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Abstract

Visual recognition of objects by a machine involves classifying an input using khowledge about the kinds of ob- .
jects expected in the domain, Model-based systems maintain a knowledge of objects in the domain in the form of a
representation which can be compared to the unknown input. Since a given object type may appear in a variety of forms
and under a variety of viewing conditions some efficient yet flexible means of guiding the recognition process to con- -
sider and then verify the object identity is necessary.
The utility of low-resolution shape information to constrain object recognition was investigated in the context of
a system which is predicated upon a component description of objects.. A computationally intensive prepass using a
-syntax for combining components yields a universe of "constructions” which are coded into a construction relation
feature (CRF) map. Each construction is coded into the N-dimensional map according to a shape parameterization of
its low-resolution image (each dimension codes a shape feature). From a subset of these constructions the object mod-
els are specified in terms of their component structure. The CRF map thus links the low resolution shapes of instances
of an object to its object model.
“To recognize an unknown object the input is first converted to low resolution. Then, shape parameters are taken
(for example, in terms of its relative elongation and compactness). The CRF map is examined in the region of these
- feature coordinates for possible matches with object models, first on the basis of a component match followed by a
verification of the relations between components. An application to identifying objects in simulated aerial photographs

of military airports is presented.
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1. Introduction -

1.1 Model-based Vision . - .

Computational systems which emphasize knowledge about objects® in the world as important in the process of
image interpretation (or object recognition) are regarded as “model-based”. This influential approach in computational
- vision research began in 1965 with Roberts and has continued to receive much attention (e.g., Kanade, 1977; Brooks,
-1981; 1984). More recently, Biederman (e.g., 1985; 1987) has been developing a psychological theory of model-based
" object recognition predicated upon component analysis (RBC theory). His work has.examined the utility of breaking

the recognition process into the stages of: segmenting the object into 3-dimensional primitives called geons?, deter-
mining their general spatial relations to each other, then matching the resultant to models of objects in the world.
Browse and colleagues have been investigating the computational virtues of this apprpach along with the usefulness
of considering multiple resolution image analysis (Smith & Browse, 1988; Browse and Rodrigues, 1987; Browse,
1982). One of the major difficulties uncovered in this analysis of RBC theory is its difficulty in effectively handling
the important problem of component relations. Although Biederman made suggestions as to how these relations might
be computed, it is apparent that the suggested solutions detract from the simple elegance of the main theory. The prob-
lem may be stated thus: In order to unambiguously recogniie an obj‘ect using a list of its components it is necessary to
also incorporate information about their spatial organization if the object is to be discriminated from others with the
same components. This is particularly an issue in RBC theory where the geons that compose the objects have very gen-
eral descriptions making it likely that in any domain of moderate cbmplexity there will be many objects consisting of
the same components.

Biederman suggested using “general relations”. Component spatial relations would be described in terms of be-
ing “near” to another, or connected by the “end”, or “middle” etc.; where the concepts in quotes do not have a specific
numerical value but, in some fashion, encode the approximate relative position of components in an object. The prob-
lem in attempting this, however, is in deriving the general relations initially. It is not apparent how this may be done
other than by first computing an exact measure and then categorizing this using a threshold technique (for example to
decide if a component connects by its “end” or its “near-end” or its “middle” etc.). Exact measures are computationally
expensive however, (see Marr & Nishihara, 1978) and thus detract from the elegance of the theory and would clearly
slow the speed of recognition.

The RBC approach has computational appeal if an efficient means can be found to constrain component rela-

1. An appendix is provided defining common names (italicized) which have a specfic technical meaning in

this document. »
2. A term coined by Beiderman. In this document it refers to a simple two-dimensional geometric shape such

as a circle, square, triangle etc. which can be used in combination to describe more complex shapes.



tions. This report describes a solution which utilizes low resolution images of an object as an estimate of its general
“shape and thus its component relations. To facilitate study of this method a two-dimensional (2-D) domain was select-
ed, thus obviating the complexity of multiple views of an object in a 3-D domain without violating the spirit of basic
principles. A possible 2-D application area of military interest was examined (section 3) with a prototype system.

1.2 Levels of Resolution |

Given that a low resolution image is desirable for the purpose of constraining component relations, the question
‘arises: How low resolution should such an image be? This question may be addressed by considering a possible hier-
archy of component resolutions. The lowest possible resolution is one that permits no discrimination among shapes
for a given method of analysis (fig. 1). The next level of resolution would permit a few shapes to be discriminated. For

example, an ellipse, triangle and rectangle might be selected on the basis of it being possible to define these as having

two, three and four “vertices” respectively!. It will be convenient to refer to this as the “type” level. A simple descrip-
tion of a wide range of objects would be possible if the size of these rough components were allowed to vary in coarse
steps. At the next higher level of resolution each of these component types could be resolved into variations, for ex-
- ample, in terms of the ratio of major and minor axis for ellipses. This will be referred to as the “instantiation” level.
‘Again, variation in scale for each instance would allow a variety of components to be defined. Further levels could be
defined similarly, defining ever more precise component descriptions. However, the instance level may be argued to
provide the appropriate level of resolution for the purpose of an RBC system since the variety of components should
be moderate, perhaps ten to twenty in number (Biederman, 1987).

In correspondence with the above reasoning, a low resolution image of an entire object may only be interpreted
at a very general level (e.g., an “aircraft”) and high resolution images may be interpreted as specialized versions of the
object (e.g., “F-18” vs. “Cessna 180™). This principle has been utilized since Kelly (1971) and Tanimoto and Pavlidis
. (1975), but has been made most explicit in the work of Browse (1982), Neveu et al., (1986) and Browse and Rodrigues
(1987). Thus, low resolution shape information could be used to constrain the class an object belongs to but might not
be expected to resolve specific members of the class. |

In summary, RBC appears to provide a useful framework for developing a computer-based recognition system.
However the following difficult and unsolved problem first requires a solution: What kind of information can be eco-
nomically extracted from a coarse level image which will naturally constrain component relations at higher resolu-
tions? Without a systematic handling of the relational aspects of object models there could only be unambiguous rec-
ognition of those simple objects which require only a single geon for their description. It has been argued that Bieder-
man’s concept of “general relations” such as “near t0” would still involve extensive computation. It is apparent that

an appropriate low resolution image of an object may constrain the relations of its components. In the next section the

1. In the case of an ellipse the vertices might be defined to be the end points of the major axis.



development of an algorithm to utilize this low. resolution information is described. The effectiveness of using low

resolution shape information in the context of an RBC theory is tested in section 3.

2. A 2-D Solution for Constraining Component Relations
This section describes, in general terms, an algorithm for using low resolution shape information to help interpret
" the identity of an unknown object. This paper is based on Cutmore (1989) and a formal computational description is
in preparation by Browse and Cutmore. Biederman’s RBC system did not include the concept of multiple resolutions,
thus the system described below is referred to as an extended RBC system. To expedite the presentation definitions of
the major system elements are provided. Feature space is introdiced since it forms the basis for the primary data struc-
tures. This is followed by the solution algorithm, |
2.1 Extending RBC Theory v
" An idea of the overall system within which a relation-constraining subsytem could contribute is as follows: The
method of extension of RBC theory to include multiple resolution is relatively straightforward. A separate system
- which determines the identity of the components of an unknown imaged o_bjeci in high resolution (but not their spatial
- relations) could operate in parallel with the system to be described in this report (see Smith and Browse, 1987). This
system may be referred to as an RBC-C system. A smaller set of “low-resolution” geons could then be defined, and
simpler image features could be utilized to determine their identity in the same way the fine-level geons are detected,
plus a method which constrains their spatial relations. A mapping would then be required between these lower reso-
lution geons and the high resolution geons identified by RBC-C (see, Brrowsc, 1982). The RBC system which explicitly
includes a method for constraining component relations using low resolution shape will be referred to as RBC-R. It
was also of interest to determine to what degree, simply considering low resolution shape constraints could provide an
interpretation. The RBC-R system is described below and tested in section 3 in isolation of the other programs with
which it could be coordinated. |
2.2 Basic Definitions
Five kinds of entities will be referred to: geon types, geon instantiations {or components), component relations,
constructions and object models. Geon types as discussed above are primitives analogous to Biederman’s RBC theory.

The set of geon types G is defined as:
G = [gl’ g2’ ey gp . 1grn} - (1)

From arguments presented above, a component is an instantiation of some geon type. The set of components is defined
as:



C = (€11, €12+ -+ €215 €22, ++» Cijs ++ +Cmn (2a)

Thus, each g; is a geon fype under which are nested a set of ¢;;. For example, g; may be an ellipse type, and c,; various
specific ellipses. Since a component may appear more than once in a list some means of distinguishing them is neces-

sary. The actual use of a set of components to specify an object is referred to as a c-list:

c-list = <cy, €3, .0 , Cjy ov » Cs> (2b)

- Thus, replications of a c;; are permitted but distinguished and s is the number of components in an object. A c-
list is distinguished from C by having only a single subscript for its members.
A spatial relation between components is designated by: R(c;,c;); one of which is considered fixed with the other’s
position defined relative to it. Two-dimensional objects defined in a Cartesian plane consist of 2-D components which
bear spatial relations defined in terms of three parameters which describe the relative displacement of a “movable”
component relative to a fixed one. Each component has a coordinate frame and the relative location of components are
represented as the transformations necessary to take one component coordinate frame into another. The parameters in
2-D are displacement in x (Ax), displacement in y (Ay) and rotation about some point in the plane, A6. In the methods
described below, this rotation will be about a “connection point” between two componentsl. The displacements are
defined relative to standard initial positions of the components. For example, the initial position of the two components
may have their centroids at a common point. A relation between components ¢; and ¢; is given by R(c;,c;), which con-
sists in a triplet of two translation operations and a rotation. A construction is defined in terms of a list of relations

between component pairs:

K; = <R(C4:Cp), - » R(CiC)), . > 3)

i
A construction may be conveniently described when successive elements are appended one at a time to the list

much as a real object might be assembled, (fig. 2). Connection points can be specified on each component as offsets
with respect to the centroid. This ensures that relations between components are restricted such that all components
will be a part of a single whole. Rotation of one component (designated the movable component) occurs about the co-

incident connection points of two components. For K; with n components, n-1 relations are required to define the con-

struction.

1. The use of defined connection points ensures that a construction will be a connected whole. Thus, a smgle
silhouette shape will always be produced. :



A K; is thus a set of connected components with the spatial relations between them specified as in eqn. 3. An

object model is defined by a non-empty list of constructions with replications permitted:

M, = <K,, Kp, .. Ki... K> @)

A set of object models can be specified for an application domain of RBC-R. This would be in the form of:
M= {M],Mz, . ,Mf, "Mn} . ‘ (5)

where M; are defined as in eqn. 4, plus a label for each. As a matter of convenience, an object model may be represented

as a list of components along with ranges of articulation of components defined for each list. More than one list may

be necessary since some models may have instances composed of different lists of components.

2.3 Feature Space

. The utility of feature space for pattern classification has been investigated (see Horn 1986; Ballard and Brown
1984 for overviews of basic methods). In brief, this approach takes a set of N measurements on a sample from the do-
main of patterns. In visual domains these measurements may be shape measures, number of vertices, number of con-
cavities etc. An N-dimensional feature space may then be used to code a pattern as a vector in that space. Typically
some form of cluster analysis is then done to identify boundaries between sets of points in the space which allows dis-
crimination of the input patterns into their appropriate categories. To classify (or recognize) an unknown input, its
membership to a region in feature space is computed. This technique will work well if one can find features which
resultin boundaries in feature space. However, this is no simple task and the types of features that prove useful in one
domain may be inappropriate in another. However, it may be possible to identify (in the present case) shape features
that are useful in partially classifying or discriminating between images of different types of objects.

The question of interest here is: “What kinds of shape measures would be useful in coding gross spatial relation
properties of components?” Some considerations are (a) the shape parameters need not extract information such that
the original image could be reconstructed such as are described in Ballard and Brown (1982). Partial information about
the shape will suffice. (b) It would be desirable for the shape measures to be invariant over the affine transformations

of: translation, rotation and scale. This would allow the imaged object to be less constrained in its presentation. (c)

Finally, the constraint of no object occlusion may be assumed..

1. Occlusion is a technical term in computer vision. It refers to the overlap in the images of objects in a scene.
The nearer object is said to occlude the more distant one one. If a 2-D domain is being analyzed then this is
a reasonable assumption.



Ballard and Brown list a variety of shape measures which satisfy the above conditions. In addition, other recent
work has extended this range (e.g., Goshtasby, 1985; Bhanu 1984; Bhanu & Faugeras (1984); Tsai and Yu 1985).
Wang, Magee and Aggarwal (1984) describe a method which illustrates the value of taking shape measures on 2-D
silhouette images. This is of interest since silhouettes would be expected to be sensitive to component relations and
offers a simple image type for processing and may thereby improve processing speed.

Ma, Wu & Lu (1986) summarize the following desirable properties of shape descriptors:

(1) The features should be independent of translation, rotation, scale and cyclic shift of the starting point for com-
putation.

(2) The distinction between the features of two objects which have different shapes should be as large as possible.

'(3) The number of features used in classification and recognition should be as small as possible.

(4) Computational time and storage capacity required are short and small respectively.

To this list it would also seem important to add that the shape features should tap essentially independent kinds
of information, unless redundancy is explicitly desirable (which may be the case in inherently “noisy” domains). Two
shape descriptors which meet these criteria are presented in section 3.

.2.4 Algorithm

The following algorithm could be used in isolation for providing coarse discriminations and object labels, such
as: airplane vs. cruise missile vs. tank. It is properly a subsystem of a complete extended RBC system. Biederman’s
RBC theory describes how to identify the geons individually. For example, from an image of an airplane, two rectan-
gular geons (the main and tail wings) and an ellipse (the fuselage) may be identified. The RBC-R algorithm does not
include this capability; it is described elsewhere (Smith & Browse, 1988). The RBC-R algorithm could work in concert
with such a geon identifying program, but it need not. Together, the two systems would embody the main principles
of the extended RBC theory.

An introductory overview of RBC-R is as follows: In the first phase a data structure is created. A universe of all
legal combinations of geon instantiations is constructed. This is the set of all possible K; which could be defined for
some domain of interest. Many K; will belong to an initial set of object models as in eqn. 4. Many may belong to no
model initially, but would provide elements for new models which could be added to the domain at some later point
in time. This universe of K; is then systematically organized into a feature space. This is accomplished by extracting
features from each K;, using these as coordinates into the feature space, and locating at this point the components and

relations of the K;. In this way a data structure for encoding K; configurations is created. This structure is computed

once for the domain. In the object recognition phase, an image of an unknown object is presented. It is converted to a

lower resolution and features extracted. This provides an index into the feature space to retrieve a set of K;. One of

these K; should be an element of an object model which is the correct interpretation of the image. Methods for resolv-



ing component and relation consistency are applied to this set in order to achieve the interpretation.

2.4.1 Data Structures for Models and Constructions: The definition of most objects includes some variation in

- - the relations among components. For example, the rotor of a helicopter may rotate through 2x. For M, this variation

is described in terms of an extended list of K;. Since the low resolution analysis will not distinguish fine variations in
component relations, model relations need not be specified in fine detail and thus, the M; list may be kept to a man-
ageable length. A data representation for the description of M; component relations is a set of n-matrices (Kron, 1939)
where n is the number of degrees of freedom of component relations (fig 2). The cardinality of this set equals ;he num-
ber of distinct component sets for M. A 2-D object with two components will have three degrees of freedom (two trans-
lationai, one rotational) for its various configurations. If a third component is added, three more degrees of freedom
are needed to describe the relations of this component relative to one of the other two. For example, a 3-component K;
could be specified in terms of any two of R(c;,c2), R(ca,¢3) and R(c;,c3). A six-matrix would be required to store the
relational quantities. If a different set of components were also needed for‘ that same M; a second n-matrix would be
needed for storing these component relations; thus the cardinality of the n-matrix set would be two.

Each dimension of an n-matrix has a metric defined on it appropriaté to the rélationa] quantity which that dimen-
sion encodes. In the case of translations this could be coordinates of connection points (relative to the component ref-
erence frame) and for rotation, increments of angle. If a relatively coarse description of the parameter space is as-
sumed, then the n-matrix will have discrete dimensions each with a reasonably small number of levels. For example,
the rotor connections in the “x” direction with respect to the fuselage in fig. 3, could be defined to have three connec-
" tion points. Thus, the dimension of the n-matrix which encodes thls parameter would require only three levels.

To summarize, the foregoing has described how 2-D object components and relations may be represented. A par-
ticular K; is encoded as an element of an n-matrix. Relations between a particular set of components are encoded as a
single n-matrix and if more than one component set is required, more n-matrices are used. What next needs to be de-
- termined is a method by which RBC-R model knowledge may be accessed using information derived from analysis of
the low resolution shape of an object. It is also desirable that the capability to add new models to RBC-R be considered
in the solution.

2.4.2 Using Shape Information.'To satisfy these requirements, an exhaustive prepass is performed which analyzes
the full range of component configurations. This universe of K; is defined by specifying the set of component instan-
tiations from a set of types. These two levels of the component hierarchy need.to be carefully considered for the domain
of application. The main criterion is that the component set be rich enough to model all known objects of interest within
the domain and furthermore, anticipate the addition of new models. The manipulations of these components to form
K; is described by a component relational grammar which generates the full set of “legal” component configurations

for the domain. Each K; so created yields an image which is converted to a lower resolution and is analyzed in the form



of a single silhouette with Euler number! one. n shape measures are applied to acquire an n-tuple coordinate into an n-
-dimensional feature space. This space is quantized to a degree appropriate for the discrimination task at hand. This
.quamization may best be determined by considering the range of shapes to be discriminated relative to the fineness of

discrimination. The minimum and maximum shape parameters computed for a given domain could be used to define

the the limits of the space, and the number of resolvable levels on any dimension could be decided empirically in a
calibration of the system. This approach was followed in the test environment in section 3.

The K; components and relations which yielded these features are stored at the feature-indexed n-tuple coordi-

- nate of the feature space. The resulting structure is referred to as a construction-relation feature map (CRF map). This
process will be computationally intensive, even for a relatively simple domain since the variety of component combi-
nations and configurations grows geometrically with number of components and permissible relations. However, it
need only be computed once and thereafter remain a static structure to be used in the process of object recognition,

2.4.3 Image Interpretation: After creation of the static CRF map an unknown object is presented to RBC-R in
the form of a silhouette image. The major steps in the recognition phase are:

1. An input image is provided in a form which allows for conversion to a lower level of resolution.

-2. Shape parameters are extracted from this second image and used to index the feature space.

3. The feature space n-tuple is examined for an associated set.of construction (K;) lists. If this list is non-empty
then,

4. Each K;’s c-list is compared against the object model c-lists to determine whether models have been defined
which have the same components. If this step produces an intersection list which is non-empty then,

5. The relational n-matrices of each K; surviving the previous step is compared against the c-list matched models.
If a non-empty intersection for one or more of K; is found then,

6. The process-stops and yields models which have satisfied the two necessary criteria of component matching
with input elicited K; and component spatial relation similarity.

If any of the steps (3-5) fail to maintain a non-empty set of interpretations then RBC-R can search the local region
of feature space (go back to step 2 and choose a néarby N-tuple) until some interpretation is resolved or a threshold is
passed which indicates that RBC-R is unable to make an interpretation.

The reason why this technique works in permitting partial consideration of relational information without actual
analysis of the metrics involved in the relations, is that the coarse level shape information encodes not only information

about the finer-level elements but it also encodes information about their relations.

1. A technical term in computer scicnce defined as: the difference between the number of distinct shapes in
an image and the total number of holes in these shapes. :

Y



3. An Application

3.1 Input

The domain for the application was aerial “‘photographs” of military airport scenes. This domain is suitable for
2-D analysis and provides a diverse set of objects for discrimination. The input images processed by RBC-R were not,
- in fact, real photographs, but rather, bit arrays which encode silhouette images of objects with no occlusions. All im-
ages were, therefore, simulated and the names given to object models are for illustrative purposes only. Figure 4 shows
a low-resolution silhouette of an “airplane”. Conversion of a high-resolution image to low-resolution was simulated
by making relatively coarse images to begin with and smoothing the perimeter with a simple mask. Thus, in what fol-
‘ows the input image for recognition is assumed to be low resolution. The K; were constructed to yield the same type
of image for shape analysis during preprocessing. The implementation was written in Common Lisp (Steele, 1984).

3.2 Geon Types and Instantiations

‘The set of high resolution geon types used in generating the K; were: an ellipse, a rectangle and a triangle. These
were selected since they can be used to produce a range of different instantiations to yield a variety of objects that have
the appearance of the kinds of things expected in an air field. For example, in fig. 4 the airplane fuselage is an ellipse,
the main wings are a single rectangle as are the tail wings. All objects and constructions were defined in terms of c-
lists of instantiations of these three geon types and each was configured from three components, (fig. 5).

3.3 Models and Constructions

The models in this implementation consisted of a small subset of the total construction set. There were, therefore,

many K; which belonged to no model. For illustrative purposes, some models were deliberately constructed out of the

same components but with different spatial relations, for example, the “airport” and the ““airplane” models. One model
(the “tank™) also consisted of two separate lists of components. Four models, “airport”, “tank”, “fuel truck” and “he-
licopter” had articulating components. A model was stored in RBC-R as a list of: components, relations and name.

The construction universe was created using a program to draw and transform polygons to form composite sil-
houette shapes. This was followed by the application of a low pass filter to “smooth” the perimeter of the shape to
simulate a low resolution image.

In creating the construction universe two possible extremes are (a) to create only model constructions, in which
case a pre-pass will be needed each time a new model is added or redefined or an existing model extended; or (b) the
opposite extreme is to compute all possible combinations and relations of components in the set (within some resolu-
tion), in which case adding new models would not require another pre-pass. Given that extreme (a) violates the spirit
of RBC as a concept of a general and flexible object recognition scheme and that extreme (b) would create a vast data

base, an intermediate strategy was adopted. A subset of the full range of possible K; were used. Figure 6 shows the

domain hierarchy and the set of nine models used in this implementation. The models were composed from 48 mem-
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bers out of a total set of 323 K in the construction universe which was derived from eight c-lists.
3.4 Relations
The relational n-matrix explicitly encodes in separate dimensions each degree of freedom of component rela-
- tions. For simplicity of construction, one component was always the reference with the other two specified in relation
to it. In other words, one component was held fixed (c1) and the other two .(c2 and ¢3) attached to it. A 6-matrix was
therefore réquired to encode the relations of these K;: two translational and one rotational degrees of freedom for each
of the two pairs of components.

“The 6-matrix was implemented as a bit array and a relation was stored by setting the appropriate bits in this data
structure. The size of the dimensions permitted up to three connection points per component and ten levels of rotation.
The size of the relation space is therefore the product of the dimensions: 34 % 102 (8100 bits), or approximately 1 ki-

‘lobyte. This results from specifying 3 connection points on 4 displacement degrees of freedom and 10 angles of rota-
tion on two rotational degrees of freedom. The relation space did not contain any information about the identity of the

connected components, this was specified separately.

- 3.5 Shape Parameterization and Feature Space
“Two shape features were selected on the basis of considerations outlined in section 2.3. “Compactness” may be
roughly defined as the relative efficiency with which a perimeter bounds a closed 2-D figure. In the present context

this measure is defined as:

= — (6a)

where A is the area of a silhouette image and P is the length of the perimeter. Cp is minimal for a circle (1/4x). The
computation of this measure is straightforward from a sithouette image. The boundary is traced in either clockwise or
“counterclockwise direction to measure the perimeter and the area can be measured in number of pixels. A normalized

measure can be computed as:
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Ch=  ——— % 4 - (6b)

The normalized compactness is derived by multiplying by the inverse of the compactness of a circle.

- “Aspect ratio” defines the relative elongation of a shape. A simplistic approach is to consider the ratio of the sides
of a rectangle fitted around the perimeter of the shape such that the opposite sides of the rectangle intersect the most
distant points of the image. The steps in the computation are thus: Find the points on the perimeter most distant (length
- =Ry from each other and construct a line through them. Then, compute the minima and maxima (in y) of the perimeter

points (difference =R,,) in the image after it has been rotated and translated to place the constructed line on the x-axis.

The normalized aspect-ratio is:

Ar. = — Rw<=Rl' ' @)

Eqn. 7 has a maximum value of 1 when the sides are equai. A more precise measure of aspect ratio based on
moments is given in Ballard and Brown (1982).

These two shape measures were computed for each K; after it was constructed and converted to a lower resolu-
tion. This pre-pass data was stored in a file, recording components, connection‘points and angles.

The feature space (CRF) map was computed by reading the data file and determining the maximum and mini-
mum for each feature. These were then used as the extreme quantized values with all other feature values scaled ac-
cordingly. The dimensions of the space was 10 X 10. This relatively conservative size for the CRF map was found to
be satisfactory for discriminating the shapes in this small domain. If the results of the (computationally intensive) shape
analysis of K; in the prepass are stored in intermediate form, then calibration of the coarseness of the CRF map may
be done separately. An overview of the steps involved in the recognition of an “airplane” is illustrated in fig. 6. The
high resolution *“photograph” is converted to a lower resolution and features extracted which index the CRF map. This

produces a set of K; which are then compared against model representations for component and relation compatibility.
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3.6 Some Example Images for Recognition

With the CRF map loaded and the model-list defined, test images were given to RBC-R for recognition. These
were in the same format as those previously analyzed during creation of the K; (i.e., bit images of low resolution sil-
houettes).

Fig. 7 (a) shows-an image of a “jet” which was presented. This image was constructed using the same program
functions as used in creating the K; universe. Several points are of interest in this test: (1) The correct model is found
- (2) The interpretation is pariially ambiguous in the sense that the “airplane” model was also found. This is interesting

“since these two objects inmiﬁvely have similar shapes. (3) The component list elicited by the image also matched the

" “airport” model, but was rejected on the basis of non-matching component relations. (4) Since component matching is
performed at the level of geon instantiations as opposed to the basic geon fypes, RBC-R does not evoke a match with
the “rocket” or “cruise missile” models which share the same geon type and relational configuration as the “jet” model.
(5) More 'importantly, the models for the “fuel tanker”, “helicopter” and “conveyor” are not evoked as they would be
if geon types were used as components in RBC-R. To see how this would occur, first note that the “airplane” K; maps
to the same point in the CRF map as the “jet”, (this is why it’s model is considered during the recognition process). If
geon types were components the component list would evoke the three other models since each is composed of an el-
lipse and two rectangles, just like the “airplane”. These models would be considered as candidates for which the rela-
tion space should be checked. Although subsequent rejection would occur on the basis of a failure of relation match,
this extra computation was avoided by using geon instantiations instead of geon types. Points (4) and (5) underscore
the importance of choosing the appropriate component resolution and illustrate the power of using the shape informa-
tion inherent in the different geon instantiations. If geon types were used it would impossible to discriminate the “fuel
tanker”, “helicopter” and “conveyor” since these models were each composed of the same geon types and relations.

Images of a “rocket” and “cruise missile” were presented [fig. 7 (b), (c)] and were correctly discriminated from
each other. Each mapped to a different pbint in feature space. For the rocket image RBC-R rejected “airplane” and
“airport” models on the basis of a failure of relation matching. In the latter case, a K; consisting of the list <LONG-
ELL LONG-RECT SHORT-RECT> mapped to the same feature coordinates as the “cruise missile”. This illustrates .
RBC-R’s capability of correctly rejecting non-object constructions during recognition, an important capability if such
a system is to operate in a general context where much of the CRF map contains such constructions.

Scale and rotation invariance is illustrated in the next set of examples. Fig. 8 shows the results of testing “air-
plane” images at various scales and rotations relative to the K; which was originally used to create the airplane shape
for the CRF map. In other words, these images were never shown to RBC-R during the pre-pass. These tests, therefore,

differ from the previous ones in which a sample image from the K; set was submitted for recognition. As the figure

illustrates, the system recognized the scaled-only images after a single n-tuple index to the CRF map. Consistent with
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the testing of the “jet” image noted above, both the “airplane” and “jet” models were evoked. This was because the K;
shape features for the plane and jet both mapped to the same place in feature space. The “airport” model was evoked
because the:component list of: <LONG-ELL LONG-RECT SHORT-RECT> has a K; at the corhpute_d'coordinates and
all models with these components were examined. It was rejected on the basis of a failure to match relations.

Of greater interest is the test result from the scaled and rotated.image. This test result is typical of many others
in which combinations of scale and rotation transforms were used. Appendix 2 contains an actual run on this image.
The initial feature coordinates were not directly on target to find the “airplane” model. RBC-R searched the surround-
ing CRF map region by way of off-set values from the initial coordinates. To be fair, all eight surrounding points were
examined in the map (since the starting point is arbitrary). The models evoked were the expected ones: “airplane” and
“jet”. )
The “tank” model was defined here to suggest how this 2-D system might be extended to a 3-D world. Fig. 5
shows the tank model composed of two c-lists: each has the same body and turret components but differ in the gun
component (two gun elevations were used: 0 degrees and 45 degrees). Two-D images of 3-D scenes contain informa-
tion about the 3-D components through projective transformations. Of course, some information will usually be lost in
such a transform. However, there may be ways of making use of what information is retained using knowledge of pro-
. jective geometry. In this simple example the change in 2-D component length was used encode a change in 3-D com-

ponent orientation, In general, an RBC-R system could store a list of shapes that would be expected in images of 3-D
objects in some domain. If a low resolution image filter were used this would limit the range of the images that would
- need to be stored and thus may be a practical extension of the, essentially, 2-D system described here to 3-D domains.

The complete set of K; used to define the “tank” model are shown in terms of the n-tuples of the CRF map in fig.
9, with the two “gun” angles and ten “turret” angles. This figure shows that the CRF map (at this quantization of the
features) had a good separation of the K; and these results show the smooth albeit-non-linear changes in shape param-
eters. During recognition RBC-R can not only identify that the image is of a “tank”, but also the orientation of the “tur-
ret” and “gun” with respect to the “tank body”.

It was also of interest to submit an image with an intermediate “gun elevation” of 25 degrees. In this test the fea-
ture coordinates mapped to a point between those for the 0 and 45 degree “gun elevations” (fig. 9, bolded square).
RBC-R could find no model at the initially computed feature coordinates but following a local search of the CRF map,
the system finds both the 0 degree and 45 degree “gun elevation” models: an illustration of interpolation. _

Finally, to examine the hypothesis that the two shape measures are essentially independent, the correlation be-
tween the two parameters was computed. The data was obtained from the pre-pass analysis of the 323 members of the

K universe. The correlation was found to be 0.26. This indicates that only about 7% of the variance in the two shape
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measures is shared and would appear to justify the initial assumption of independence.
4. Conclusions

A few straightforward conclusions ensue from these investigations.

(1) The use of shape information severely constrains interpretation of the way that a set of components may be
assembled. Even small variations in the spatial relations between a set of components can produce sets of feature co-
ordinates that discriminate them, see for example fig. 9. |

(2) How these discriminations are used is another issue. Depending on the definition of object models the dis-
. criminated feature sets may be integrated into a single model, as they were for the “tank™ model, for example; or, con-
versely the sets may be segmented to match different models, as in the case of the “cruise missile” and “rocket”.

(3) The implemented system revealed the robustness of these shape-based methods in dealing with new images
consisting of scaled and rotated transformations of images of objects, (the “airplane” examples). In addition, the sys-
tem was found to provide reasoﬁable interpolation behavior (due to smooth parameter variations).

.(4) The system produced ambiguous interpretations for cases that might seem to be intuitively difficult to dis-
criminate (for example, a “jet” verses an “airplane”).

(5) Some parameters for the implementation were chosen intuitively with little investigation as to their general
applicability. However, some preliminary conclusions can be suggested: () the two selected shape parameters appear
to be independent, (b) the relatively coarse images (approx. 50 pi_gcels square) appear adequate in terms of the shape
information that they contain, (c) a relatively coarse feature space quantization (10 x 10) appeared adequate to permit
good discrimination (see figure 9). However, in a domain with many more models, a finer quantization may be neces-
sary. ‘

Future research could investigate how to optimize the recognition process by a systematic study of the effects of
changing a number of variables, which in the present case were instantiated intuitively. For example, the effects of
altering the quantization of the relational n-matrix and CRF map would likely reveal more efficient use of these spaces.
The features selected for illustrative purposes here (compactness and aspect ratio) are only two among a range of pos-
sible alternatives. Finally, as suggested in the previous section, RBC-R appears amenable to extension to a 3-D world
by extending the K; which define models.

Research on this recognition system is continuing to extend its application to actual photographs. As noted at the
beginning of section 3, RBC-R is a system which operates on simulated images. In actual photographs, segmentation
of the image into separate regions which might contain an object is necessary. There are many techniques already

available to achieve this end. A more difficult problem is that real photographs in 3-D domains are, of course, suscep-
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_ tible to all the imperfections inherent in the imaging process, such as, shadowing and other effects of lighting, occlu-
sion of objects by one another and incomplete silhoucttes of the objects. Methods will need to be developed to permit
RBC-R to deal with these “noisy” imaging problems. Since RBC-R is designed to operate on low resolution images it
should be relatively robust, especially in response to noise effects which do not grossly affect overall silhouette shape.
Finally, there are many aspects of this system which could be described with a parallel algorithm and further research

to study the computational advantages of this should lead to significantly faster recognition.



16

. Complex
¢ Shape
Level
Single Generic Shape 0

Instantiations

o - — —»A — 32
. S _.@ L\
_.Q N

Figure 1: How to represent an arbitrary shape. A Hierarchy of resolutions of geons may be considered. At the lowest level of
resolution (level 0) no discriminations between primitive shapes are possible. At Ievel 1, basic shapes (types) may be distin-
guished. At higher levels, these primitive shapes resolve into finer sets of shapes (instantiations) which may be discriminated
from one another. In a shape recognition system, a decision must be made as to what level of resolution is desired for adequate
or optimal system performance. A complex shape as shown above will generally require two or more geons for an adequate
representation.
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Figure 2a: Example showing how to define a construction {R(c;.c;), R(c,.c3)}. In the upper left, two geons
and their legal attachment points are shown. Two components are assembled by R(cy,¢,) = (Ax, Ay, A8). The

two translation operations bring connection points into correspondence. The moveable component is then.ori-
ented by a rotation about this point.

<:> .......... , \/

add another component

AY;

Figuré 2b: The two-component construction is extended by R(c,,c3) = {0, AY,0}. In this example the third

component is added to the previously moved one (square) with AY as the only displacement. Centroids are
used to define initial positions in both figures. A final silhouette shape is yeilded by a filling operation.
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Relation Space a "volume" of points in the space
which represent component relations
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Figure 3: This example illustrates articulation of components in a simple model of a "helicopter” viewed from
the top. (a) The “rotor” component is permitted a small variation in displacement with respect to the defined
“x” axis of the fuselage, but virtually no displacement in the “y” axis. However, the rotor is permitted all an-
gular displacements about its centroid. (b) These relations may be described by a “volume” in relation space;
in this case by a thin wafer. To accommodate the tail component, the relation space could be expanded by
another three dimensions to show its relations with respect to the fuselage.
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An example of an input image (low-resolution) for RBC-R to recognize. The geon types are in-

.

Figure 4

dicated with their instantiations in parentheses.
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Geon types: G

geon lists

ellipse, rectangle, triangle

ell, rect, rect

long-ell

long-rect
short-rect

ST

ell, tri, tri

l/\ ' geo\n ins@ntiations: C

rect, rect, rect

(a)

small-ell
long-thin-rect mid-ell
short-thin-rect || short-rect
fat-rect
)]
(©)

conveyor

long-ell long-ell long-ell tankbody-rect
long-tri wide-tri short-tri tankturr-rect jy-rect
short-tri short-tri short-tri gun-rect-0 L rect
. (2) un-rect-45
@ ) ® g =

ai.rplarxze helicopter fueltruck jet = rocket cruise missile tank Models
airpo

Figure 5: Domain hierarchy for the implementation. The geon types comprise the set of high resolution geons that
a (hypothetical) component recognition system might discriminate. The geon lists are groupings of three geons.
Geon instantiations are particular instances of the geons from a list. These are used to create the construction uni-
verse and define the models of the domain. The letters refer to distinct construction sets.



21

An Example
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Figure 6: Shape features evoke-lists in a feature space. These are compared against model c-lists. Shaded models on the
left are found to have c-list1. No models have c-list2. For c-list1, the component relations are compared between the can-
didates and the two models. Only one match is confirmed: the “airplane”.






