academic tools that can be
used to assist architects in recovering the architecture of existing systems. However,
no study has been conducted to assess the impact of these tools on the understanding
of users performing comprehension tasks under conditions that prevail in the industry.
This technical memorandum describes the design and reports the observations of a
qualitative study conducted in such conditions. Its objective was to assess the value
added by one reverse engineering and two dynamic analysis tools on the understanding
of architects performing comprehension tasks on large scale software. In this study,
five participants with experience in software development were observed performing
31 high level comprehension tasks on three military applications written in C++ and
Java. The observations that were made are as follows:

1. Although the three tools helped to understand the different applications, the level
of comprehension achieved by the participants at the end of the study was not only
due to their use. It was also attributable to the fact that the participants studied the
applications domain and performed the comprehension tasks by first using an
Integrated Development Environment (IDE).

2. The three tools provided information which would have been very difficult to
obtain otherwise. For example, the dependency hierarchy in Headway reView
conveyed to the participants a mental map of the applications under examination.
Also, the suite of software metrics provided with Headway reView allowed
participants to obtain accurate numbers characterizing properties of the source
code very quickly.

3. In spite of their advantages, the tools have some deficiencies. Their biggest
drawback is that they do not always provide the appropriate viewpoints,
abstraction levels, and filters needed to understand the architecture of an
application. This is especially true in the case of the dynamic tools. The
participants were quickly swamped by a mass of irrelevant low level details.

4. Meaningful names chosen for components, classes, and methods had a
considerable positive impact on the comprehension of the participants.

5. A consistent naming convention used throughout the applications source code for
components and classes also facilitated greatly their understanding.

6. Some tasks were more useful than others to achieve the objective of the study and
comprehend the different applications at a high level. These were the ones
involving clustering, abstractness, and the overall structure of the applications.

DRDC Valcartier TM 2005-425 iii

7. One approach which ended to be very useful for the comprehension consisted of
combining static and dynamic analysis as well as information about the operation
of the applications and the naming conventions.

8. The study allowed to validate some assumptions which were made at the time the
comprehension tasks were designed. These related to the number of dependencies
between components in an application.

9. Some problems experienced with the tools are inherent to the programming
languages. Unlike Java, the directory structure of a C++ program does not always
correspond to its logical structure. This complicates the understanding and was
confirmed in the study. It has been more difficult to achieve the same
comprehension level for the C++ application than for the ones in Java.

Following this qualitative study and using the theoretical and practical knowledge
acquired through it, the next step will consist of developing a prototype. This
prototype will address the limitations identified concerning the dynamic aspect. It will
therefore provide the appropriate viewpoints, abstraction levels, and filters required for
the visualization of dynamic information at the architectural level. These dynamic
views will be integrated into an IDE providing static views of the source code. In
addition, the prototype will offer functionalities to facilitate the mapping of source
code elements to their corresponding concept of the application domain.

Charland, P., Dessureault, D., Lizotte M., Ouellet, D., and Nécaille, C. 2006. Using
Software Analysis Tools to Understand Military Applications: A Qualitative Study.
DRDC Valcartier TM 2005-425. Defence R&D Canada - Valcartier.

iv DRDC Valcartier TM 2005-425

Sommaire

Au cours des années, les besoins des Forces canadiennes (FC) en matière
d’interopérabilité de systèmes ont augmenté de façon significative. Alors que les FC
exigent plus d’interopérabilité entre les systèmes, leurs architectes logiciels ont besoin
de techniques et d’outils pour comprendre l’architecture des systèmes existants avant
de les faire interopérer pour construire un système de systèmes. Il existe déjà un grand
nombre d’outils commerciaux et universitaires qui peuvent être utilisés afin d’aider les
architectes à récupérer l’architecture de systèmes existants. Cependant, aucune étude
n’a été menée afin d’évaluer l’impact de ces outils sur des usagers accomplissant des
tâches de compréhensions dans des conditions qui prévalent dans l’industrie. Le
présent mémorandum technique décrit la conception et rend compte des observations
d’une étude qualitative qui a été menée dans de telles conditions. Son objectif était
d’évaluer la valeur ajoutée d’un outil de rétro-ingénierie et de deux outils d’analyse
dynamique sur la compréhension d’architectes exécutant des tâches de compréhension
sur des logiciels de grande taille. Lors de cette étude, cinq participants avec de
l’expérience en développement logiciel ont été observés en train d’accomplir 31 tâches
de compréhension à haut niveau sur trois applications militaires écrites en C++ et Java.
Les observations qui ont été faites vont comme suit :

1. Bien que les trois outils aient aidé à comprendre les différentes applications, le
niveau de compréhension atteint par les participants à la fin de l’étude n’était pas
seulement dû à leur utilisation. Il était aussi attribuable au fait que les participants
aient étudié le domaine des applications et aient accompli les tâches de
compréhension en utilisant d’abord un environnement de développement intégré
(EDI).

2. Les trois outils ont fourni de l’information qui aurait été très difficile d’obtenir
autrement. Par exemple, la dépendance hiérarchique d’Headway reView a donné
aux participants une carte mentale des applications à l’étude. De plus, la suite de
métriques logicielles fournie avec Headway reView a permis aux participants
d’extraire des chiffres exacts caractérisant les propriétés du code source très
rapidement.

3. En dépit de leurs avantages, les outils ont un certain nombre de points faibles.
Leur plus gros inconvénient est qu’ils ne fournissent pas toujours les points de
vue appropriés ainsi que les niveaux d’abstraction et filtres requis afin de
comprendre l’architecture d’une application. Ceci est surtout vrai dans le cas des
outils dynamiques. Les participants ont été rapidement noyés par une grande
quantité de détails non pertinents de très bas niveau.

4. Des noms significatifs choisis pour les composantes, classes et méthodes ont eu
un impact positif considérable sur la compréhension des participants.

DRDC Valcartier TM 2005-425 v

5. Une nomenclature constante utilisée dans le code source des applications pour les
composantes et les classes a également facilité considérablement leur
compréhension.

6. Un certain nombre de tâches ont été plus utiles que d’autres pour atteindre les
objectifs de l’étude et comprendre les différentes applications à un haut niveau.
Celles-ci étaient les tâches impliquant des regroupements, des abstractions ainsi
que la structure globale des applications.

7. Une approche qui s’avéra être très utile pour la compréhension consistait à
combiner l’analyse statique et dynamique ainsi que l’information sur le
fonctionnement des applications et la nomenclature utilisée.

8. L’étude a permis de valider certaines hypothèses qui avaient été formulées lors de
l’élaboration des tâches de compréhension. Celles-ci étaient reliées au nombre de
dépendances entre les composantes d’une application.

9. Certains problèmes rencontrés avec les outils sont inhérents aux langages de
programmation. Contrairement à Java, la structure des répertoires d’un
programme C++ ne correspond pas toujours à sa structure logique. Ceci
complique la compréhension et fut corroboré lors de l’étude. Il fut plus difficile
d’atteindre le même niveau de compréhension pour l’application C++ que pour
celles développées en Java.

En utilisant les résultats théoriques et pratiques obtenus suite à cette étude qualitative,
la phase suivante consistera à développer un prototype. Ce prototype abordera les
limitations identifiées concernant l’aspect dynamique. Par conséquent, il fournira les
points de vue appropriés ainsi que les niveaux d’abstraction et filtres requis pour la
visualisation d’information dynamique au niveau de l’architecture. Ces vues
dynamiques seront intégrées dans un EDI fournissant des vues statiques du code
source. De plus, le prototype offrira des fonctionnalités afin de faciliter l’association
des éléments du code source à leur concept correspondant du domaine d’application.

Charland, P., Dessureault, D., Lizotte M., Ouellet, D. et Nécaille, C. 2006. Using
Software Analysis Tools to Understand Military Applications: A Qualitative Study.
DRDC Valcartier TM 2005-425. R&D pour la défense Canada - Valcartier.

vi DRDC Valcartier TM 2005-425

Table of Contents

Abstract.. i

Executive Summary... iii

Sommaire.. v

Table of Contents ... vii

List of Figures.. ix

Acknowledgements .. xii

1. Introduction ... 1

2. Software Comprehension .. 3
2.1 Concepts and Terminology... 3
2.2 Cognitive Models ... 3

2.2.1 Bottom-Up... 3
2.2.2 Top-Down ... 4
2.2.3 Knowledge-Based ... 4
2.2.4 Systematic and As-Needed.. 4
2.2.5 Integrated Metamodel.. 5
2.2.6 Factors Influencing the Selected Approach... 5

2.3 Related Studies ... 5

3. Static and Dynamic Analysis Tools... 7
3.1 Selection Process .. 7
3.2 Headway reView .. 12
3.3 Rational PureCoverage... 14
3.4 Rational Quantify ... 15

4. Qualitative Study ... 17
4.1 Objectives ... 17
4.2 Participants ... 17

DRDC Valcartier TM 2005-425 vii

4.3 Applications under Study ... 18
4.4 Qualitative Study Design.. 19

4.4.1 Training ... 20
4.4.2 Familiarization... 21
4.4.3 Execution of the Comprehension Tasks .. 21
4.4.4 Interview and Debriefing... 22

4.5 Software Comprehension Charts .. 22
4.6 Comprehension Tasks .. 22

5. Observations .. 26
5.1 Cumulative Comprehension ... 26

5.1.1 Familiarization... 26
5.1.2 IDEs... 26
5.1.3 Static and Dynamic Software Analysis Tools 27

5.2 Naming Conventions .. 29
5.3 High Level Comprehension.. 30
5.4 Combination of Information... 30
5.5 Assumptions Validated... 30
5.6 Programming Languages.. 31

6. Limitations... 32

7. Conclusions and Future Work ... 33

8. References ... 34

9. Appendix A ... 39
9.1 HCI_CASE_ATTI Results ... 39
9.2 COPlanS Results .. 45
9.3 ATS Results.. 51

10. List of Acronyms... 57

11. Distribution List... 59

viii DRDC Valcartier TM 2005-425

List of Figures

Figure 1. Components of a Traditional Reverse Engineering Tool.. 7

Figure 2. A Packages Hierarchy and their Dependencies in Headway reView........................ 13

Figure 3. An Example of the Metrics Provided in Headway reView 14

Figure 4. The Coverage Browser in Rational PureCoverage.. 15

Figure 5. A Call Graph Displayed in Rational Quantify .. 16

Figure 6. COPlanS Packages Dependency Hierarchy in Headway reView 27

Figure 7. A Rational Quantify Call Graph for HCI_CASE_ATTI... 28

Figure 8. Filter Manager in Rational Quantify ... 29

List of Tables

Table 1. Applications Used for the Study... 2

Table 2. Static and Dynamic Tools Surveyed .. 8

Table 3. Static and Dynamic Tools Surveyed (Continued) .. 9

Table 4. Additional Static and Dynamic Tools Surveyed .. 9

Table 5. Additional Static and Dynamic Tools Surveyed (Continued) 10

Table 6. Characteristics of the Targeted Applications.. 10

Table 7. Participants' Backgrounds .. 18

Table 8. Schedule of Activities Performed for each Application ... 20

Table 9. Applications Used for Training .. 20

Table 10. Source Code Composition Tasks.. 23

Table 11. Source Code Analysis Tasks .. 23

Table 12. Source Code Visualization Tasks ... 24

DRDC Valcartier TM 2005-425 ix

Table 13. Execution Trace Visualization Tasks ... 24

Table 14. Execution Trace Analysis Tasks... 24

Table 15. Data Exchange Format Task .. 24

Table 16. Reduction/Simplification Tasks ... 25

Table 17. Source Code Composition Tasks.. 39

Table 18. Source Code Composition Tasks (Continued) ... 40

Table 19. Source Code Analysis Tasks .. 41

Table 20. Source Code Analysis Tasks (Continued) .. 42

Table 21. Source Code Visualization Tasks ... 42

Table 22. Execution Trace Visualization Tasks ... 43

Table 23. Execution Trace Analysis Tasks... 43

Table 24. Data Exchange Format Task .. 44

Table 25. Reduction/Simplification Tasks ... 44

Table 26. Source Code Composition Tasks.. 45

Table 27. Source Code Composition Tasks (Continued) ... 46

Table 28. Source Code Analysis Tasks .. 46

Table 29. Source Code Analysis Tasks (Contiued) .. 47

Table 30. Source Code Visualization Tasks ... 48

Table 31. Execution Trace Visualization Tasks ... 48

Table 32. Execution Trace Visualization Tasks (Continued) ... 49

Table 33. Execution Trace Analysis Tasks... 49

Table 34. Data Exchange Format Task .. 49

Table 35. Reduction/Simplification Tasks ... 50

Table 36. Source Code Composition Tasks.. 51

Table 37. Source Code Composition Tasks (Continued) ... 52

x DRDC Valcartier TM 2005-425

Table 38. Source Code Analysis Tasks .. 52

Table 39. Source Code Analysis Tasks (Contiuned) .. 53

Table 40. Source Code Visualization Tasks ... 54

Table 41. Execution Trace Visualization Tasks ... 54

Table 42. Execution Trace Visualization Tasks (Continued) ... 55

Table 43. Execution Trace Analysis Tasks... 55

Table 44. Data Exchange Format Task .. 55

Table 45. Reduction/Simplification Tasks ... 56

DRDC Valcartier TM 2005-425 xi

Acknowledgements

For this qualitative study, two of the participants were members of the OASIS research
project at DRDC Valcartier. Without the involvement of additional people, the
realization of this study would not have been possible. As a result, the authors would
like to thank the following participants for their involvement: Philippe Plante (DRDC
Valcartier), Maxime Tardif (Thales Systems Canada), and Marco Savard
(Neosapiens). Thales Systems Canada and Neosapiens are two consulting firms doing
contractual work for DRDC Valcartier. The authors are also indebted to René Proulx
(Thales Systems Canada), who assisted in organizing and running the study.
Furthermore, the comments from Allan Gibb (DRDC Valcartier) and François
Lemieux (DRDC Valcartier) were much appreciated and helped to improve this
technical memorandum.

xii DRDC Valcartier TM 2005-425

1. Introduction

Over the years, the needs of the Canadian Forces (CF) for systems interoperability
have significantly increased. For example, to improve the automation of the
Command, Control, Communications, Computers, Intelligence, Surveillance, and
Reconnaissance (C4ISR) process, a large number of software intensive systems must
interact together to handle a massive amount of information. The CF also require
systems interoperability when they collaborate with the allied nations to achieve
common objectives.

As the CF demand greater systems interoperability, their software architects need
techniques and tools to comprehend the architecture of existing systems and make
them interoperate in order to build a system of systems (SoS). A SoS is an assemblage
of components which individually may be regarded as systems and which possess two
additional properties: operational and managerial independence of the components [1].
Each component system must be able to operate independently if the SoS is
disassembled. Furthermore, even though the component systems are separately
acquired and integrated, they maintain a continuing operating existence independent of
the SoS. An example of a SoS is a system built for a coalition operation, where each
participating nation brings its own operational planning system.

Before existing systems can interoperate, their architectures first need to be
understood. The architecture of a system can be defined as the structure of its
components, their interrelationships, as well as the principles and guidelines governing
their design and evolution over time [2]. However, understanding the architecture of
systems can prove to be quite a complex task. These systems have most probably
undergone several code revisions without a real concern about maintaining their
architectural design documentation up to date [3]. As a result, architecture recovery
has to be performed to regenerate coherent abstractions and guide architects during
their comprehension task. Architecture recovery can be described as the process of
retrieving up-to-date architectural information from existing source code artefacts [4,
5, 6, 7, 8, 9, 10]. The rational of system architectural recovery is to provide reasoning
behind the software architecture or high-level organization of a system [11, 12].

To support the effort of developing methodologies, techniques, and tools needed for
the recovery and comprehension of existing systems’ architecture, the SoS section of
Defence Research and Development Canada (DRDC) Valcartier started a project
called Opening up Architecture of Software-Intensive Systems (OASIS) [13]. Its
objective is to develop technical solutions in order to reduce the time needed to
comprehend systems to be integrated into a SoS.

There already exist a variety of commercial and academic tools that can be used to
assist architects in recovering the architecture of existing systems. Most of them were
identified in [14] as part of a previous phase of the OASIS project. However, one can
ask if the readily available tools for the CF, whether open source or commercial, can
address the needs of the current research project, i.e., to recover and comprehend the

DRDC Valcartier TM 2005-425 1

architecture of military applications written in C++ or Java and consisting of more
than 1,000 classes. For this reason, a study of the existing tools has to be conducted.
Its purpose would be to assess their added value on the understanding of architects
performing comprehension tasks on large scale software. This would help in
determining which existing approaches appear to be more effective. Furthermore, it
would provide some elements of response to the question that a military client could
ask: To what extent the existing tools can assist him with his software comprehension
and maintenance needs?

This technical memorandum describes the design and reports the observations of a
qualitative study in which five participants performed various high level
comprehension tasks on object-oriented software written in C++ and Java. The
characteristics of the selected applications are indicated in Table 1.

Table 1. Applications Used for the Study

APPLICATION LANGUAGE NO. OF CLASSES LINES OF CODE

HCI_CASE_ATTI Java 565 74 K

COPlanS Java 1600 120 K

ATS C++ 1650 670 K

To perform the assigned tasks, the participants used three commercial software tools:
Headway reView, Rational PureCoverage, and Rational Quantify. These were
selected based on a survey of existing tools. Headway reView 3.4 [15] is a reverse
engineering and static analysis tool used for source code comprehension. It can parse
C++ and Java programs to reverse engineer a visual representation of the composition
and dependencies of an application. PureCoverage and Quantify are part of Rational
PurifyPlus 6.13 [16], a set of automated runtime analysis tools for improving the
reliability and performance of applications. PureCoverage is a code coverage tool,
while Quantify is a performance analysis tool. Both of them can analyze C++ and
Java programs.

The remainder of this technical memorandum is organized as follows: Section 2
reviews previous studies conducted on software comprehension. In Section 3, the
tools used as part of the present qualitative study are described. Section 4 details its
design while Section 5 reports observations that were made. Section 6 discusses the
limitations of the study and finally, Section 7 identifies the conclusions and future
work.

2 DRDC Valcartier TM 2005-425

2. Software Comprehension

Several studies have been conducted to determine which strategies programmers use
when trying to understand unfamiliar code. The results have demonstrated that
different cognitive models are applied to create mental representations of programs
under examination. But before these models can be reviewed, their terminology first
needs to be defined.

2.1 Concepts and Terminology

A programmer’s mental representation of a program under study is referred as the
mental model [17]. The cognitive processes and temporary information structures
used by the programmer to form the mental model are described by a cognitive model
[17].

Programming plans are generic fragments of source code which represent typical
programming scenarios. An example of a programming plan is a sorting algorithm
[18].

Beacons are familiar features in the source code which act as cues to the presence of
certain structures [19]. An example of a beacon is the swapping of two variables in a
sorting algorithm. Rules of programming discourse are the programming conventions
and algorithm implementations [18].

2.2 Cognitive Models

Following is a review of some of the influential cognitive theories in program
comprehension as reviewed in [17].

2.2.1 Bottom-Up

Shneiderman [20, 21] proposed that programs are understood bottom-up, i.e., by first
reading the source code and then mentally grouping lower level software artifacts into
higher level abstractions that are more meaningful. These abstractions are further
aggregated until a high level comprehension of the program is obtained. The cognitive
framework of Shneiderman and Mayer [20] makes a distinction between the syntactic
and semantic knowledge of a program. The syntactic knowledge is language
dependent and relates to the statements of a program, while the semantic knowledge is
language independent and is formed in progressive layers until a mental model of the
application domain is built.

In [22], Pennington also observed that programmers use a bottom-up strategy when
trying to understand a program. They first produce a control flow abstraction, referred
as the program model, which represents the sequence of operations of the program.

DRDC Valcartier TM 2005-425 3

This model is generated by grouping source code microstructures (statements,
predicate statements, dependencies) into macrostructures (source code structure
abstractions) and then by cross-referencing them. After the program model has been
assimilated, the situation model is generated. This model incorporates knowledge
about the data flow and the functional abstractions, e.g., the program goals hierarchy.

2.2.2 Top-Down

Brooks formed a theory that programs are understood in a top-down manner, where
the knowledge about the application domain is first reconstructed and then mapped on
the source code [19]. This process starts with the formulation of a hypothesis about
the general nature of the program. This global hypothesis is then refined into a
hierarchy of secondary hypotheses, which are evaluated in a depth-first manner. The
validation of rejection of a hypothesis depends heavily on the presence or absence of
beacons [19].

Soloway and Ehrlich [18] observed that a top-down strategy is used when the source
code or type of source code is familiar. They also noted that experienced
programmers use beacons, programming plans, as well as rules of programming
discourse in order to decompose goals and plans to a lower level. Furthermore, it was
observed that delocalized plans complicate program comprehension.

2.2.3 Knowledge-Based

Letovsky [23] suggested that programmers are opportunistic processors, capable of
understanding programs using either a bottom-up or top-down approach, depending on
the cues available. His theory has three components: a knowledge base, which
encodes the programmer’s expertise and knowledge about the application; a mental
model, which represents the programmer’s current understanding of the program; and
an assimilation process, which explains how the mental model evolves using the
knowledge base and information about the program.

Inquiry episodes are an essential part of the assimilation process. During such an
episode, a programmer asks a question, forms a hypothesis, and searches through the
source code and documentation to validate or reject the hypothesis. Inquiry episodes
often happen as a result of delocalized plans.

2.2.4 Systematic and As-Needed

In [24], Littman et al. observed programmers enhancing a personnel database program.
They noted that the programmers either read the source code systematically, tracing
the control and data flow dependencies in order to acquire a general understanding, or
used an as-needed approach, focusing only on the source code related to the task to
achieve. The subjects using a systematic approach gained information about the
structure of the program and the interactions between its components at run-time. The
ones who used an as-needed approach only acquired static knowledge, resulting in a

4 DRDC Valcartier TM 2005-425

weaker mental model compared to the one of the other subjects. They also made more
errors, as they did not identify the dynamic interactions between the components.

Soloway et al. [25] combined these two theories as macro-strategies in order to
understand programs at a more global level. Using this strategy, the programmer
traces the flow dependencies for the whole program and performs simulations as the
source code and documentation is read. However, this method is not applicable for
programs of considerable size. In the more commonly used approach, programmers
examine only what they consider relevant. The drawback of this approach is that more
mistakes can be made, since important interactions can be missed.

2.2.5 Integrated Metamodel

Based on the results of experiments, Von Mayrhauser and Vans combined the previous
approaches into a single metamodel [26]. They suggested that understanding is built at
several levels of abstractions, by freely switching between the different comprehension
strategies. Their model is composed of four components. The first three detail the
comprehension processes used to create the metal representations at different levels of
abstractions. The fourth component describes the knowledge base used to carry out
the comprehension process. In their integrated metamodel [26]:

• The top-down approach is invoked as an as-need strategy, when the source code
or programming language is familiar. It uses the domain knowledge as a starting
point for the formulation of hypotheses.

• The program model, which is a control flow abstraction, is invoked when the
source code and application is completely unfamiliar.

• The situation model, which describes the data flow and functional abstractions in
a program, is developed after a partial program model has been formed using
systematic or opportunistic strategies.

• The knowledge contains the information required to build these three cognitive
models. It stores the programmer’s current knowledge as well as the one
acquired and inferred during the comprehension process.

2.2.6 Factors Influencing the Selected Approach

The wide variety of comprehension strategies discussed above stems from the fact that
certain factors will affect the approach selected by a programmer [27, 28]. These
factors are the program under study, the comprehension task to achieve as well as the
programmer’s past experience, ability, and creativity [17].

2.3 Related Studies

Different studies [29, 30] and other evaluations [31, 32] have also been conducted to
explore the question as to whether or not reverse engineering and visualization tools

DRDC Valcartier TM 2005-425 5

enhance programmers’ understanding. However, they were performed on relatively
small scale programs. Therefore, their results cannot be directly mapped to larger
ones, since the nature of the software used in a comprehension experiment affects the
comprehension process [33]. Also, all of them took into consideration either the static
or dynamic aspect of the applications under study, but not both and focused on only
one programming language (C or Java). Furthermore, the training provided to the
participants was somewhat limited. For example, in [29, 30], the training time lasted
between 30 and 40 minutes. As a result, all the features provided by the tools were
probably not fully exploited. The present study attempted to address these limitations
and tried to reproduce the conditions under which a person working in the industry
must be subjected to when trying to understand unfamiliar source code.

6 DRDC Valcartier TM 2005-425

3. Static and Dynamic Analysis Tools

The majority of current tools that can be used for architecture recovery are built
around traditional reverse engineering ones, as they use the source code of an
application as their starting point [14]. Examples of reverse engineering tools used
frequently to recover architectures are [34, 35, 36, 37, 38, 39].

Figure 1, adapted from [40], illustrates the four major components of a traditional
reverse engineering tool. The parser extracts the artifacts of the system. This static
information is stored in the knowledge base or repository. It is then analyzed by the
analysis component which derives information not explicitly available from the
extracted facts. Finally, the visualization component provides high level views of the
extracted and analyzed data. Some reverse engineering tools have an additional
filtering component which allows the user to specify the result set to be displayed.

Figure 1. Components of a Traditional Reverse Engineering Tool

Today’s software makes extensive use of polymorphism and dynamic binding.
Therefore, architectural recovery cannot rely only on static information. It must be
complemented by dynamic analysis, such as the exchange of control and data between
the various components at run time. This information increases the level of precision
provided by the static analysis and as a result, improves understanding.

3.1 Selection Process

The selection of the static and dynamic analysis tools for the present qualitative study
comprised three stages. The first one consisted of performing a state of the art survey

DRDC Valcartier TM 2005-425 7

of the current architecture recovery tools. This was part of a study [14] carried out by
Dr. Juergen Rilling, an Assistant Professor at Concordia University. The tools
surveyed are listed in Tables 2 and 3.

Table 2. Static and Dynamic Tools Surveyed

TOOL NAME ORGANIZATION TYPE OF
ANALYSIS

SUPPORTED
LANGUAGES

Refine/C - Illuma Reasoning Static C, C++

SNiFF+ Wind River Static Ada, C, C++, CORBA
IDL, Java, FORTRAN

Columbus/CAN FrontEndART Static C++

Understand for C++/Java Scientific Toolworks Static C, C++, Java

Datrix Bell Canada Entreprises Static C, C++, Java

CodeCrawler University of Bern Static External parser
required

CodeSurfer GrammaTech Static C

ArgoUML Open Source Static Java

Visual Paradigm for UML Visual Paradigm Static Java

SWAG Kit University of Waterloo Static, Dynamic C, C++

Rigi University of Victoria Static C, C++, COBOL

reView Headway Software Static Ada83/95, C, C++,
Java

Klocwork inSight Static C, C++

RIVA Nokia Static C, C++

Bauhaus University of Stuttgart Static, Dynamic C, C++, Java, third-
party parsers

URCA University of Belgrade Dynamic C++

CONCEPT Concordia University Static, Dynamic Java

Aladdin University of Colorado Static Rapide

PROMON Technical University of
Vienna

Dynamic Java

DocGen Software Improvement
Group

Static C++, Java

Ciao AT&T Bell Laboratories Static C, C++, Java

8 DRDC Valcartier TM 2005-425

Table 3. Static and Dynamic Tools Surveyed (Continued)

TOOL NAME ORGANIZATION TYPE OF
ANALYSIS

LANGUAGES
SUPPORTED

Gsee University of Grenoble Static Java

Lemma IBM Static Assembler, C, C++,
Java, Pascal, PL/X, PL/I,
Rexx

Red Hat Source-Navigator Red Hat Static C, C++, COBOL, Java,
Tcl, FORTRAN

SoftArch University of Auckland Static, Dynamic Java

ARMIN Software Engineering
Institute

Static C++, Java, third-party
parsers

ManSART MITRE Static C, C++

Imagix 4D Imagix Static C, C++

Rose Rational Static Ada83/95, C++, Java,
CORBA IDL

Following the state of the art survey, a practical evaluation of a selected subset of the
tools reviewed was performed. The tools which were evaluated are highlighted in bold
in Tables 2 and 3. While performing this evaluation, other static and dynamic analysis
tools which could potentially address the needs of the current research project were
identified. These additional tools, listed in Tables 4 and 5, were also evaluated. The
selection of the tools for the practical evaluation was based on the characteristics of the
targeted applications to be analyzed. These characteristics are listed in Table 6.

Table 4. Additional Static and Dynamic Tools Surveyed

TOOL NAME ORGANIZATION TYPE OF
ANALYSIS

LANGUAGES
SUPPORTED

Together Borland Static C++, C#, Java

SHriMP University of Victoria Static C, C++, Java

CodeLogic Logic Explorers Static C#, Java

Eclipse Open Source Static Java

Sun One Studio Sun Microsystems Static Java

Rational PureCoverage Dynamic C++, C#, Java

DRDC Valcartier TM 2005-425 9

Table 5. Additional Static and Dynamic Tools Surveyed (Continued)

TOOL NAME ORGANIZATION TYPE OF
ANALYSIS

LANGUAGES
SUPPORTED

Rational Quantify Dynamic C++, C#, Java

JProbe Quest Software Dynamic Java

OptimizeIT Borland Dynamic Java

JProfiler ej-technologies Dynamic Java

AQtime 4 AutomatedQA Dynamic C++, C#

Table 6. Characteristics of the Targeted Applications

CHARACTERISTIC DESCRIPTION MANDATORY OPTIONAL

Programming
Language

The application should be written in an
object-oriented language: C++ and/or
Java (J2SE).

x

Operating System The application should run on
Windows 2000 or XP.

x

External
Dependencies

The application should interact with
others.

 x

Application Domain The domain of the application should
be military (e.g., tactical mission
planning, decision aid).

x

Multi-Process The application should use
interprocess communication
mechanisms such as sockets.

 x

Multithreading The application should be
multithreaded.

 x

Source Code
Available

The source code should be available
to perform reverse engineering using
static tools.

x

Executables Available The executables should be available
to observe the behaviour of the
application using dynamic tools.

x

Application Type The application should be event-
based.

x

Application Size The size of the application should be
between 50,000 to 500,000 LOC and
between 100 classes to 1,000 classes.

x

10 DRDC Valcartier TM 2005-425

Following the state of the art survey and the practical evaluation, a final selection of
the tools to be used for the present study was made. The selection consisted of
Headway reView, Rational PureCoverage, and Rational Quantify.

Headway reView was selected since it has been identified as a reverse engineering tool
supporting architecture recovery [14]. It was also chosen because of its visualization
and analysis features, described in more detail below, and the fact that it could parse
both C++ and Java source code. The latter was a mandatory requirement, since the
applications to be examined as part of the present study were written in either C++ or
Java. Also, the tests carried out prior to the beginning of the study indicated that it
was robust and could parse applications consisting of more than 1,000 classes.
Furthermore, Headway reView is used by numerous organizations, such as Sun
Microsystems and the NASA.

Headway reView provides static information only. As a result, it had to be
complemented by a dynamic analysis tool, since the examined applications were
object-oriented and made use of polymorphism as well as of dynamic binding. For
this reason, two tools of the Rational PurifyPlus suite were selected: PureCoverage and
Quantify. The features of these tools provide information needed to analyze the run-
time behaviour of C++ and Java applications. Also, the information produced by
Quantify had been used in the past by other program understanding tools such as
Software Emancipation’s DISCOVER [41].

Other static analysis tools such as ARMIN (Architecture Reconstruction and MINing)
[5] and SHriMP (Simple Hierarchical Multi-Perspective) [42] could also have been
selected for the present study, as they can analyze the source code of applications
developed in C++ and Java.

ARMIN is an architecture reconstruction tool developed by the Software Engineering
Institute and the Robert Bosch Corporation. Although its use has been reported in [43,
44] to recover the architecture of C++ and Java applications, ARMIN was not selected
because of its cost: 15,000 USD, in addition to the traveling expenses of the person
who would come to DRDC Valcartier for a two-day tutorial on its use. The OASIS
project could not afford to purchase it, since the allocated budget for the acquisition of
computers and software for the study was 10,000 CAD.

SHriMP is an application developed at the University of Victoria to visualize and
explore software architectures. It is also a domain-independent visualization technique
designed to enhance how people browse and explore complex information spaces.
SHriMP has been integrated into the open source software development project
Eclipse [45] through the Creole plug-in [46]. One should use this plug-in and not the
stand-alone version of SHriMP to visualize Java source code, as the Java fact extractor
of the stand-alone version is now obsolete [47].

The reason why SHriMP was not selected is because to parse C++ source code, one
needs another fact extractor generating files in the Rigi Standard Format (RSF), a
format that SHriMP can read. The organizers of the study did not want to support two
different parsers, one for each programming language, due to time constraints.

DRDC Valcartier TM 2005-425 11

Furthermore, the authors of the present technical memorandum believed that potential
military clients for the OASIS project would be more interested by commercial tools
than by academic projects, as commercial products tend to be more robust and able to
analyze large scale applications. This is very important, since most military
applications are quite large. The Creole plug-in has some known issues with programs
of a considerable size [48]. It can take some time to manage and display large
amounts of data and can run out of memory while trying to visualize large working
sets. It also has some memory leaks and may require the restart of Eclipse.
Furthermore, the fact extraction does not find some relationships between anonymous
inner classes.

For the dynamic analysis of the applications under study, other tools could have been
selected: AutomatedQA AQtime 4 [49], Quest JProbe [50], Borland Optimizeit [51],
and ej-technologies JProfiler [52]. The reason that none of them were chosen for the
study is that they only support one programming language: C++ in the case of AQtime
4 and Java for the other ones.

As already mentioned, the training provided to the participants in previous studies [29,
30] was minimal. To address this limitation, it was decided to provide what was
believed to be appropriate training, so that the participants could use efficiently the
features of the tools needed to perform the comprehension tasks. By limiting the
choice of tools to three, the training as well as the completion of all comprehension
tasks could be carried out in a reasonable amount of time.

3.2 Headway reView

Headway reView uses reverse engineering and static analysis techniques to provide
software architects with code comprehension, code review, and source code
visualization tools. It can display all the dependencies within an application at all
levels and between all levels: method, data member, class, package, and application.
These dependencies are displayed in a hierarchical directed graph, using a number of
intelligent layout algorithms. This allows users to drill top-down from component to
methods in order to discover sub-system relationships, while retaining the ability to
understand the overall context of the component. reView can also show the code base
using a number of different views, all synchronized within the code base. Moreover, it
provides a suite of analysis and software metrics integrated with its visualization tool.
Figure 2 and 3 show two screenshots of reView. Figure 2 illustrates a packages
hierarchy and their dependencies displayed as a directed graph. The application used
was JUnit [53], a Java framework for unit testing. The adornments on the edges
represent the number of relationships between two packages. Figure 3 gives an
overview of the set of metrics provided in reView. In the present example, the
abstractness is displayed for each of the JUnit packages.

12 DRDC Valcartier TM 2005-425

Figure 2. A Packages Hierarchy and their Dependencies in Headway reView

DRDC Valcartier TM 2005-425 13

Figure 3. An Example of the Metrics Provided in Headway reView

3.3 Rational PureCoverage

Rational PureCoverage is a customizable code coverage analysis tool. It can
automatically pinpoint executed and non-executed areas of code and visually display
application analysis data. It can also merge coverage data from multiple runs of the
same executable for an aggregate view of coverage data. Figure 4 displays the
Coverage Browser window in PureCoverage for a particular execution of JUnit.

14 DRDC Valcartier TM 2005-425

Figure 4. The Coverage Browser in Rational PureCoverage

3.4 Rational Quantify

Rational Quantify is a profiling tool that automatically pinpoints application
performance bottlenecks. Its graphical performance data views shows how a program
is executed in terms of function call architecture. It also highlights which functions
contributed the most time to the program execution by line thickness and position on
the Quantify's Call Graph and indicates the importance of any function to the
program's overall performance. Its filter features allow one to concentrate on the parts
of the application that are of most interest. Furthermore, its Diff and Merge capacities
can respectively compare the execution time between two runs or merge the execution
time for multiple runs. Figure 5 shows a section of a call graph in Quantify resulting
from an execution of JUnit, with the most expensive path highlighted in bold.

DRDC Valcartier TM 2005-425 15

Figure 5. A Call Graph Displayed in Rational Quantify

16 DRDC Valcartier TM 2005-425

4. Qualitative Study

The study to assess the value added by Headway reView, Rational PureCoverage, and
Rational Quantify on the comprehension of the participants was conducted at DRDC
Valcartier during the winter of 2005. It is based on a qualitative rather than a
quantitative approach. This is because the study was performed within a specific
context, the researchers observed the participants while they were executing the
comprehension tasks, and they interacted with them through interviews.

Although most of the studies and other evaluations on program comprehension have
been conducted following a quantitative approach, there is a shift occurring towards
the qualitative paradigm. The cause of this move is that many researchers recognize
the fact that studies conducted in controlled settings can be extremely revealing, since
the conditions affecting program comprehension are complex and diverse, as
mentioned in Section 2.2.6.

4.1 Objectives

There were several objectives involved in this study. First of all, it would allow
members of the OASIS project to acquire a practical expertise in the discipline of
architecture recovery and comprehension. It would also be an opportunity for them to
experiment the limitations of the currently available tools. Furthermore, it could
reveal strategies on how the comprehension of a large scale application can be
improved and speeded up. Finally, this study would assess the added value of the
selected tools and determine if they can assist architects in understanding unfamiliar
systems at the architectural level. Such a high level of comprehension is needed when
several existing systems need to interoperate together to form a SoS.

4.2 Participants

Five people agreed to participate to the study. Their backgrounds are listed in Table 7.
Three of them (A, B, and C) were working for the SoS Section of DRDC Valcartier in
the Computer Systems group or as Defence Scientist. They had respectively eight,
five, and four years of experience. The two other participants (D and E) were
consultants from Thales Systems Canada and Neosapiens working for DRDC
Valcartier. They had twelve years of software development experience on large scale
applications. None of the participants had previously used the three applications under
examination nor participated in their development. Also, they had very limited
knowledge about the applications domain.

Besides the participants, other individuals were involved in the study. These
additional people played the roles of instructors and observers. These roles are
described respectively in sections 4.4.1 and 4.4.3.

DRDC Valcartier TM 2005-425 17

Table 7. Participants' Backgrounds

PARTICIPANT DIPLOMA YEARS OF
EXPERIENCE AREAS OF EXPERTISE

Participant A B. Eng. (Comp. Eng.) 8 Systems Interoperability, Software
Visualization

Participant B B. Sc. A (Comp. Sc.) 5 Software Modelling, Software
Simulation

Participant C M. Comp. Sc. 4 Source Code Analysis, Reverse
Engineering

Participant D DEC (Comp. Sc.) 12 Software Development, Command
and Control Systems

Participant E B. Sc. A. (Comp. Sc.) 12 Software Development, Software
Modelling

4.3 Applications under Study

As mentioned in the introduction, the study was performed on three military
applications: HCI_CASE_ATTI, COPlanS, and ATS.

CASE_ATTI (Concept Analysis and Simulation Environment for Automatic Target
Tracking and Identification) is a multi-sensor data fusion simulation test bed. It is
used to analyze the performance of various multi-sensor data fusion architectures and
algorithms for the Canadian Patrol Frigate. HCI_CASE_ATTI is the Human
Computer Interface of CASE_ATTI and it was this component which was used for the
study.

COPlanS (Collaborative Operations Planning System) is an integrated flexible suite of
planning, decision-aid, and workflow management tools aimed at supporting the
Military Operations Planning Process. It offers facilities such as: support a planning
team involved in a distributed workflow; document the decision-making process;
support decision analysis; and estimate readiness, operational cost as well as risk
management.

ATS (Athene Tactical System) is a Command and Control Information System (C2IS)
for the support of the Land Forces Command System. It was developed to support
field commanders of all arms and services in the planning, directing as well as
monitoring of their combat operations. ATS provides C2 tools for commanders and
staff such as maneuver, combat support, and geographic information system functions.

18 DRDC Valcartier TM 2005-425

4.4 Qualitative Study Design

Before the beginning of the study, the three tools were installed on two desktop
computers in the OASIS lab. This was done in order to have simultaneously two
participants performing the same comprehension tasks for each of the applications
under examination. This would avoid reliance on the understanding of only one
individual and as a result, provide more data for each of the studied application.

For each application examined, a predefined set of 31 comprehension tasks was
performed. Completing all of them took one day of work. The participants started at
8:30 in the morning and finished at 16:00, with one hour for lunch. For each
comprehension task, a time limit was set to make sure that the participants would at
least try all of them. Also, to make the study more realistic, the participants did not
have access to the applications’ documentation. The reason is that in most cases, there
is little or no documentation available and the one that exists probably does not reflect
the current system implementation, due to drift and erosion [54, 55, 56]. In the cases
where the documentation is up to date, it is usually too voluminous, very detailed, and
does not provide the appropriate viewpoints and abstraction levels needed to
understand the architecture. As a result, the source code is most of the time the only
reliable source of information.

To maximize the results of this study, the participants were assigned to the different
applications according to their level of experience with the two programming
languages. The participants who felt more comfortable using C++ were assigned to
ATS, while the ones who had more experience with Java performed the
comprehension tasks on HCI_CASE_ATTI and COPlanS. Only one participant was
assigned to more than one application: COPlanS and ATS.

Since the goal of the study was to assess the value added by the analysis tools, a point
of comparison was needed. The point of comparison selected was an Integrated
Development Environment (IDE). The reason it was chosen is because an IDE is the
tool most commonly used these days for software development. Also, it supports
unaided browsing of source code, without providing features especially targeted for
software comprehension. For this reason, by first executing the comprehension tasks
using only an IDE, the participants would be in a better position to evaluate the impact
that the other tools had on their understanding. The selected IDEs were Eclipse 3.0
[45] and Visual C++ 6.0 [57]. Eclipse was used to perform the comprehension tasks
for HCI_CASE_ATTI and COPlanS. Visual C++ was used in the case of ATS.

Table 8 summarizes the activities performed by the participants for each application
under examination over a four-day period. Each of them is further detailed in the
sections which follow.

DRDC Valcartier TM 2005-425 19

Table 8. Schedule of Activities Performed for each Application

DAY ACTIVITIES PERFORMED

1 - Introduction of the application
- Introduction of the application domain
- Familiarization with the operation of the application

2 - Execution of the comprehension tasks using the IDE

3 - Execution of the comprehension tasks using the analysis tools

4 - Interview and debriefing of the participants with the observer

4.4.1 Training

The first step of the study consisted of providing group training to the participants to
ensure that they had a sufficient working knowledge of the tools prior to the beginning
of the study. This was necessary since only one participant had used previously two of
the tools, i.e., Rational PureCoverage and Quantify. The instructors were people who
had experience with these tools. There was one instructor for Headway reView and
another one for Rational PureCoverage and Quantify. The training lasted one day in
the case of reView and half a day for PureCoverage and Quantify. Since explaining all
the functionalities of each tool would have taken too much time, the instructors
focused on the ones they believed would be the more appropriate for performing the
upcoming comprehension tasks. Group training was followed by sessions during
which the participants practiced individually, but with the assistance of the instructors,
what they had learned using two open source applications: JUnit and Notepad++.
Their characteristics are indicated in Table 9. As mentioned previously, JUnit is a
Java testing framework used to write and run repeatable tests. Notepad++ [58] is a
source code editor which supports several programming languages. For the two IDEs,
since the participants already had experience using them, only a brief refresher was
provided.

Table 9. Applications Used for Training

APPLICATION LANGUAGE NO. OF CLASSES LINES OF CODE

JUnit Java 90 5 K

Notepad++ C++ 136 46 K

20 DRDC Valcartier TM 2005-425

4.4.2 Familiarization

During the first day of the study, an architect who had participated in the development
of the application under examination introduced it to the participants. He explained its
domain to give them a general understanding of what the application did, without
saying how it did it. For example, in the case of COPlanS, the person explained the
operational planning process of the CF. This would help them later to map some
source code elements to their corresponding concepts. It was believed to be a
necessary first step due to the large size of the applications under examination and the
fact that most of the participants had a very limited knowledge of their domains.
Furthermore, it is expected to be a representative activity of many architecture
reconstruction and comprehension efforts. The people who want to understand the
application go see a user who knows its domain and operation.

This first part of the study lasted half a day. For the rest of the day, the participants
made themselves familiar with the operation of the application. This was also believed
necessary, since for some of the comprehension tasks, users had to generate execution
traces. If they had questions, they could direct them to the architect.

4.4.3 Execution of the Comprehension Tasks

During the second day of the study, the comprehension tasks (see Section 4.6) were
performed using only an IDE. The following day, the same tasks were performed, this
time using both the static and dynamic analysis tools. During these two days, the
architect who had provided the participants with information about the application
domain was there, acting as an observer. There were three observers, one for each
application. Their role was to clock the participants performing the comprehension
tasks to make sure that they did not exceed the allocated time set for each of them. If
the participants had questions concerning the tasks or tools, they would answer them.
Also, to evaluate the level of comprehension achieved by the participants, the
observers were asking them questions. They recorded their answers as well as any
other observations. Due to their heavy responsibilities, people playing the role of
observer needed to have a vast experience in software development. All of them had
at least ten years of experience.

For each of the applications under study, the above steps were repeated. During the
first day, an introduction of the application and its domain were presented to the
participants. During the following day, they performed the comprehension tasks using
an IDE. On the third day, they performed the same comprehension tasks, this time
aided by the static and dynamic analysis tools.

While performing the comprehension tasks, the participants recorded their results for
each of them, either manually or using a text editor and taking screen shots of the
outputs generated by the tools.

DRDC Valcartier TM 2005-425 21

4.4.4 Interview and Debriefing

After the third day of the study, the observer and the two participants met to conduct a
post-mortem. To determine the level of comprehension achieved, the observer
evaluated the results obtained by the participants for each of the comprehension tasks.
The observer also asked them to provide a general appreciation of the comprehension
gained by using the different functionalities provided by the tools.

4.5 Software Comprehension Charts

For each session of the study, the participants were provided with a software
comprehension chart. This chart listed, for every task, its description, its expected
output, as well as the time allocated for its completion. The participants were also
given paper forms to record their results. In case they preferred to use a text editor
instead and take screen shots of the outputs of the tools, they would save their results
in folders specifically created for this purpose.

The observers were also given the same comprehension charts and forms to record
their observations and remarks.

4.6 Comprehension Tasks

The comprehension tasks to be performed by the participants were the result of
brainstorming sessions among the members of the OASIS project. During these
sessions, a process to understand the architectures of existing systems to be integrated
into a SoS was designed.

Although a number of software comprehension tasks are proposed in the software
visualization and comprehension literature [59, 31, 29, 30, 60] a definitive set of
typical comprehension tasks does not currently exist [61]. The proposed tasks were
intended to be as close as possible to the comprehension process designed previously.
They were designed without prior knowledge of the applications’ source code. As a
result, they could be reused in another study involving other applications and software
analysis tools.

The purpose of some of the software comprehension tasks was to identify potential
areas of interest for the understanding of the applications. Examples of such tasks are
the metrics whose computation was requested, since they are useful when
understanding software systems [60]. Once identified, these potential areas of interest
could have been further analyzed if the participants had more time. This would have
enhanced their comprehension.

Some of the tasks which follow are inspired by the large scale questions of Pacione et
al. [32] and the overall understanding questions of Systä et al. [60]. The others are
based on the experience of some of the authors who had to understand applications of
considerable size in the past. The tasks take into consideration both the static and

22 DRDC Valcartier TM 2005-425

dynamic aspects of the applications under examination. Also, they were intended to
be as close as possible to the ones performed during an understanding effort at the
architectural level on large scale software, with a focus on system interoperability.

Table 10. Source Code Composition Tasks

NO. DESCRIPTION

1 Identify how the application is organized into components and sub-components. For each
component, evaluate its size in terms of number of classes.

2 Identify a set of classes relevant to the application domain (e.g., mission, operation, country, and
tracks).

3 Identify the classes containing an entry point. Among all the entry points found, identify the one
which is most likely the main entry point of the application. Identify other important entry points if
applicable.

4 Identify the components involved in interactions with end-users.

5 Identify the components involved in interactions with the file system.

6 Identify the components involved in interactions with external applications via network
communications.

7 Identify the components accessing database management systems.

8 Identify the components involved in interactions with third party libraries.

9 Identify clusters of components which have high cohesion but low coupling.

Table 11. Source Code Analysis Tasks

NO. DESCRIPTION

1 Find if there are dependency cycles between the components of the application.

2 Compute the abstractness of the components. Rank the largest components, in terms of number
of classes, according to their abstractness, in decreasing order.

3 Compute the number of classes in the application.

4 Compute the coupling between object classes (CBO) of each major class.

5 Compute the afferent (Ca) and efferent (Ce) coupling of each major component.

6 Identify the components with the highest afferent and lowest efferent coupling.

7 Identify the components with the lowest afferent and highest efferent coupling.

8 Identify the components with the lowest afferent and efferent coupling.

DRDC Valcartier TM 2005-425 23

Table 12. Source Code Visualization Tasks

NO. DESCRIPTION

1 Show the overall structure of the application at the component level as well as the interaction
dependencies between them.

2 Isolate a large group of classes (at least four) involved in an inheritance dependency and show the
corresponding inheritance cluster of classes for each group.

3 Isolate a large group of classes (at least four) involved in an aggregation dependency and show
the corresponding aggregation cluster of classes for each group.

4 Show a top-down component dependency hierarchy of the application.

5 Compute the layer of dependency of each component.

Table 13. Execution Trace Visualization Tasks

NO. DESCRIPTION

1 Perform a representative run of the application and identify the creation/deletion of
processes/threads using a call graph.

2 Using the call graph produced previously, describe the interactions between the different
processes/threads.

Table 14. Execution Trace Analysis Tasks

NO. DESCRIPTION

1 Execute a set of representative runs and identify the covered and non-covered areas of the
application.

2 Execute a set of representative runs. Identify the most solicited areas of the application.

3 Identify the initialization hierarchy of the components.

Table 15. Data Exchange Format Task

NO. DESCRIPTION

1 Analyze the data exchange format (e.g., binaries, serializable objects, and XML).

24 DRDC Valcartier TM 2005-425

Table 16. Reduction/Simplification Tasks

NO. DESCRIPTION

1 Extract a subset of information that is of interest for the user.

2 Identify the deepest inheritance tree in the application.

3 Identify the deepest composition/aggregation tree in the application.

DRDC Valcartier TM 2005-425 25

5. Observations

As already mentioned, the purpose of some of the software comprehension tasks was
to identify potential areas of interest for the understanding of the applications. Once
these were identified, it would have been very beneficial for the comprehension of the
participants to conduct further analysis. This analysis would have provided them with
a much better understanding of the applications. However, due to time constraints,
this was not possible. Despite the above limitation and the fact that some adjustments
had to be made during the course of the study, it is still believed that it produced
interesting results which will be useful for the upcoming phases of the OASIS project.
The observations that can be drawn from the results of Appendix A are discussed next.

5.1 Cumulative Comprehension

As anticipated when the comprehension process was designed, the level of
understanding achieved by the participants at the end of the study was not only due to
the fact that they were aided by software static and dynamic analysis tools. It was also
attributable to the fact that they studied the applications domain and performed the
comprehension tasks by first using IDEs.

5.1.1 Familiarization

The introduction of the application provided to the participants during the first day as
well as the information about its domain proved to be crucial for their comprehension.
Without this initial background, the participants would not have been able to know the
purpose of the different applications. This is because the examined applications were
quite large, had been designed to fulfill very specific military needs, and the
participants were not familiar with the applications domain.

5.1.2 IDEs

The searching capacities offered as part of the IDEs allowed the participants to
perform several tasks. These were useful for top-down comprehension to find beacons
while verifying hypotheses. For example, to locate the components interacting with
end-users in COPlanS (Table 10, task 4), the participants only had to search for classes
importing the java.awt and javax.swing packages. In cases similar to this one, the
software analysis tools do not seem to provide much added value. Eclipse also offers
other useful features such as the possibility to find all the occurrences in the source
code which refer to a particular variable as well as get the type hierarchy of a class. It
would have been very interesting to see if the participants would have achieved the
same level of understanding with the software analysis tools without first having
performed the comprehension tasks using an IDE.

26 DRDC Valcartier TM 2005-425

5.1.3 Static and Dynamic Software Analysis Tools

Performing the tasks on the third day of the study was not only facilitated by the fact
that participants were using static and dynamic software analysis tools. It was also
easier since they could benefit from the knowledge acquired during the previous two
days. In spite of this, the tools still provided information which would have been very
difficult to obtain otherwise. For example, the dependency hierarchy in Headway
reView was a very useful feature. As implied by its name, it provides the hierarchy of
the high level components of an application as well as the dependencies between them.
This allowed the participants to know instantly which components formed the core of
an application and which ones were utility components. Figure 6 shows the
dependency hierarchy of the high level packages in COPlanS. Furthermore, the suite
of software metrics integrated with the visualization tool of Headway reView allowed
participants to obtain accurate numbers characterizing properties of the source code
very quickly.

Figure 6. COPlanS Packages Dependency Hierarchy in Headway reView

The biggest drawback of the tools is that they do not always provide the appropriate
viewpoints, abstraction levels, and filters needed to understand the architecture of an
application. The participants were quickly swamped by a mass of irrelevant low level
details. This is especially true in the case of Rational PureCoverage and Quantify,
since most of the information provided is at the method level. However, one must take

DRDC Valcartier TM 2005-425 27

into consideration that these tools were designed for software developers rather than
people trying to recover and understand software architectures.

Figure 7 shows an example where the participants were overwhelmed by the large
amount of information displayed in a single window. In the present Rational Quantify
call graph, there is a large number of visible edges. Although Quantify offers some
filters, as shown in Figure 8, for each desired filter, the participant had to find it first in
the list box and then check it. Improving the filtering ability of the tools would
increase their scalability. Also, applying more filters by default could improve the
support for the as-needed comprehension strategy.

Figure 7. A Rational Quantify Call Graph for HCI_CASE_ATTI

28 DRDC Valcartier TM 2005-425

Figure 8. Filter Manager in Rational Quantify

5.2 Naming Conventions

The impact of identifier naming on real-life maintenance activities remains
underestimated [62]. Naming rules do not go into much detail other than code
formatting guidelines [63] or are not even treated at all in the context of code
formatting and documenting [64].

One result which was observed as part of the present study is the great impact that
meaningful names chosen for components, classes, and methods had on the
comprehension of the participants. The reason is that the meaning conveyed by the
names allowed them to map elements of the source code to their corresponding
elements of the application domain. A consistent naming convention used throughout
the application also facilitated greatly their understanding.

In order to alleviate the burden of identifier names on program comprehension, rules
such as the ones derived in [62] should be followed in order to consistently and
concisely name identifiers. These rules are based on a formal analysis of the
properties of identifiers, names, concepts, and source code, as well as their
interrelationships.

DRDC Valcartier TM 2005-425 29

5.3 High Level Comprehension

Some tasks were more useful than others to achieve the objective of the qualitative
study and comprehend the different applications at a high level. Tasks involving
clustering (tasks 2 and 3 of Table 12) allowed participants to group related classes
together. The second task of Table 11 highlighted where the abstractions, i.e., the
most general components, were in the source code. Also, tasks 1, 4, and 5 of Table 12
gave the participants an overview of how an application was structured. For example,
they emphasized which components were the high level ones accessing the others at
the lower levels.

5.4 Combination of Information

One approach proved to be very useful in identifying precisely which components
were responsible for a particular interoperability function. It was based on a technique
called software reconnaissance [65]. This approach consisted of combining dynamic
analysis, static analysis, as well as information about the operation of the application
and naming conventions.

If a participant wanted to know, for example, which components were involved in
interactions with external applications via network communications, he would first
execute the application without invoking the function of interest and record the
resulting execution trace using Rational Quantify. The participant would know how to
invoke the interoperability function when required using what he had learned during
the first day of the study. He would then execute the application again and record its
execution trace, but this time, the participant would invoke the function interacting
with external applications via network communications. Afterwards, the two recorded
execution traces would be compared and the differences identified.

Using Headway reView, the classes responsible for the differences would be
visualized and using the naming conventions identified during the fist day of the study
as a guide, the participants would be able to clearly locate, in most cases, the involved
components.

Having a tool which would integrate the high level static aspects with the dynamic
ones at the same level would definitely be an advantage. This capability would allow
a user to start his comprehension using the static analysis and then refine it using
dynamic information.

5.5 Assumptions Validated

When the software comprehension tasks were designed, some assumptions were made
with respect to the afferent and efferent coupling metrics. At that time, it was believed
that the components with the highest afferent and lowest efferent coupling would be
utility components. It was also believed that the ones with the lowest afferent and
highest efferent coupling would be application domain components. Furthermore, the
components with the lowest afferent and efferent coupling should be unused

30 DRDC Valcartier TM 2005-425

components, i.e., dead code. The study proved these three assumptions to be valid.
This result could be later used in future comprehension efforts.

5.6 Programming Languages

Some problems experienced with the tools are inherent to the programming languages.
For example, in C++, a package is defined as the container for all the entities in a
namespace. However, unlike its similar concept in Java, a C++ namespace is not
based on physical directory structures. Despite this, its name should reflect the logical
hierarchy of the package, such as package names in Java. However, this coding
standard is not always followed. This complicates the understanding of C++
programs, since the physical structure does not always correspond to the logical one.
This was confirmed in the present study. It has been more difficult to achieve the
same comprehension level for ATS than for HCI_CASE_ATTI and COPlanS.

DRDC Valcartier TM 2005-425 31

6. Limitations

For this qualitative study, a non-negligible amount of time was spent to train the
participants in advance. This was done to address a limitation of the previous studies
[29, 30], which provided limited training and resulted in the fact that the features
provided by the tools were probably not fully exploited by the participants.

In the present study, the participants were also asked to perform a large number of
tasks. Furthermore, only two of them could perform the comprehension tasks at the
same time: there were only two desktop computers available in the OASIS lab with the
required software, due to budget constraints. As a result, for all of the above reasons,
the organizers of the study could not afford to have a large sampling of participants
and therefore, a statistical analysis of the results is not possible.

One direct consequence of the above limitation is that the participants who performed
the tasks with and without the software analysis tools were the same. Therefore, the
comprehension of the application gained by using only the IDE on the second day of
the study could have affected their assessment of the value added by the software
analysis tools. This is because some of the tasks could be performed using only an
IDE. A larger sampling would have allowed one participant to perform the tasks using
only the IDE and another one using only the software analysis tools. It would also be
interesting to follow the same logic and have participants perform the tasks with and
without the information about the application and its domain provided on the first day
of the study. This approach would allow assessment of the impact of each of these
activities on the global comprehension level achieved by the participants.

Even though Headway reView was believed to be a good tool with a large set of
functionalities, in hindsight it would have been better to have used more than one
architectural recovery tool. However, the additional training required precluded such
an approach.

32 DRDC Valcartier TM 2005-425

7. Conclusions and Future Work

This technical memorandum describes the design and reports the observations of a
qualitative study conducted to assess whether the use of three commercial software
analysis tools enhanced architects’ understanding. In this study, five participants were
performing 31 high level comprehension tasks on three large scale object-oriented
applications written in C++ and Java.

This qualitative study is different from the other studies [29, 30] and evaluations [31,
32] which were conducted in the past to explore the question as to whether or not
reverse engineering and visualization tools enhance programmers’ understanding. It
was not performed in an academic setting, but with people having several years of
experience in software development, who were properly trained on using the analysis
tools and familiarized with the applications domain. It did not examine relatively
small scale programs but military applications of a considerable size, taking in
consideration both the static and dynamic aspects, as well as focussing at the
architectural level and on system interoperability. Furthermore, the objective of the
study was not to compare tools [30, 31, 32] or approaches [29], but to try to assess
whether the use of software analysis tools can assist in the understanding of unfamiliar
systems at the architectural level.

Although it was observed that the tools aided the participants to understand the
applications under examination, some deficiencies were observed. These stem from
the fact that the software analysis tools do not always provide the appropriate
viewpoints, abstraction levels, and filters needed to understand the architecture of
applications consisting of more than 1,000 classes. This is especially true in the case
of the dynamic tools.

Following this qualitative study and using the theoretical and practical knowledge
acquired through it, the next step will consist of developing a prototype. This
prototype will address the limitations identified concerning the dynamic aspect. It will
therefore provide the appropriate viewpoints, abstraction levels, and filters required for
the visualization of dynamic information at the architectural level. These dynamic
views will be integrated into an IDE providing static views of the source code. In
addition, the prototype will offer functionalities to facilitate the mapping of source
code elements to their corresponding concept of the application domain. Ideally, once
this tool is developed, another study with an improved design and set of
comprehension tasks should be conducted. Its objective would be to assess the added
value of the tool on the comprehension of participants.

DRDC Valcartier TM 2005-425 33

8. References

1. The Technical Cooperation Program - Joint Systems and Analysis Group, “The
Engineering and Acquisition of Systems of Systems in the United States DoD,”
Tech. Report TR-JSA-TP4-1-2001, Jan. 2001.

2. D. Garlan and D.E. Perry, “Introduction to the Special Issue on Software
Architecture,” IEEE Trans. On Software Eng., vol. 21 no. 4, Apr. 1995, pp. 269-
274.

3. R. Richardson, et al., “A Survey of Research into Legacy System Migration,”
Tech. Report TCD-CS-1997-01, Trinity College Dublin, Dublin, Ireland, Jan.
1997.

4. I.T. Bowman and R.C. Holt, “Software Architecture Recovery Using Conway’s
Law,” Proc. of the 1998 Conf. of the Centre for Advanced Studies on
Collaborative research (CASCON’98), Mississauga, Ont., Nov. 1998, pp. 123-
133.

5. L. O’Brien and C. Stoermer, “Architecture Reconstruction Case Study,” Tech.
Note CMU/SEI-2003-TN-008, Carnegie Mellon Univ., Pittsburgh, Pa., Apr. 2003.

6. R.L. Krikhaar, “Software Architecture Reconstruction,” Ph.D. Thesis, Univ. of
Amsterdam, Amsterdam, The Netherlands, 1999.

7. C. Riva, “Reverse Architecting: An Industrial Experience Report,” Proc. of the 7th
Working Conf. on Reverse Eng. (WCRE’00), Brisbane, Australia, Nov. 2000, pp.
42-51.

8. M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, 1996.

9. A. Trevors and M.W. Godfrey, “Architectural Reconstruction in the Dark,”
Workshop on Software Architecture Reconstruction held in conjunction with the
9th Working Conf. on Reverse Eng. (WCRE’02), Richmond, Va., Oct., 2002.

10. K. Wong, “Structural Redocumentation: A Case Study,” IEEE Software, vol.12,
no.1, Jan. 1995, pp.46-54.

11. R. Clayton, S. Rugaber, and L. Wills, “Dowsing: A Tool Framework for Domain-
Oriented Browsing of Software Artifacts,” Proc. of the 13th IEEE Int’l Conf. on
Automated Software Eng., Honolulu, Hawaii, Oct. 1998, pp. 204-207.

12. J. Grundy and J. Hosking, “High-Level Static and Dynamic Visualization of
Software Architectures,” Proc. of the 2000 IEEE Int’l Symp. On Visual Languages
(VL’00), Seattle, Wash. Sept. 2000, pp. 5-12.

34 DRDC Valcartier TM 2005-425

13. M. Lizotte and J. Rilling, “OASIS: Opening-up Architecture of Software-Intensive
Systems”, Proc. of the 24th Army Science Conf. (ASC’04), Orlando, Fla., Nov.
2004.

14. J. Rilling, “State of the Art Report: System Architecture Recovery and
Comprehension,” Tech. Report, DRDC Valcartier, Val-Bélair, Que., 2003.

15. Headway reView, “Headway Software,” Dec. 2005;
http://www.headwaysoftware.com/.

16. Rational PurifyPlus, “IBM Software,” Dec. 2005; http://www-
306.ibm.com/software/awdtools/purifyplus/win/.

17. M.-A.D. Storey, “Theories, Methods and Tools in Program Comprehension: Past,
Present and Future,” Proc. of the 13th Int’l Workshop on Program Comprehension
(IWPC’05), St. Louis, Mo., May 2005, pp. 181-191.

18. E. Soloway and K. Ehrlich, “Empirical Studies of Programming Knowledge,”
IEEE Trans. On Software Eng., vol. 10, no. 5, Sept. 1984, pp. 595-609.

19. R. Brooks, “Towards a Theory of the Comprehension of Computer Programs,”
Int’l J. of Man-Machine Studies, vol. 18, no. 6, June 1983, pp. 543-554.

20. B. Shneiderman and R. Mayer, “Syntactic/Semantic Interactions in Programmer
Behavior: A Model and Experimental Results,” Int’l J. of Computer and
Information Sciences, vol. 8, no. 3, 1979, pp. 219-238.

21. B. Shneiderman, Software Psychology: Human Factors in Computer and
Information Systems, Winthrop Publishers, 1980.

22. N. Pennington, “Stimulus Structures and Mental Representations in Expert
Comprehension of Computer Programs,” Cognitive Psychology, vol. 19, 1987, pp.
295-341.

23. S. Letovsky, “Cognitive Processes in Program Comprehension,” Proc. of the 1st
Workshop on Empirical Studies of Programmers, Ablex Publishing, 1986, pp. 58-
79.

24. D.C. Littman, et al., “Mental Models and Software Maintenance,” 1st Workshop
on Empirical Studies of Programmers on Empirical Studies of Programmers,
Washington, D.C., 1986, pp. 80-98.

25. E. Soloway, et al., “Designing Documentation to Compensate for Delocalized
Plans,” Comm. Of the ACM, vol. 31, no. 11, Nov. 1988, pp. 1259-1267.

26. A. von Mayrhauser and A.M. Vans, “From Code Understanding Needs to Reverse
Engineering Tool Capabilities,” Proc. of the 6th Int’l Conf. on Computer-Aided
Software Engineering (CASE’93), Singapore, Jul. 1993, pp. 230-239.

DRDC Valcartier TM 2005-425 35

27. M.-A.D. Storey, F.D. Fracchia, and H.A. Mueller, “Cognitive Design Elements to
Support the Construction of a Mental Model during Software Visualization,” Proc.
of the 5th Int’l Workshop on Program Comprehension (IWPC’97), Dearborn,
Mich., May 1997, pp. 17-28.

28. S.R. Tilley, S. Paul, D.B. Smith, “Towards a Framework for Program
Understanding,” Proc. of the 4th Int’l Workshop on Program Comprehension
(IWPC’96), Berlin, Germany, Mar. 1996, pp. 19-28.

29. M.-A.D. Storey, et al., “On Designing an Experiment to Evaluate a Reverse
Engineering Tool,” Proc. of the 3rd Working Conf. on Reverse Eng. (WCRE’96),
Monterey, Calif., Nov. 1996, pp. 31-40.

30. M.-A.D. Storey, K. Wong, and H.A. Müller, “How Do Program Understanding
Tools Affect How Programmers Understand Programs?,” J. Science of Computer
Programming, vol. 36, No. 2-3, Mar. 2000, pp. 183-207.

31. S. Elliott Sim and M.-A. D. Storey, “A Structured Demonstration of Program
Comprehension Tools,” Proc. of the 7th Working Conf. on Reverse Eng.
(WCRE’00), Brisbane, Australia, Nov. 2000, pp. 184-193.

32. M.J. Pacione, M. Roper, and M. Wood, “A Comparative Evaluation of Dynamic
Visualisation Tools,” Proc. of the 10th Working Conf. on Reverse Eng.
(WCRE’03), Victoria, B.C., Nov. 2003, pp. 80-89.

33. K.S. Mathias, “The Role of Software Measures and Metrics in Studies of Program
Comprehension,” Proc. of the 37th Ann. Southeast Regional Conf., Mobile, Ala.,
Apr. 1999.

34. ArgoUML, “Tigris.org: Open Source Software Engineering,” Dec. 2005;
http://argouml.tigris.org/.

35. CodeSurfer, “GrammaTech,” Dec. 2005; http://www.grammatech.com/
products/codesurfer/.

36. Columbus/CAN, “FrontEndART,” Dec. 2005; http://www.frontendart.com/.

37. Fujaba Tool Suite, “Fujaba,” Dec. 2005; http://wwwcs.uni-
paderborn.de/cs/fujaba/.

38. Rational Rose, “IBM Rational Software,” Dec. 2005; http://www-
306.ibm.com/software/rational/.

39. SniFF+, “Wind River,” Dec. 2005; http://www.windriver.com/products/
development_tools/ide/sniff_plus/.

40. R. Kazman, L. O’Brien, and C. Verhoef, “Architecture Reconstruction
Guidelines,” Tech. Report CMU/SEI-2001-TR-026, Carnegie Mellon Univ.,
Pittsburgh, Pa., Aug. 2001.

36 DRDC Valcartier TM 2005-425

41. S.R. Tilley and D.B. Smith, “Coming Attractions in Program Understanding,”
Tech. Report CMU/SEI-96-TR-019, Software Engineering Institute, Pittsburgh,
Pa., 1996.

42. M.-A.D. Storey, C. Best, and J. Michaud, “SHriMP Views: An Interactive
Environment for Exploring Java Programs,” Proc. of the 9th Int’l Workshop on
Program Comprehension (IWPC’01), Toronto, Ont., May 2001, pp. 111-112.

43. L. O’Brien, “Architecture Reconstruction to Support a Product Line Effort: Case
Study,” Tech. Note CMU/SEI-2001-TN-015, Carnegie Mellon Univ., Pittsburgh,
Pa., Jul. 2001.

44. L. O’Brien and V. Tamarree, “Architecture Reconstruction of J2EE Applications:
Generating Views from the Module Viewtype,” Tech. Note CMU/SEI-2003-TN-
028, Carnegie Mellon Univ., Pittsburgh, Pa., Nov. 2003.

45. Eclipse, “Eclipse.org Main Page,” Dec. 2005; http://www.eclipse.org/.

46. Creole, “Creole - Home | the CHISEL group,” Dec. 2005;
http://www.thechiselgroup.org/creole.

47. Java Extractor, “Java Extractor | the CHISEL group,” Dec. 2005;
http://www.thechiselgroup.org/?q=stand-alone-shrimp/extractor.

48. Creole, “Creole - Download and Get Started | the CHISEL group,” Dec. 2005;
http://www.thechiselgroup.org/creole/getting-started.

49. Aqtime 4, “Aqtime 4 - Automated Profiling and Debugging,” Dec. 2005;
http://www.automatedqa.com/products/aqtime/.

50. Quest Jprobe, “Quest : Products : Jprobe : Overview,” Dec. 2005;
http://www.quest.com/jprobe/.

51. Borland Optimizeit, “Borland : Optimizeit Enterprise Suite,” Dec. 2005;
http://www.borland.com/us/products/optimizeit/.

52. ej-technologies Jprofiler, “Java Profiler - Jprofiler,” Dec. 2005; http://www.ej-
technologies.com/products/jprofiler/overview.html.

53. JUnit, “JUnit, Testing Resources for Extreme Programming,” Dec. 2005;
http://www.junit.org/.

54. P. Clements, et al., Documenting Software Architectures: Views and Beyond,
Addison-Wesley, 2002.

55. A. van Deursen and T. Kuipers, “Building Documentation Generators,” Proc. of
the Int’l Conf. on Software Maintenance (ICSM’99), Oxford, United Kingdom,
Sept. 1999, pp. 40-49.

DRDC Valcartier TM 2005-425 37

56. A. van Deursen, “Software Architecture Recovery and Modelling,” ACM SIGAPP
Applied Computing Rev., vol. 10, no. 1, Spring 2002, pp. 4-7.

57. Visual C++, “Visual C++ Developer Center,” Dec. 2005;
http://msdn.microsoft.com/visualc/.

58. Notepad++, “NOTEPAD++,” Dec. 2005; http://notepad-plus.sourceforge.net/.

59. D. Kirk, M. Roper, and M. Wood, “Understanding Object-Oriented Frameworks -
An Exploratory Case Study,” Tech. Report EfoCS-42-2001, Univ. of Strathclyde,
Glasgow, Scotland, 2001.

60. T. Systä, K. Koskimies, and H. Müller, “Shimba - An Environment for Reverse
Engineering Java Software Systems,” Software Practice & Experience, vol. 31,
no. 4, Apr. 2001, pp. 371-394.

61. M.J. Pacione, M. Roper, and M. Wood, “A Novel Software Visualisation Model to
Support Software Comprehension,” Proc. of the 11th Working Conf. on Reverse
Eng. (WCRE’04), Delft, the Netherlands, Nov. 2004, pp. 70-79.

62. F. Deißenböck and M. Pizka, “Concise and Consistent Naming,” Proc. of the 13th
Int’l Workshop on Program Comprehension (IWPC’05), St. Louis, Mo., May
2005, pp. 97-106.

63. P.W. Oman and C.R. Crook, “Typographic Style is More than Cosmetic,” Comm.
Of the ACM, vol. 33, no. 5, May 1990, pp. 506-520.

64. M. Arab, “Enhancing Program Comprehension: Formatting and Documenting,”
ACM SIGPLAN Notices, vol. 27, no. 2, Feb. 1992, pp. 37-46.

65. N. Wilde and C. Casey, “Early Field Experience with the Software
Reconnaissance Technique for Program Comprehension,” Proc. of the Int’l Conf.
on Software Maintenance (ICSM’96), Monterey, Calif., Nov. 1996, pp. 312-318.

38 DRDC Valcartier TM 2005-425

9. Appendix A

Following are the results which were obtained as part of this study for each of the
application under examination and for every comprehension task. The results are
presented in the form of bar charts with two dependent variables.

In the bar charts, the independent variable on the horizontal axis is the task performed.
Below each graph, there is a caption which refers each task to its corresponding
description in Section 4. The first dependent variable is the percentage of the
comprehension task which was achieved. The values for this variable were set
according to what the observers noticed during the study and to what the participants
said during the interview afterwards. The second dependent variable is the time spent
on this task. For example, for the first bar chart of section 9.1, the participants spent
20 minutes for the first task (Table 10 task 1). With only an IDE, they were able to
complete only 70% of the task, while using the analysis tools, they were able to
complete it in its entirety.

At the time the comprehension tasks were designed, a predefined amount a time was
set for each of them. This was done to ensure that the participants did not spent too
much time on a particular task and had enough time to at least try all of them.
Unfortunately, during the course of the study, the observers realized that the time
allocated for some tasks was too short. As a result, a few comprehension tasks, which
were considered less important, had to be skipped so that all the work could be carried
out within one day of work.

In the bar charts, the tasks in white were performed using an IDE, while the ones in
dark gray were performed using the static and dynamic analysis tools.

9.1 HCI_CASE_ATTI Results

Table 17. Source Code Composition Tasks

BAR CHART DESCRIPTION

T1: Identify how the application is organized into components and
 sub-components. For each component, evaluate its size in
 terms of number of classes.

T2: Identify a set of classes relevant to the application domain (e.g.,
 mission, operation, country, and tracks).

DRDC Valcartier TM 2005-425 39

Table 18. Source Code Composition Tasks (Continued)

BAR CHART DESCRIPTION

T1: Identify the classes containing an entry point. Among all the
 entry points found, identify the one which is most likely the main
 entry point of the application. Identify other important entry
 points if applicable.

T1: Identify the components involved in interactions with end-users.
T2: Identify the components involved in interactions with the file
 system.
T3: Identify the components involved in interactions with external
 applications via network communications.
T4: Identify the components accessing database management
 systems.
T5: Identify the components involved in interactions with third party
 libraries.

Note: T2 and T4 were not performed using the analysis tools
 because they are not applicable in the case of
 HCI_CASE_ATTI. These tasks respectively require to identify
 the components involved in interactions with the file system
 and accessing database management systems.
 Unfortunately, HCI_CASE_ATTI relies on another component
 developed in C++ for its interactions with the file system.
 Also, it does not access any databases. This was realized
 after having first performed these tasks using the IDE.

T1: Identify clusters of components which have high cohesion but
 low coupling.

40 DRDC Valcartier TM 2005-425

Table 19. Source Code Analysis Tasks

BAR CHART DESCRIPTION

T1: Find if there are dependency cycles between the components
 of the application.

T1: Compute the abstractness of the components. Rank the largest
 components, in terms of number of classes, according to their
 abstractness, in decreasing order.

T1: Compute the number of classes in the application.

T1: Compute the coupling between object classes (CBO) of each
 major class.

Note: T1 was not performed using the IDE. It requires the
 computation of a metric for each major class. Given the size
 of the application and the time constraints, it would not have
 been possible to compute this metric using only an IDE.

DRDC Valcartier TM 2005-425 41

Table 20. Source Code Analysis Tasks (Continued)

BAR CHART DESCRIPTION

T1: Compute the afferent (Ca) and efferent (Ce) coupling of each
 major component.

T2: Identify the components with the highest afferent and lowest
 efferent coupling.

T3: Identify the components with the lowest afferent and highest
 efferent coupling.

T4: Identify the components with the lowest afferent and efferent
 coupling.

Table 21. Source Code Visualization Tasks

BAR CHART DESCRIPTION

T1: Show the overall structure of the application at the component
 level as well as the interaction dependencies between them.
T2: Isolate a large group of classes (at least four) involved in an
 inheritance dependency and show the corresponding
 inheritance cluster of classes for each group.
T3: Isolate a large group of classes (at least four) involved in an
 aggregation dependency and show the corresponding
 aggregation cluster of classes for each group.

Note: T1, T2, and T3 were not performed using the IDE. They
 require the analysis of a large quantity of source code and it
 would not have been possible to perform them given the time
 constraints.

T1: Show a top-down component dependency hierarchy of the
 application.

T2: Compute the layer of dependency of each component.

Note: T1 and T2 were not performed using the IDE. They require
 the analysis of a large quantity of source code and it would
 not have been possible to perform them given the time
 constraints.

42 DRDC Valcartier TM 2005-425

Table 22. Execution Trace Visualization Tasks

BAR CHART DESCRIPTION

T1: Perform a representative run of the application and identify the
 creation/deletion of processes/threads.

Note: T1 was skipped during the course of the study as it seemed
 less important and to allow the participants to put their efforts
 on other ones.

T1: Describe the interactions between the different
 processes/threads.

Note: T1 was skipped during the course of the study as it seemed
 less important and to allow the participants to put their efforts
 on other ones.

Table 23. Execution Trace Analysis Tasks

BAR CHART DESCRIPTION

T1: Execute a set of representative runs and identify the covered
 and non-covered areas of the application.

T2: Execute a set of representative runs. Identify the most
 solicited areas of the application.

T3: Identify the initialization hierarchy of the components.

Note: T1, T2, and T3 were not performed using the IDE. They
 require dynamic analysis features that an IDE cannot provide.

DRDC Valcartier TM 2005-425 43

Table 24. Data Exchange Format Task

BAR CHART DESCRIPTION

T1: Analyze the data exchange format (e.g., binaries, serializable
 objects, and XML).

Note: T1 was not performed using the analysis tools due to time
 constraints.

Table 25. Reduction/Simplification Tasks

BAR CHART DESCRIPTION

T1: Extract a subset of information that is of interest for the user.

Note: T1 was skipped during the course of the study as it seemed
 less important and to allow the participants to put their efforts
 on other tasks.

T1: Identify the deepest inheritance tree in the application.

T2: Identify the deepest composition/aggregation tree in the
 application.

Note: T1 and T2 were skipped during the course of the study as
 they seemed less important and to allow the participants to
 put their efforts on other tasks.

44 DRDC Valcartier TM 2005-425

9.2 COPlanS Results

Table 26. Source Code Composition Tasks

BAR CHART DESCRIPTION

T1: Identify how the application is organized into components and
 sub-components. For each component, evaluate its size in
 terms of number of classes.
T2: Identify a set of classes relevant to the application domain (e.g.,
 mission, operation, country, and tracks).

T1: Identify the classes containing an entry point. Among all the
 entry points found, identify the one which is most likely the main
 entry point of the application. Identify other important entry
 points if applicable.

T1: Identify the components involved in interactions with end-users.
T2: Identify the components involved in interactions with the file
 system.
T3: Identify the components involved in interactions with external
 applications via network communications.
T4: Identify the components accessing database management
 systems.
T5: Identify the components involved in interactions with third party
 libraries.

Note: For T1 and T2, several problems were experienced with the
 dynamic analysis tools. T3 was not performed using the
 dynamic analysis tools, as it was discovered that the network
 could not be accessed. T4 was also not performed using the
 dynamic analysis tools. COPlanS uses a Tomcat servlet
 service to access a database and PureCoverage cannot track
 calls inside Tomcat.

DRDC Valcartier TM 2005-425 45

Table 27. Source Code Composition Tasks (Continued)

BAR CHART DESCRIPTION

T1: Identify clusters of components which have high cohesion but
 low coupling.

Table 28. Source Code Analysis Tasks

BAR CHART DESCRIPTION

T1: Find if there are dependency cycles between the components
 of the application.

T1: Compute the abstractness of the components. Rank the largest
 components, in terms of number of classes, according to their
 abstractness, in decreasing order.

46 DRDC Valcartier TM 2005-425

Table 29. Source Code Analysis Tasks (Contiued)

BAR CHART DESCRIPTION

T1: Compute the number of classes in the application.

T1: Compute the coupling between object classes (CBO) of each
 major class.

Note: T1 was not performed using the IDE. It requires the
 computation of a metric for each major class. Given the size
 of the application and the time constraints, it would not have
 been possible to compute this metric using only an IDE.

T1: Compute the afferent (Ca) and efferent (Ce) coupling of each
 major component.

T2: Identify the components with the highest afferent and lowest
 efferent coupling.

T3: Identify the components with the lowest afferent and highest
 efferent coupling.

T4: Identify the components with the lowest afferent and efferent
 coupling.

DRDC Valcartier TM 2005-425 47

Table 30. Source Code Visualization Tasks

BAR CHART DESCRIPTION

T1: Show the overall structure of the application at the component
 level as well as the interaction dependencies between them.
T2: Isolate a large group of classes (at least four) involved in an
 inheritance dependency and show the corresponding
 inheritance cluster of classes for each group.
T3: Isolate a large group of classes (at least four) involved in an
 aggregation dependency and show the corresponding
 aggregation cluster of classes for each group.

Note: T1, T2, and T3 were not performed using the IDE. They
 require the analysis of a large quantity of source code and it
 would not have been possible to perform them given the time
 constraints.

T1: Show a top-down component dependency hierarchy of the
 application.

T2: Compute the layer of dependency of each component.

Note: T1 and T2 were not performed using the IDE. They
 require the analysis of a large quantity of source code and it
 would not have been possible to perform them given the time
 constraints.

Table 31. Execution Trace Visualization Tasks

BAR CHART DESCRIPTION

T1: Perform a representative run of the application and identify the
 creation/deletion of processes/threads.

Note: T1 was not performed using the IDE. They require dynamic
 analysis features that an IDE cannot provide.

48 DRDC Valcartier TM 2005-425

Table 32. Execution Trace Visualization Tasks (Continued)

BAR CHART DESCRIPTION

T1: Describe the interactions between the different
 processes/threads.

Note: T1 was aborted during the study, as the participants were not
 able to identify the classes involved.

Table 33. Execution Trace Analysis Tasks

BAR CHART DESCRIPTION

T1: Execute a set of representative runs and identify the covered
 and non-covered areas of the application.

T2: Execute a set of representative runs. Identify the most
 solicited areas of the application.

T3: Identify the initialization hierarchy of the components.

Note: T1, T2, and T3 were not performed using the IDE. They
 require dynamic analysis features that an IDE cannot provide.
 Also, T1 and T2 were not performed using the dynamic
 analysis tools. It would have required a complete execution
 of COPlanS, something which can take up to several hours.

Table 34. Data Exchange Format Task

BAR CHART DESCRIPTION

T1: Analyze the data exchange format (e.g., binaries, serializable
 objects, and XML).

DRDC Valcartier TM 2005-425 49

Table 35. Reduction/Simplification Tasks

BAR CHART DESCRIPTION

T1: Extract a subset of information that is of interest for the user.

Note: T1 was not performed using the IDE. It requires the analysis
 of a large quantity of source code and it would not have been
 possible to perform it given the time constraints.

T1: Identify the deepest inheritance tree in the application.

T2: Identify the deepest composition/aggregation tree in the
 application.

Note: T1 and T2 were not performed using the IDE. They require
 the analysis of a large quantity of source code and it would
 not have been possible to perform them given the time
 constraints.

50 DRDC Valcartier TM 2005-425

9.3 ATS Results

Table 36. Source Code Composition Tasks

CHART DESCRIPTION

T1: Identify how the application is organized into components and
 sub-components. For each component, evaluate its size in
 terms of number of classes.

T2: Identify a set of classes relevant to the application domain (e.g.,
 mission, operation, country, and tracks).

T1: Identify the classes containing an entry point. Among all the
 entry points found, identify the one which is most likely the main
 entry point of the application. Identify other important entry
 points if applicable.

T1: Identify the components involved in interactions with end-users.
T2: Identify the components involved in interactions with the file
 system.
T3: Identify the components involved in interactions with external
 applications via network communications.
T4: Identify the components accessing database management
 systems.
T5: Identify the components involved in interactions with third party
 libraries.

Note: T3 and T4 were not performed. The interactions with external
 applications via network communications as well as the
 interactions with databases are management by a COM
 object, the Data Service Layer (DSL).

DRDC Valcartier TM 2005-425 51

Table 37. Source Code Composition Tasks (Continued)

CHART DESCRIPTION

T1: Identify clusters of components which have high cohesion but
 low coupling.

Table 38. Source Code Analysis Tasks

CHART DESCRIPTION

T1: Find if there are dependency cycles between the components
 of the application.

T1: Compute the abstractness of the components. Rank the largest
 components, in terms of number of classes, according to their
 abstractness, in decreasing order.

52 DRDC Valcartier TM 2005-425

Table 39. Source Code Analysis Tasks (Contiuned)

CHART DESCRIPTION

T1: Compute the number of classes in the application.

Note: T1 was not performed using the IDE due to time constraints.

T1: Compute the coupling between object classes (CBO) of each
 major class.

T1: Compute the afferent (Ca) and efferent (Ce) coupling of each
 major component.
T2: Identify the components with the highest afferent and lowest
 efferent coupling.
T3: Identify the components with the lowest afferent and highest
 efferent coupling.
T4: Identify the components with the lowest afferent and efferent
 coupling.

DRDC Valcartier TM 2005-425 53

Table 40. Source Code Visualization Tasks

CHART DESCRIPTION

T1: Show the overall structure of the application at the component
 level as well as the interaction dependencies between them.
T2: Isolate a large group of classes (at least four) involved in an
 inheritance dependency and show the corresponding
 inheritance cluster of classes for each group.
T3: Isolate a large group of classes (at least four) involved in an
 aggregation dependency and show the corresponding
 aggregation cluster of classes for each group.

Note: T2 and T3 were not performed using the IDE. They require
 the analysis of a large quantity of source code and it would
 not have been possible to perform them given the time
 constraints. T1 was skipped by mistake.

T1: Show a top-down component dependency hierarchy of the
 application.

T2: Compute the layer of dependency of each component.

Note: T1 was not performed using the IDE. It requires the analysis
 of a large quantity of source code and it would not have been
 possible to perform them given the time constraints.

Table 41. Execution Trace Visualization Tasks

CHART DESCRIPTION

T1: Perform a representative run of the application and identify the
 creation/deletion of processes/threads.

Note: T1 was not performed using the IDE. It requires dynamic
 analysis features that an IDE cannot provide.

54 DRDC Valcartier TM 2005-425

Table 42. Execution Trace Visualization Tasks (Continued)

CHART DESCRIPTION

T1: Describe the interactions between the different
 processes/threads.

Note: T1 was not performed using the IDE. It requires dynamic
 analysis features that an IDE cannot provide.

Table 43. Execution Trace Analysis Tasks

CHART DESCRIPTION

T1: Execute a set of representative runs and identify the covered
 and non-covered areas of the application.

T2: Execute a set of representative runs. Identify the most
 solicited areas of the application.

T3: Identify the initialization hierarchy of the components.

Note: T1, T2, and T3 were not performed using the IDE. They
 require dynamic analysis features that an IDE cannot provide.

Table 44. Data Exchange Format Task

CHART DESCRIPTION

T1: Analyze the data exchange format (e.g., binaries, serializable
 objects, and XML).

DRDC Valcartier TM 2005-425 55

Table 45. Reduction/Simplification Tasks

CHART DESCRIPTION

T1: Extract a subset of information that is of interest for the user.

T1: Identify the deepest inheritance tree in the application.
T2: Identify the deepest composition/aggregation tree in the
 application.

Note: T1 and T2 were not performed using the analysis tools due to
 time constraints.

56 DRDC Valcartier TM 2005-425

10. List of Acronyms

ARMIN Architecture Reconstruction and MINing

ATS Athene Tactical System

C2 Command and Control

C2IS Command and Control Information System

C4ISR Command, Control, Communications, Computers,
Intelligence Surveillance and Reconnaissance

Ca Afferent Coupling

CASE_ATTI Concept Analysis and Simulation Environment for
Automatic Target Tracking and Identification

CBO Coupling between Object

CAD Canadian Dollar

Ce Efferent Coupling

CF Canadian Forces

COPlanS Collaborative Operations Planning System

DSL Data Service Layer

DND Department of National Defence

EDI Environnement de Développement Intégré

FC Forces canadiennes

HCI_CASE_
ATTI

Human Computer Interface Concept Analysis and
Simulation Environment for Automatic Target
Tracking and Identification

IDE Integrated Development Environment

OASIS Opening up Architecture of Software Intensive
Systems

RSF Rigi Standard Format

DRDC Valcartier TM 2005-425 57

SHriMP Simple Hierarchical Multi-Perspective

SoS System of Systems

USD United States Dollar

58 DRDC Valcartier TM 2005-425

11. Distribution List

INTERNAL DISTRIBUTION

1 - Director General

3 - Document Library

1 - Head, System of Systems

1 - Philippe Charland (author)

1 - Dany Dessureault (author)

1 - Michel Lizotte (author)

1 - David Ouellet (author)

1 - Christophe Nécaille (author)

1 - Head, Information and Knowledge Management

1 - François Lemieux

1 - Martin Salois

EXTERNAL DISTRIBUTION

1 – DRDKIM (PDF file)

DRDC Valcartier TM 2005-425 59

dcd03e rev.(10-1999)

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(Highest Classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA

1. ORIGINATOR (name and address)
Defence Research and Development Canada Valcartier
2459, Pie-XI Blvd North
Québec, Quebec
G3J 1X5 Canada

2. SECURITY CLASSIFICATION
(Including special warning terms if applicable)
Unclassified

3. TITLE (Its classification should be indicated by the appropriate abbreviation (S, C, R or U)
Using software analysis tools to understand military applications: A qualitative study (U)

4. AUTHORS (Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.)
Charland, Philippe; Dessureault, Dany; Lizotte, Michel; Ouellet, David; Nécaille, Christophe

5. DATE OF PUBLICATION (month and year)
 August 2006

6a. NO. OF PAGES
73

6b .NO. OF REFERENCES
65

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. Give the
inclusive dates when a specific reporting period is covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (name and address)
Defence Research and Development Canada Valcartier
2459, Pie-XI Blvd North
Val-Bélair, Québec
G3J 1X5 Canada
9a. PROJECT OR GRANT NO. (Please specify whether project or
grant)
15ak40

9b. CONTRACT NO.

10a. ORIGINATOR’S DOCUMENT NUMBER
DRDC Valcartier TM 2005-425

10b. OTHER DOCUMENT NOS

N/A

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security
classification)

 Unlimited distribution
 Restricted to contractors in approved countries (specify)
 Restricted to Canadian contractors (with need-to-know)
 Restricted to Government (with need-to-know)
 Restricted to Defense departments
 Others

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally
correspond to the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is
possible, a wider announcement audience may be selected.)

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(Highest Classification of Title, Abstract, Keywords)

dcd03e rev.(10-1999)

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(Highest Classification of Title, Abstract, Keywords)

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself.
It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin
with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified)
represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is
bilingual).

Although some studies have already been conducted to evaluate the effect of reverse engineering and visualization tools on
programmers’ understanding, most of them were conducted under conditions which do not prevail in the industry. They involved
undergraduate and graduate students performing comprehension tasks on relatively small scale programs. Also, they either
focused exclusively on the static or dynamic aspect of the software under examination. This technical memorandum describes
the design and reports the observations of a qualitative study conducted to assess the value added by one reverse engineering
and two dynamic analysis tools. The software examined were three large scale military applications written in C++ and Java. In
this study, five participants had to perform 31 comprehension tasks, taking into consideration both the static and dynamic aspects
of the applications under examination. The tasks were intended to be as close as possible to the ones performed during an
understanding effort at the architectural level on large scale software. Although it was observed that the tools aided the
participants to understand the applications under examination, some deficiencies were observed. These stem from the fact that
the tools do not always provide the appropriate viewpoints, abstraction levels, and filters needed to understand the architecture of
applications of considerable size. This is especially true in the case of the dynamic tools.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document
and could be helpful in cataloguing the document. They should be selected so that no security classification is required.
Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be
included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and Scientific
Terms (TEST) and that thesaurus-identified. If it is not possible to select indexing terms which are Unclassified, the
classification of each should be indicated as with the title.)

Software architecture recovery, program comprehension, program understanding tools, reverse engineering, user study.

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(Highest Classification of Title, Abstract, Keywords)

Canada’s Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

WWW.drdc-rddc.gc.ca

Defence R&D Canada R & D pour la défense Canada

	1.
	1. Introduction
	2. Software Comprehension
	2.1 Concepts and Terminology
	2.2 Cognitive Models
	2.2.1 Bottom-Up
	2.2.2 Top-Down
	2.2.3 Knowledge-Based
	2.2.4 Systematic and As-Needed
	2.2.5 Integrated Metamodel
	2.2.6 Factors Influencing the Selected Approach

	2.3 Related Studies

	3. Static and Dynamic Analysis Tools
	3.1 Selection Process
	3.2 Headway reView
	3.3 Rational PureCoverage
	3.4 Rational Quantify

	4. Qualitative Study
	4.1 Objectives
	4.2 Participants
	4.3 Applications under Study
	4.4 Qualitative Study Design
	4.4.1 Training
	4.4.2 Familiarization
	4.4.3 Execution of the Comprehension Tasks
	4.4.4 Interview and Debriefing

	4.5 Software Comprehension Charts
	4.6 Comprehension Tasks

	5. Observations
	5.1 Cumulative Comprehension
	5.1.1 Familiarization
	5.1.2 IDEs
	5.1.3 Static and Dynamic Software Analysis Tools

	5.2 Naming Conventions
	5.3 High Level Comprehension
	5.4 Combination of Information
	5.5 Assumptions Validated
	5.6 Programming Languages

	6. Limitations
	7. Conclusions and Future Work
	8. References
	9. Appendix A
	9.1 HCI_CASE_ATTI Results
	9.2 COPlanS Results
	9.3 ATS Results

	10. List of Acronyms
	11. Distribution List

