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Abstract

Identification of targets has historically been conducted on an ad-hoc basis. Over the
past two decades, the development of the recognized maritime picture—particularly
in operations centres—has become heavily reliant on the continual intake of automatic
identification system (AIS) messages. Arguably, situational awareness has improved
considerably owing to the enormous increase in self-reports of vessels that would oth-
erwise remain undetected or unidentified. While providing ready access to seemingly
high-quality target identity information, AIS remains highly vulnerable to inadver-
tent or malicious disruption. Moreover, vessels posing threats are either unlikely to
broadcast AIS messages at all or transmit false identification or location informa-
tion. Under these circumstances, it becomes imperative to develop robust methods
of identifying vessels using information besides self-reported identity. To this end, the
present work qualitatively describes a combinatorial framework for non-cooperative
identification, with the objective of motivating the development of a flexible system
(both tactical and operational) that may be used to identify non-reporting (dark)
vessels and confirm the stated identity of self-reporting vessels.

Significance for defence and security

This work describes a method of combining diverse information from multiple sensors
to find the optimal vessel-identity-to-track assignments. The given approach may
benefit the Royal Canadian Navy by enabling approximate identification of targets
that would otherwise remain unidentified.
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Résumé

Par le passé, l’identification des cibles était effectuée de façon ponctuelle. Au cours
des deux dernières décennies, l’élaboration du tableau de la situation maritime—tout
particulièrement dans les centres des opérations—dépendait largement de l’arrivée
continue de messages du Système d’identification automatique (SIA). Sans doute, la
connaissance de la situation s’est améliorée considérablement grâce à l’augmentation
importante de l’autosignalement de navires qui autrement n’auraient pas été détectés
ni identifiés. En fournissant un accès facile à des renseignements apparemment de
grande valeur sur l’identification de cibles, le SIA demeure très vulnérable aux inter-
ruptions malveillantes ou causées par inadvertance. Par ailleurs, il est peu probable
que les navires qui représentent des menaces transmettent des messages dans le SIA
ou encore de fausses données sur leur identité ou leur emplacement. Dans ces circons-
tances, il devient impératif d’élaborer de solides méthodes d’identification des navires
à l’aide de renseignements obtenus autrement que par autosignalement. À cette fin, le
présent travail décrit qualitativement un cadre combinatoire relatif à l’identification
non coopérative dans le but de favoriser la mise au point d’un système souple (sur
les plans tactique et opérationnel) pouvant être utilisé pour déterminer l’identité des
navires (mystérieux) qui ne l’ont pas signalée ou confirmer celle des navires qui l’ont
fait.

Importance pour la défense et la sécurité

Le présent travail décrit une méthode pour combiner des renseignements provenant
de divers capteurs, afin de déterminer les façons optimales de retracer les navires.
La Marine royale canadienne pourrait profiter de l’approche énoncée, car celle-ci lui
permettrait d’identifier de façon approximative des cibles qui autrement n’auraient
pas pu l’être. est l’importance pour la défense et la sécurité.
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1 Introduction

Identification of targets represents a fundamental cornerstone in situational aware-
ness. Beyond discriminating between friend and foe in tactical scenarios, identifica-
tion of vessels around the world—and particularly Canada’s area of responsibility—is
of significant concern to maritime operations centres. In contrast to the air domain,
identification has historically been less comprehensive in maritime settings because
of the vast number of ocean-going vessels and the limited availability of informa-
tion. However, the last fifteen years has witnessed the recognized maritime picture
(RMP) undergo a significant transformation brought about by the introduction of
the automatic identification system (AIS) [1].

Originally developed as a collision avoidance system, the automatic identification sys-
tem comprises shipborne transceivers that broadcast the vessel’s identity and location
(obtained through the global positioning system) and receive and display such broad-
casts from other nearby vessels. Operations centres now experience large inflows of
AIS data from a vast network of dedicated AIS receivers (coastal, airborne, and space
(satellite) based). However, although AIS provides a seemingly exhaustive view of
vessel traffic, its possesses several design weaknesses (see [2] for a partial survey) that
undermine its fitness for surveillance applications. The three principal considerations
are:

1. AIS depends on GPS, which is easily jammed, spoofed, or otherwise rendered
inoperable. While countermeasures to GPS attacks have been developed, these
are generally not deployed on civilian systems.

2. AIS is a cooperative sensing system. That is, its functioning requires the
transceivers to be correctly configured, enabled, and maintained. It is trivial
matter to disable an AIS responder or tamper with it so as to broadcast falsified
position reports or identity. Geofeasibility checks—whereby an AIS message’s
reported location is compared to its estimated broadcast location—are presently
under development [3] but offer no defence against identity falsification or the
disabling of transponders. Also, many small vessels remain invisible to the AIS
system, as operation of transponders are only mandated for vessels in excess of
300 gross tonnes.

3. It would require little effort to develop a radio broadcast system that could,
in a certain geographic domain, overload the local AIS system with spurious
messages that both displace legitimate broadcasts and saturate the system with
‘ghost’ vessels. In an information warfare context, the AIS system is extremely
vulnerable to the injection of large quantities of malicious data that have the
potential to disrupt surveillance activities that are predicated on the (implicit)
veracity of AIS messages. It would not be infeasible to carry out such an attack
over several domains simultaneously.
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In view of the foregoing vulnerabilities and limitations inherent to AIS, and the fact
that many vessels remain dark, it has become imperative to pursue robust and non-
cooperative means of identifying targets. The related work of [4, 5] has culminated
in the development of the SAR-AIS Association Systems (SAAS), which associates
received AIS reports with space-based synthetic aperture radar (SAR) imagery ob-
tained from the RADARSAT-2 constellation. In particular, this system allows the
partitioning of detected vessels into to those exhibiting normal behaviour (broadcast-
ing AIS messages bearing valid data) and those displaying suspicious characteristics
(such as broadcasting dubious AIS messages or failing to transmit AIS messages at
all), allowing resources to be directed to identifying the latter targets by other means.

Considering the difficulty—and frequently expense—in tasking assets to identify de-
tected but non-broadcasting targets (such as those classified as dark by SAAS), it
is strongly desirable to attempt to estimate the possible identities of detected but
unidentified targets using the totality of available information. Developing such a
capability requires the integration of information from various sensor / intelligence
sources along with logical and mathematical analysis that yields an identity estimate
for each detected target. To perform this task in a manner that is theoretically justi-
fied and rigorous is challenging, as identity can only be inferred indirectly from various
observed target characteristics, and there are generally complex interrelationships be-
tween the identity assignments of different targets. Central to inference over multiple
detected targets and possible identities lies a combinatorial mathematical structure
that has remained (possibly due to its mathematical or computational complexity)
unexplored in existing works, which have invariably considered identification as a
collection of (suboptimal) single-target classification problems or have used identity
information to assist track maintenance. This report will demonstrate that such a
principled and mathematically-optimal combinatorial framework for non-cooperative
identification is theoretically possible and should be practically realizable. Funda-
mentally, the described work seeks to establish a system whereby all dark targets
are simultaneously assigned possible identities, representing a considerable departure
from the conventional, piecemeal treatment of identity found in earlier efforts such
as CASE-ATTI (Concept Analysis Simulation Environment for Automatic Target
Tracking and Identification) [6, 7]. Ultimately, this work aims to ensure that decision
makers can place their full confidence in the estimated identity of a dark target, and
that the estimate is the best possible given the totality of available information.

The remainder of this report is organized as follows. In section 2, dark-target iden-
tification is first formulated as a problem in a branch of mathematics named com-
binatorics and subsequently contrasted to conventional target classification. It is
shown that the essential complexity inherent to multitarget identification is in fact a
standard, well-studied combinatorial sum. Section 3 provides an example of how the
mathematical framework can be applied to resolve the identities of dark targets. In
section 4, the necessary steps for implementing an automatic non-cooperative identi-
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fication system in operations centres are proposed. Finally, section 5 briefly outlines
future research in applying combinatorics to situational awareness and identification,
and developing principled approximation methods that allow the implementation of
real-time target identification. This report is intended for a general audience, and
therefore descriptions of the mathematics are given only qualitative terms. Detailed
mathematical derivations may be found in [8]. This work was carried out in the con-
text of support to operations centres at DRDC, Atlantic Research Centre under the
Maritime Information Warfare Project (01da).

2 Combinatorial Identification
2.1 Combinatorial Matchings

A combinatorial matching is a mapping that uniquely assigns each member of one
group to a member in another. For example, assigning dance partners with an equal
number of ladies and gentlemen may be formulated as a matching problem (Fig. 1).
Obviously, more than one matching is possible when the membership of each group
equals or exceeds two. Should there exist a means of computing a compatibility metric
(a number that assigns a compatibility to each prospective couple—e.g. how well they
are expected to dance together), then a matching can be found that maximizes ag-
gregate compatibility over all of the resulting couples. Alternatively, matchings may
be chosen randomly with a probability proportional to their compatibility (i.e. com-
patible matches are sampled more frequently than their incompatible counterparts).
The principle difficulty with reasoning over combinatorial matches follows from the
factorially large problem space. This is readily illustrated by considering a mere 100
ladies and 100 gentlemen; this arrangement allows for 100×99×98× . . .×2×1 (more
than 9 × 10157) possible matchings, precluding the use of computational techniques
that rely on exhaustive enumeration.

Combinatorial matchings also naturally arise in the context of target identification,
where the task involves matching of vessels (detected and tracked by a suite of sensors)
to a collection of known identities, such as those from a database. In this case, the
‘compatibility’ metric is the degree to which each target conforms to the known
properties of a given identity. For example, the compatibility between a rapidly-
manoeuvring target and a speedboat is high, while that of the same target to a
sluggish bulk carrier is comparatively low. Compatibility comparisons similarly occur
in the related field of target classification that seeks to assign observed targets to
members of a predefined set of target classes (e.g. classifying an air track as a civilian
or military aircraft). Taken to the extreme, each identity could be assigned its own
class. However, while estimation of a given target’s class is carried out using data
solely from its own track, identification—by virtue of the fact that a given identity can
only be at single track at a time—must be performed using all available data. Thus,
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Figure 1: The essential problem of combinatorial matching. There are 3 × 2 × 1 = 6
possible arrangements of dance partners. One such matching is shown by the con-
necting lines.

the characteristic feature of multitarget identification is that target identification at
one track is highly interdependent with target identification at all other tracks.

The practical differences between identification and classification (specifically, the
comparable case where each identity is given its own class) may be illustrated by
considering an unknown track in the South Atlantic Ocean using the prior knowledge
that the RMS Queen Mary 2 is located at a track in the Indian Ocean. An optimal
identification algorithm exploits the non-local information (that the RMS Queen Mary
2 cannot be in the South Atlantic) and would report a zero probability for such an
occurrence, i.e., p(QM2@SA) = 0, accordingly. On the other hand, conventional
classification, using only information from the South-Atlantic track, disregards the
non-local knowledge of the RMS Queen Mary 2 ’s whereabouts and would likely report
a non-zero probability for the ship’s presence (or the presence of its class) in the South
Atlantic. In fact, p(QM2@SA) may be quite substantial should observations at the
South-Atlantic track be vague or correspond to a vessel bearing features similar to
those of the RMS Queen Mary 2.

As illustrated in Fig. 2, joint identification may be performed in two distinct forms,
by computing either

1. Marginal identity-to-track probabilities (Fig. 2a). In this case (which is closely
related to the aforementioned random sampling of matchings), each possible
track / identity pair is assigned a probability. These statistics are suited to
answer the questions, ‘Which identities might track X be?’ and the converse,
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Figure 2: Example of (a) soft and (b) hard matching. Matching can either be
performed by (a) assigning marginal track (T)-to-identity (I) probabilities or (b) by
finding a single global best match. In the case of soft matching the rows and columns
must sum to one, reflecting, respectively, that at each track there must exist some
identity and that each identity must reside at some track.

‘At which tracks might identity Y be located?’ ; or

2. Global maximum likelihood permutation (Fig. 2b). This statistic associates
each vessel to a single identity and vice-versa (i.e., this statistic is the single,
most probable matching between identities and observed targets), answering
the question, ‘What is the most likely spatial arrangement of identities?’

In most practical scenarios, the former is usually of greater interest. For instance, for
an unknown target that is approaching a sensitive asset, computing the identity prob-
abilities would likely be preferable to finding most probable global matching. Further-
more, as illustrated in Fig. 2 the single most likely permutation (Fig. 2b) may actually
correspond to individual track-to-identity assignments (Fig. 2a) that are themselves
improbable, or at least not the most probable. Consequently, the remainder of this
report concerns the computation of marginal identity-to-track probabilities.

2.2 Computation of Marginal Identity-to-Track Probabilities

Calculation of the marginal identity-to-track probabilities may be decomposed into
two principal steps. The first involves performing Bayesian joint target tracking and
classification in the (conventional) manner of [9], where, as described in section 2, each
identity is assigned its own class. Provided that targets are reasonably well separated,
the tracks may be processed individually. The output of this step comprises raw
track-to-identity weights, shown in Fig. 4.

The second step involves identity deconfliction, wherein conflicting identity informa-
tion between tracks (for example, where the previous instantiations of the classifi-
cation algorithm assigned, with high confidence, a particular identity to more than
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Figure 3: Marginal Track-to-Identity Probabilities. Given a set of tracks (a), it is
desired to find the assignment probabilities between tracks and identities (b).

one track) is resolved. This requires computing the matrix permanent [10], a com-
binatorial sum that, in the present context, rebalances the table of Fig. 4b into a
form that is logically consistent. This form requires that each row and column in
Fig. 4b sum to one, so as to reflect the fact that, with a probability of 100%, each
identity is located at some track and vice-versa (each track must correspond to some
identity). It can be shown that the matrix permanent operation is both necessary
and sufficient to ensure the Bayesian property of the identification system; therefore,
the posterior probabilities of Fig. 4b are the best that are mathematically attainable
through Bayesian statistical reasoning.

3 Illustration

A brief simulated example is provided to qualitatively demonstrate the utility of com-
binatorial identification. Five targets, each with distinct kinematic characteristics,
are simulated to move in two dimensions (which may be taken, for example, as the
surface of the ocean). The track-to-identity probabilities are shown as a function of
time in Fig. 5. As expected, each track tends to converge on a particular identity
as more observations are processed. However, even at the last timestep, no track is
able to perfectly resolve the identity of its target, reflecting the residual uncertainty
inherent to any system whose observations and assumptions about target motion are
themselves uncertain. It should be noted that owing to the system’s mathematical
optimality, the probabilities at any given time are the most accurate than can be com-
puted. A similar but more thorough and quantitative example (along with detailed
simulation parameters) may be found in [8].
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Figure 4: The matrix permanent operation for reconciling conflicting information
from different tracks. The track-to-identity probabilities generated by the local track-
ers (a) are refined by the matrix permanent into the globally optimal track-identity
probabilities (b) using the totality of available information. For example, informa-
tion from tracks 1 and 2 (specifically that they are very likely to be the sailboat and
tugboat) leads to an increase of the probability that track 3 is the frigate. Note that
only row sums equate to one in (a), while this also holds for column sums in (b).

4 Identification System Requirements

Implementation of a complete identification system requires the development of sev-
eral complementary components, listed here:

1. Comprehensive Database of Ocean-Going Vessels. Required to perform
conventional joint tracking and classification.
This database should contain as many vessels and their features as possible,
including:
(a) Unique, unchanging identifier (such as IMO) or in its place a class of ship

(e.g. small fishing vessel)
(b) Ship colors
(c) Dimensions (beam, length, draft, etc.)
(d) Radar cross section
(e) Installed radar and communications systems
(f) Signatures (infrared, electromagnetic acoustic, etc.) and management ca-

pabilities for military vessels
(g) Engine parameters (maximum speed, acceleration, etc.)
(h) Manoeuvrability

DRDC-RDDC-2015-R286 7



Figure 5: Simulated identification example for five ships with distinct kinematic
profiles. Observations (such as radar returns) are collected at five tracks. At time
zero the absence of any observations results in complete identity-track ambiguity,
as is evidenced by every identity being equally probable at each track. With the
progression of time, each track tends to become associated with a only single identity,
though some uncertainty remains.

(i) Fuel capacity (or maximum distance that can be travelled between port
visits)

(j) Ice class or ice capability
(k) Any other vessel characteristic that might be observed, even if indirectly

Clearly, it is unlikely that all of the above can be fully determined for each
vessel, and it is therefore expected that the list of features will be incomplete.
Frequent update of the database is imperative, and each feature entry should
itself be a list comprising pairs of values and date ranges over which those
values are valid (e.g. the color attribute for a given vessel would indicate that
it was painted red between 01/01/1980 to 15/03/1991, and, since 16/03/1991
has been painted blue). Although it may appear that resources should be
preferentially directed to acquiring further details on those vessels of greatest
interest, such a strategy may not necessarily be optimal, as the identification of
vessels of interest is deeply intertwined with being able to identify vessels of non-
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interest1. Furthermore, considerable effort and specialized knowledge is likely
required to convert physical attributes into observable kinematic characteristics
(e.g. converting engine parameters and hull dimensions into manoeuvrability
characteristics).

2. Comprehensive Database of Sensors and their Error (Uncertainty)
Profiles. Required to perform conventional joint tracking and classification.
Bayesian inference depends crucially on the correct characterization of error
in reported data. For example, a report stating that ‘the ship is at 44.5◦ N,
62.1◦ W’ is inadequate, as it cannot be fused with second report stating ‘the
ship is at 43.5◦ N, 63.1◦ W’. Obviously these reports are different. Do we
take an average—or a weighted average? What is the uncertainty in the fused
result? Combinatorial estimation, while complex, is still just a form of Bayesian
inference; uncertainty must be specified in the input data, and in turn, the
system will provide uncertainty of the fused result.

3. Comprehensive Database of Bathymetry, Coastal Profiles, Sea Ice,
and Meteorology. Required to perform conventional joint tracking and clas-
sification.
This database assists the identification system in determining which vessels are
able to traverse a given region of the ocean. In particular:
(a) A region’s local bathymetry data implies the maximum vessel draft
(b) Sea ice information determines the minimum ice capabilities as well as

maximum speed and manoeuvrability
(c) Meteorology (sea state) may be used as a proxy to minimum seaworthiness

While bathymetry and coastal data are expected to be static—the former re-
quires continual (minor and predictable) adjustment with shifting tides—, sea
ice and meteorological data is dynamic and must be frequently updated. Access
speed of this database is crucial, as it is heavily queried by the core identification
system.

4. Tracking System that Retains Contacts and their Sensor Tags. Re-
quired to perform conventional joint tracking and classification.
In accordance with the discussion of item 2, the tracking system is required to
retain all contacts associated with a given track. Moreover, the sensor tag, if
available, should remain affixed to each contact, so that the measurement error
can be readily obtained.

1 Take, for example, a world where there exist only two ships and only one is of interest; by
elementary logic, positively identifying one target as the vessel of non-interest automatically identifies
the other target as being the vessel of interest. Where there are thousands of targets, the same
essential logic applies, though at a scale that is much more complex.
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5. High-Performance Computer System. Required to compute (approxima-
tions to) the matrix permanent. As discussed in section 2, the general case of
the combinatorial deconfliction step is computationally intensive, and therefore,
depending on accuracy requirements, substantial computational resources may
be required. Fortunately, most algorithms that approximate the matrix per-
manent are easily and efficiently parallelized and are expected to scale well on
cluster / cloud architectures.

4.1 Challenges

Implementation of the aforementioned system is faced with both technical and lo-
gistical challenges that arise from the volume (rate) of input data and its security
classification(s), respectively. Considerations surrounding these issues are given be-
low.

4.1.1 Classification Issues

As the identification system is expected to operate on classified data, special steps
must be performed over the course of its implementation and operation. While
the interconnection (networking) of computing systems of different classifications is
possible—and indeed is not uncommon—, substantial investment of resources may be
necessary to meet applicable security directives. More challenging, however, is the fact
that unredacted information-fusion products usually inherit the highest classification
of their constituent inputs. Thus, it is anticipated that the matrix permanent algo-
rithm would necessarily operate at the system’s highest classification, significantly
limiting computational options for its implementation. In particular, commercial
off-the-shelf (unclassified) cloud computing—with its desirable economies of scale—
would be precluded, thereby increasing the overall system cost. One possible future
solution would employ homomorphic encryption [11], which allows computation to
be carried out on encrypted data such that the processing system remains agnostic
to the data itself. Unfortunately, this approach is burdened with high computational
overhead2. Moreover, homeomorphic encryption is not presently sanctioned for use
in this manner.

4.1.2 Computational Issues

In wide-area surveillance, the identification system will likely encounter large num-
bers of dark vessels. The fastest known matrix permanent algorithm [12] (based on
a Markov chain Monte Carlo formulation), is likely able to carry out near real-time
2 At the time of this writing, research in this area is vigorous, and the computational overheads
continue to be reduced significantly.
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Figure 6: Detection, tracking, and identification in the current setting. Calculations
in each fusion layer are independent of those in adjacent layers. As shown, this
approach is suboptimal.

probabilistic identification of ∼100 targets on a typical computer cluster. This ap-
proach is particularly well suited for surveillance of the Arctic, where vessel traffic is
relatively light. A faster method [13] (a perfect random sampler), is likely suitable
for ∼1000 targets, and may be used when there are only vague feature observations
at the individual tracks. Finally, there also exists a simple yet suboptimal method
(based on primitive matrix scaling) which can process 10,000 targets or more [14].
It is likely that the various techniques can be combined in a manner that yields a
satisfactory tradeoff between accuracy and computability. In particular, should the
input to the matrix permanent step be decomposable into low-information (vague)
and high-information (specific) components, it is conceivable that [12] and [13] could
be used together. Whether such propitious conditions arise in practice remains an
open question, and consequently, this area is ripe for further study using empirical
data (i.e. the actual data produced by currently deployed sensors).

5 Future Directions

Where tracks have been previously formed by a tracking system, the system of iden-
tification described in the previous sections can be shown to be statistically optimal.
On the other hand, should the unprocessed (raw) contacts be available, both tracking
and identification can be improved by subsuming these tasks under a single mathe-
matical framework. This may be seen by considering that, in conventional systems,
the fusion layers of detection, tracking, and identification only propagate information
in one direction (Fig. 6). In actual fact, the mathematics of the different fusion lay-
ers are deeply intertwined and would ideally be regarded as different facets to the
same underlying estimation problem. At the present time, quasi-exact joint multitar-
get tracking and identification remains theoretical, as approximation schemes with
boundable error (such as those that are available for approximating the matrix per-
manent) do not yet exist. Investigating extensions to the Markov chain Monte Carlo
methods of [15, 16, 12] to include the lower fusion layers—if possible—may prove
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fruitful.

6 Conclusion

The past two decades have seen maritime situational awareness improve dramatically
with the introduction of AIS, which provides position and identification reports from
vessels that would otherwise go undetected or unidentified. However, while AIS
notionally provides vast quantities of high-quality target identity information, it is
susceptible to inadvertent or malicious disruption. For these reasons, the development
of a system of non-cooperative identification is imperative. To this end, the present
work described a combinatorial framework for identifying non-reporting vessels (and
confirming the identities of reporting vessels) using information obtained from non-
cooperative sensors. In contrast to AIS, such an system can also be used to identify
dark (non-reporting) targets. Implementations of the identification framework in
various operational and tactical settings are forthcoming.
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