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ABSTRACT 
Under single scattering conditions, water droplets 
clouds do not depolarize the backscattered light.  
However, backscattered light from multiple 
scattering will be depolarized. The level of 
depolarization is a function of the droplets size and 
of the cloud extinction coefficient value and its 
profile; it has also a strong dependency on the 
lidar field-of-view (FOV) and azimuth angle [1]- 
[3].  It has been demonstrated in [4] that the 
multiple scattering cross polarization signal can be 
reduced to a second order scattering one using the 
azimuthal dependency of the cross polarization.  In 
this paper we present how the multiple scattering 
cross polarization can be reduced to a second order 
scattering and how this signal is related to the 
droplet particle size.  Monte Carlo simulations for 
clouds at different ranges and effective radius 
sizes are performed and compared with the results 
obtained with an analytical model. 

1. AZIMUTHAL CROSS POLARIZATION 
PATTERN 

Backscattered light from spherical particles does 
not change the polarization orientation state of a 
linearly polarized incident light. This particularity 
allows the discrimination of spherical particles 
from non-spherical particles. However, under 
multiple scattering conditions, even spherical 
particles do generate depolarized signals.  In fact, 
the multiple scattering cross polarization shows an 
azimuthal pattern.  This pattern is easily observed 
using a gated ICCD camera and a polarized beam 
splitter as shown in Fig. 1. A linearly polarized 
parallel laser beam is used. At the reception, after 
collimation, the cross polarization is imaged on the 
detector.  An adjustable delay is used to image the 
backscattered light from the cloud from a specific 
cloud depth.  The gate width of the ICCD is 
typically 10 to 20 ns.  Please refer to [1] for 
relevant details.   

 
Figure 1.  Lidar set up to capture the azimuthal cross 
polarization. The linearly polarized source is emitted 
on axis (lower left). The received signal is collimated 
through a polarizer and the cross polarization is 
imaged on the camera (right).  

In order to better understand the mechanism of 
polarized multiple scattering, Monte Carlo (MC) 
simulation has been performed.  The Undique MC 
simulator is a multithreaded software based on the 
Bohren and Huffman Mie scattering algorithm. 
The simulator reproduces the characteristics of a 
Flash Lidar system. It consists of an 
emitter/receiver system, a target and a propagation 
range including aerosols of various properties.  
The particularity of the Undique MC is its 
capability to image the scattered light on a detector 
array [5].  Fig. 2 shows the azimuthal pattern 
obtained for the simulation of a penetration of 50 
m in a cloud of constant extinction 0.03 m-1 
starting at 1000 m.  The image at the top contains 
all the scattering orders, while the image at the 
bottom contains second order scattering only.  The 
second order scattering cross polarization follows 
a )4( Cos  pattern; it means there is no second-
order scattered energy for azimuths equal to 0o, 
90o, 180o, 270o.  In multiple scattering conditions 
(top part of Fig. 2) there clearly is a fair amount of 
energy at those angles.  The subtraction of the 
higher order scattering energy found at those 
specific angles, when done at all azimuths, leads to 
a second order scattering pattern [4].  So, it 
appears that multiple scattering effects occurring 
in dense water cloud can be simplified to second 
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order scattering.  In the following, we will 
examine what are the mechanisms leading to 
depolarization of the lidar signal from second 
order scattering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Monte Carlo simulation of cross polarization 
azimuthal pattern.  The top image contains all orders 
scattering.  The image at the bottom is for second order 
scattering only. 

2. BACKSCATTERING AND 
DEPOLARIZATION  

Lidars with polarization capabilities usually work 
at a specific FOV and detect the parallel and cross 
polarization components of the lidar return.  The 
lidar signals will contain all scattering orders.  In 
this paper, we want to reduce multiple scattering 
effects to second order scattering.  To do so, it is 
necessary to have a look at the Mie scattering 
phase function and how the scattered light is 
depolarized. 

The linear depolarization ratio (δlin) at a scattering 
angle β is defined as the ratio of the power 
integrated over the azimuthal angles φ in the plane 
of polarization orthogonal (


I ) and parallel ( //I ) 

to the linearly polarized source: 
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Using Mie theory, it can be shown that: 
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where in P1, P2 and P3 are the Mie scattering phase 
matrix elements defined by Deirmendjian. 

Fig. 3 shows the phase function and the 
depolarization ratio at a wavelength of 0.532 µm 
for linear incident waves on water-droplets of 
effective radius of 6 µm.  The water droplets size 
distribution is a gamma distribution with  = 7 
and  = 1.5. 

For depolarization, the major observations are: 

1) The light is not depolarized in the forward 
scattering direction for angles smaller than 20o; 2) 
the depolarization is equal to 0 at 180o; 3) the 
depolarization increases very sharply around 180.   

 

 

 

 

 

 

 

 

 

 
Figure 3. Phase functions and linear depolarization 
ratio for a water droplets gamma distribution with 
effective radius of 6 µm. 

So, for a lidar, depolarization is mainly caused by 
a backscattering occurring after one or many 
forward scatterings as illustrated in Fig. 4. 

A lidar with a given FOV (i) will measure the 
backscattered light without any distinction 
regarding the forward scattering event position in 
space. The cross polarized second order scattering 
signal detected will be the sum of all those signals 
and it will be given by: 
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Figure 4.  Double scattering processes and higher 
scattering processes leading to backscattering 
depolarization. 
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where, c ,   and A  are respectively the speed of 
light, the pulse width, and the collecting optics 
area; s  is the scattering extinction coefficient; 

),z,r(p   is the value of the phase function for 

the forward scattering (  ), and ),,( bczrp 


 the 
value of the perpendicular components of the 
phase function at backward scattering angles 
(  b ) for a particle of radius r; az  is 
where the cloud starts; cz  is the distance where the 
scattered radiation is measured; the quantity 

)],z,r(p)z([ s   represents the forward 
scattering coefficient while 

)],,()([ bccs zrpz 


 represents the cross 
polarization backscattering coefficient.  The FOV 
  is easily related to the scattering angle   via: 

)/()tan(tan zzz cc   .   

The forward scattering phase function is modelled 
as a summation of Gaussians [6] 
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re: effective radius,  : wavelength. 

There is no existing model for ),( brp 


, the 
perpendicular components of the phase function. 

Our analysis has lead us rather to use the 
depolarization parameter ( )/( //pppD 


 ) 

rather than ),( brp 


.   Fig. 5 shows the definition 
of various parameters used to express the 
depolarization parameter as a function of 
scattering angles ranging from 170o to 180o.  The 
complete derivation of the parameterization for re 
ranging from 2 to 12µm will be published in Appl. 
Opt in 2017.  The mathematical representation is 
as follows: 

o
eeMax rr 09.175)ln(5845.1)(   
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In short, ),( erD   starts from a value of zero at 
180o and increases quickly following a super-
Gaussian.  It needs to be noted here that the width 
of the super-Gaussian is directly related to the 
width of the forward scattering peak d .  Past the 
maximum value, in the direction of decreasing 
angles, ),( erD   decreases exponentially. 

 

 

 

 

 

 

 

 

 

 
Figure 5. Parameterization of backscattering 
depolarization parameter. A water droplet cloud of 
effective radius of 6 µm is represented.  

3. RESULTS 
Fig. 6 shows the calculated and normalized 
detected energy in rings delimited by FOV i  
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