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 
Abstract— The question of localizing a target with multistatic active sonar is re-examined from the 

perspective of finding a peak in a probability distribution function.  The probability distribution 

function is constructed using straightforward Bayesian principles.  Both a position estimate and a 

covariance matrix can be found, provided that an implementation of a numerical algorithm for 

finding a local maximum is available.  The localization method developed herein can account for 

transmitter and receiver location errors, sound speed errors, time errors, and bearing errors.  A 

Monte Carlo test is conducted in order to compare the accuracy of the proposed method to that of a 

more conventional method used as a baseline.  In each iteration, a transmitter, several receivers, and 

a target are positioned randomly within a square region, and the target is localized by both methods.  

The proposed method is generally more accurate than the baseline method, within the range of 

parameters considered here.  The degree of improvement over the baseline is greater with a larger 

region area, with a larger bearing measurement error, and with a smaller time-of-arrival 

measurement error, and slightly greater with a larger number of receivers. 

Index Terms—Localization, multistatic active sonar, sensor fusion 

I. INTRODUCTION 
CTIVE sonar systems, by definition, include at least one acoustic source (transmitter) and at least one 

acoustic sensor (receiver).  Signals from the transmitter(s) will be reflected off various objects, including 

targets of interest, and some of these echoes will in general be detected by the receiver(s).  Such a system is 
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said to be “multistatic” if it has more than one transmitter or more than one receiver.  An active sonar 

system with only one transmitter and one receiver is said to be “bistatic” if the transmitter and receiver are 

separated, and “monostatic” if the transmitter and the receiver are co-located.  The systems considered in 

this paper have a single transmitter but possibly multiple receivers. 

It is assumed here that each receiver measures both the time of arrival (TOA) and the direction of arrival 

(DOA) of each received echo.  One of the tasks of the system is to localize a target by means of these 

measurements.  This paper is concerned with the localization of a target based on a single signal (“ping”) 

from the transmitter, given the assumption that each of N receivers is detecting the echo of that ping off a 

given target of interest. 

In reality, there may be many reflective objects, creating many echoes for a given ping.  With multiple 

receivers, the question arises of how to determine whether a given echo at one receiver corresponds to the 

same target as a given echo at another receiver.  This association question is certainly an important one, but 

it lies beyond the scope of this paper.  The reader is invited to imagine either that the association question 

has been resolved in some way, or that some set of echoes, one at each receiver, has been grouped together 

for the sake of argument.  In the latter case, we are concerned with where the alleged target would be, if the 

chosen grouping were correct. 

In many sonar applications, the depths of the receivers, the transmitter, and even the target are small in 

comparison to the horizontal displacements between any two of these objects.  Hence, the problem can be 

treated as two-dimensional.  So it is here. 

We also neglect the possible spatial variation of the speed of sound.  In addition, the local speed of sound 

in the region of interest is not assumed to be known with perfect precision. 

The elapsed time from the production of a ping to the arrival of the echo at a given receiver constrains the 

target to lie on an ellipse with the transmitter at one focus and the receiver at the other, as illustrated in 

figure 1.  The difference in arrival times between one receiver and another constrains the target to lie on a 

hyperbola with the two receivers as foci, as illustrated in figure 2.  Of course, these constraints are only 
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approximate when the ellipses or the hyperbolae are computed from measured values, because of the errors 

in the measurements.  The DOA measurement of an echo at any given receiver provides another 

approximate constraint, with the target lying on or near the bearing ray corresponding to that measurement.  

The intersection between any two of these curves – ellipses, hyperbolae, or bearing rays – is called a cross-

fix. 

 

 
Fig. 1.  An ellipse for each receiver.  In each case, the receiver (a dot) is at one focus and the transmitter (an “X”) is at the other. 
 
 

 
Fig. 2.  One branch of a hyperbola for each pair of receivers.  In each case, the two receivers are at the two foci.  The geometry is 
the same as in figure 1. 

 
 
Most existing methods for localization by multistatic active sonar are based on these cross-fixes.  Cross-

fixes involving only ellipses and hyperbolae are assumed in the analyses of localization errors arising from 

transmitter and receiver position uncertainties by McIntyre et al. [1], Sandys-Wunsch and Hazen [2], and 
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Blouin [3].  In the method presented by Coraluppi [4], the cross-fix between the ellipse and the bearing ray 

is found for each receiver, and a covariance matrix is computed based on a small error assumption.  These 

estimates, one for each receiver, are then fused straightforwardly as independent measurements.  Kim et al. 

[5] use a least-squares formula that is ultimately based also on the cross-fixes between the ellipse and the 

bearing ray for each receiver.  Simakov [6] uses a Wiener filter combination of a variety of cross-fixes.  In 

contrast to the methods listed above, some methods such as that presented by Wang et al. [7] are based on 

the received signal strength (RSS), requiring a model of propagation loss. 

The purpose of this paper is to present a Bayesian localization method, and to compare its performance to 

that of an existing method used as a baseline.  The proposed method requires a numerical search for a peak 

in a probability distribution function.  That probability distribution function is given in (12) as a (2N+4)-

fold integral (for N receivers), with the terms of the integrand given in (13)-(15).  In order to make the 

numerical maximization practicable, the integral is evaluated approximately into a closed-form expression 

given in (16)-(18). 

The proposed method makes use of the TOA and DOA information, but not the RSS, and therefore is 

most naturally compared to the existing methods that are based on cross-fixes.  In this paper, Coraluppi’s 

[4] method is taken as the baseline for performance comparison.  It was deemed to be the most suitable for 

that role because it makes use of the full range of uncertainties considered here, as listed below. 

The following quantities are assumed to be either measured or known a priori, within certain known 

error statistics, all assumed to be Gaussian and mutually uncorrelated: 

 the local speed of sound in water, c, assumed to be constant over the region of interest, with 

uncertainty 𝜎𝑐; 

 the position of the transmitter, 𝐱0 = (𝑥0, 𝑦0), with uncertainty 𝜎𝑥 in each dimension (we assume 

no correlation between the two dimensions); 

 the position of each receiver, 𝐱𝑘 = (𝑥𝑘, 𝑦𝑘) for k from 1 to N, with uncertainty 𝜎𝑥 in each 

dimension (again assuming no correlation between the two dimensions); 



    
 

5 

 the ping time t (at the transmitter), with uncertainty 𝜎𝑡; 

 the time-of-arrival (TOA) of the echo at each receiver, 𝑇𝑘 for k from 1 to N, with uncertainty 𝜎𝑇; 

and 

 the direction-of-arrival (DOA) of the echo at each receiver, 𝜃𝑘 for k from 1 to N, with uncertainty 

𝜎𝜃 (each direction defined as counterclockwise from east). 

The baseline method is summarized in section II.  The proposed method is described in section III.  The 

two methods are compared in section IV via a Monte Carlo study.  Further discussion appears in section V. 

II. BASELINE METHOD 
Our baseline for comparison is the method described by Coraluppi [4] for multistatic active sonar 

localization.  All the equations in this section are based on that reference, with some changes in notation. 

The fused estimate 𝐗BL for the target’s position and the corresponding covariance matrix 𝐏BL are given 

by 

𝐏BL = (∑ 𝐏𝑘
−1

𝑘

)

−1

 
 

𝐗BL = 𝐏BL ∑ 𝐏𝑘
−1𝐗𝑘

𝑘

 (1) 

where 𝐗𝑘 and 𝐏𝑘 are the position estimate and its covariance matrix based on the information at the kth 

receiver, for k from 1 to N.  In the case of two receivers, (1) above is equivalent to (39) in [4] together with 

the un-numbered equation just before (40).  For more than two receivers, (1) is the natural generalization 

thereof. 

Let the bearing difference between the transmitter and the target, with respect to the kth receiver, be 

denoted 𝛼𝑘 (see figure 3), so that 

 

cos(𝛼𝑘 + 𝜃𝑘) =
𝑥0 − 𝑥𝑘

Δ𝑘
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sin(𝛼𝑘 + 𝜃𝑘) =
𝑦0 − 𝑦𝑘

Δ𝑘
 (2) 

where 

Δ𝑘 = √(𝑥0 − 𝑥𝑘)2 + (𝑦0 − 𝑦𝑘)2. (3) 

Equation (2) should be regarded as a definition of 𝛼𝑘.  In the case where 𝑥0 > 𝑥𝑘, this means that 

𝛼𝑘 = arctan (
𝑦0 − 𝑦𝑘

𝑥0 − 𝑥𝑘
) − 𝜃𝑘 . (4) 

 The position estimate 𝐗𝑘 is given by 

𝐗𝑘 = (
𝑋𝑘

𝑌𝑘
) = (

𝑥𝑘 + 𝑟𝑘cos𝜃𝑘

𝑦𝑘 + 𝑟𝑘sin𝜃𝑘
) (5) 

where 

𝑟𝑘 = 𝑎𝑘 𝑏𝑘⁄   

𝑎𝑘 = 𝑐2𝜏𝑘
2 − Δ𝑘

2   

𝑏𝑘 = 2(𝑐𝜏𝑘 − Δ𝑘cos𝛼𝑘)  

𝜏𝑘 = 𝑇𝑘 − 𝑡. (6) 

The covariance 

𝐏𝑘 = (
𝜎𝑋𝑘

2 𝜎𝑋𝑘𝑌𝑘

𝜎𝑋𝑘𝑌𝑘
𝜎𝑌𝑘

2 ) 
(7) 

is given by 

𝜎𝑋𝑘

2 = 𝜎𝑥
2 + 𝜎𝑟𝑘

2 cos2𝜃𝑘 + 𝑟𝑘
2𝜎𝜃

2sin2𝜃𝑘 + 2𝜎𝑥𝑘𝑟𝑘
cos𝜃𝑘 − 2𝑟𝑘𝜎𝜃𝑘𝑟𝑘

sin𝜃𝑘cos𝜃𝑘  

𝜎𝑌𝑘

2 = 𝜎𝑥
2 + 𝜎𝑟𝑘

2 sin2𝜃𝑘 + 𝑟𝑘
2𝜎𝜃

2cos2𝜃𝑘 + 2𝜎𝑦𝑘𝑟𝑘
sin𝜃𝑘 + 2𝑟𝑘𝜎𝜃𝑘𝑟𝑘

sin𝜃𝑘cos𝜃𝑘  

𝜎𝑋𝑘𝑌𝑘
= 𝜎𝑥𝑘𝑟𝑘

sin𝜃𝑘 + 𝜎𝑦𝑘𝑟𝑘
cos𝜃𝑘 + (𝜎𝑟𝑘

2 − 𝑟𝑘
2𝜎𝜃

2)sin𝜃𝑘cos𝜃𝑘

+ 𝑟𝑘𝜎𝜃𝑘𝑟𝑘
(cos2𝜃𝑘 − sin2𝜃𝑘) 

(8) 

where 

𝜎𝜃𝑘𝑟𝑘
=

2𝑎𝑘Δ𝑘

𝑏𝑘
2 𝜎𝜃

2sin𝛼𝑘 
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𝜎𝑥𝑘𝑟𝑘
= [2 (

1

𝑏𝑘
−

𝑎𝑘cos𝛼𝑘

𝑏𝑘
2Δ𝑘

) (𝑥0 − 𝑥𝑘) −
2𝑎𝑘sin𝛼𝑘

𝑏𝑘
2Δ𝑘

(𝑦0 − 𝑦𝑘)] 𝜎𝑥
2 

 

𝜎𝑦𝑘𝑟𝑘
= [2 (

1

𝑏𝑘
−

𝑎𝑘cos𝛼𝑘

𝑏𝑘
2Δ𝑘

) (𝑦0 − 𝑦𝑘) +
2𝑎𝑘sin𝛼𝑘

𝑏𝑘
2Δ𝑘

(𝑥0 − 𝑥𝑘)] 𝜎𝑥
2 

 

𝜎𝑟𝑘
2 =

𝑏𝑘
2𝜎𝑎𝑘

2 + 𝑎𝑘
2𝜎𝑏𝑘

2 − 2𝑎𝑘𝑏𝑘𝜎𝑎𝑘𝑏𝑘

𝑏𝑘
4  

 

𝜎𝑎𝑘
2 = 4(𝑐2𝜏𝑘

4𝜎𝑐
2 + 𝑐4𝜏𝑘

2(𝜎𝑡
2 + 𝜎𝑇

2) + 2Δ𝑘
2 𝜎𝑥

2)  

𝜎𝑏𝑘

2 = 4(𝜏𝑘
2𝜎𝑐

2 + 𝑐2(𝜎𝑡
2 + 𝜎𝑇

2) + 2𝜎𝑥
2 + Δ𝑘

2 𝜎𝜃
2sin2𝛼𝑘)  

𝜎𝑎𝑘𝑏𝑘
= 4(𝑐𝜏𝑘

3𝜎𝑐
2 + 𝑐3𝜏𝑘(𝜎𝑡

2 + 𝜎𝑇
2) + 2Δ𝜎𝑥

2cos𝛼𝑘). (9) 

These formulae are simplified slightly from those in [4] because of the assumption of no correlation 

between the two dimensions in the transmitter and receiver positions, as well as the use of a common 

uncertainty value for each dimension in the transmitter and receiver positions. 

 

 
 
Fig. 3.  Illustration of 𝛼𝑘, 𝜃𝑘, Δ𝑘, and 𝑟𝑘. 
 
 
 
 

III. BAYESIAN METHOD 
Let 𝐗 be a (two dimensional vector) position variable referring to the unknown position of the target.  

The method proposed here for localization of the target is to find the value of 𝐗 that maximizes the 
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probability density 𝑃(𝐗|𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐), i.e. the probability density for 𝐗 conditioned on the 

measurements.  In order to construct such a probability distribution function, an assumption must be made 

for the prior probability distribution function 𝑃(𝐗).  We take this prior to be minimally informative, hence 

uniform and unbounded, so that the posterior probability density is proportional to the corresponding 

likelihood density: 

𝑃(𝐗|𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐) ∝ 𝑃(𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐|𝐗). (10) 

(More precisely, 𝑃(𝐗) is taken to be uniform within a square of side L, and we get (10) in the limit as L 

goes to infinity.)  The likelihood density for 𝐗 in (10) is the probability density for the measurements, under 

the assumption that 𝐗 is the true target position.  It can be expressed as 

𝑃(𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐|𝐗)

= ∫ … ∫ 𝑃(𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐|𝐗, 𝑡̃, 𝐱̃0, {𝐱̃𝑘}, 𝑐̃)𝑃(𝑡̃, 𝐱̃0, {𝐱̃𝑘}, 𝑐̃)𝑑𝑡̃ 𝑑𝐱̃0𝑑𝐱̃1 … 𝑑𝐱̃𝑁𝑑𝑐̃ 

  

(11) 

where 𝑡̃, 𝐱̃0, 𝐱̃𝑘, and 𝑐̃ are the assumed true values corresponding respectively to the measurements 𝑡, 𝐱0, 

𝐱𝑘, and 𝑐, and 𝐗 is taken to be independent of those variables.  Note that the assumed true values 

corresponding similarly to 𝑇𝑘 and 𝜃𝑘 are constrained by 𝑡̃, 𝐱̃0, 𝐱̃𝑘, and 𝑐̃, together with the target position 𝐗; 

therefore we do not introduce them as additional variables of integration.  As we did with 𝐗, we take a 

uniform and unbounded prior for each of these integration variables (but see also the discussion in section 

V).  Thus we have 

𝑃(𝐗|𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐)

∝ ∫ … ∫ 𝑃(𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐|𝐗, 𝑡̃, 𝐱̃0, {𝐱̃𝑘}, 𝑐̃)𝑑𝑡̃ 𝑑𝐱̃0𝑑𝐱̃1 … 𝑑𝐱̃𝑁𝑑𝑐̃ 

  

(12) 

and the integrand is given (up to a constant factor) by 
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𝑃(𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐|𝐗, 𝑡̃, 𝐱̃0, {𝐱̃𝑘}, 𝑐̃)

∝ exp (−
1

2
[
(𝑡 − 𝑡̃)2

𝜎𝑡
2 +

(𝑐 − 𝑐̃)2

𝜎𝑐
2

+
(𝑥0 − 𝑥̃0)2

𝜎𝑥
2

+
(𝑦0 − 𝑦̃0)2

𝜎𝑥
2

+ ∑ (
(𝑥𝑘 − 𝑥̃𝑘)2

𝜎𝑥
2

+
(𝑦𝑘 − 𝑦̃𝑘)2

𝜎𝑥
2

+
(𝜃𝑘 − 𝜃̃𝑘)

2

𝜎𝜃
2 +

(𝑇𝑘 − 𝑇̃𝑘)
2

𝜎𝑇
2 )

𝑘

]) 

 

 

 

 

 

(13) 

where 𝑇̃𝑘 is the arrival time derived from the assumed target position 𝐗 = (𝑋 𝑌)T as well as from the 

other assumed quantities: 

𝑇̃𝑘 = 𝑡̃ +
𝑆̃0 + 𝑆̃𝑘

𝑐̃
 

 

𝑆̃0 = √(𝑥̃0 − 𝑋)2 + (𝑦̃0 − 𝑌)2  

𝑆̃𝑘 = √(𝑥̃𝑘 − 𝑋)2 + (𝑦̃𝑘 − 𝑌)2 (14) 

and similarly 𝜃̃𝑘 is the bearing derived from the assumed target position 𝐗 as well as from the other 

assumed quantities: 

sin𝜃̃𝑘 =
𝑌 − 𝑦̃𝑘

𝑆̃𝑘

 
 

cos𝜃̃𝑘 =
𝑋 − 𝑥̃𝑘

𝑆̃𝑘

 
 

|𝜃𝑘 − 𝜃̃𝑘| ≤ 𝜋. (15) 

 It is desirable to find a closed-form expression for the integral in (12), so that the process of numerical 

peak-finding can be made practicable.  An approximate expression is available, based on the assumption 

that the distance from the target to the nearest receiver or transmitter is large in comparison to the 

uncertainty in the receiver or transmitter positions.  See the appendix for details.  Aside from a constant 

factor, the integral evaluates approximately to 
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𝑃(𝐗|𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐) ∝
1

√𝐴
exp (−𝐶 +

𝐵2

4𝐴
) 

 

(16) 

where 

𝐴 =
1

2𝜎𝑐
2

−
𝜎𝑇

2𝛽𝜇

2𝛼3
−

2𝑐𝜎𝑇
2𝜒

𝛼2
+

𝜐

2𝛼
+

𝑁𝜎𝑥
2(3𝛼 − 𝛽)

4𝑐2𝛼2

−
𝑁𝜎𝑥

2(𝜎𝑇
2 − 𝜎𝑡

2)

2𝛼2𝛾′2
[(𝑁 + 1)𝜎𝑥

4 − 𝜎𝑥
2𝑐2((𝑁 + 2)𝜎𝑇

2 + 𝑁𝜎𝑡
2)

− 3𝑐4𝜎𝑇
2(𝜎𝑇

2 + 𝑁𝜎𝑡
2)]

−
1

2𝛼3𝛾3
[𝜎𝑇

2𝜎𝑥
2𝜁𝜆2 + 𝜎𝑇

2𝛼3𝛿𝑆0(𝑁𝑆0 − 2𝜆) + 𝜎𝑥
2𝛼2𝛾2𝜏2

− 4𝑐𝜎𝑇
2𝛼𝛾𝜏(𝛼2𝑆0 + 𝜎𝑥

2(𝛼 + 𝛾)𝜆)]

−
1

2𝛾3𝛾′3
[𝜎𝑡

2𝜅(𝜆 − 𝑁𝑆0)2 − 2𝑐(𝜎𝑇
2 + 𝑁𝜎𝑡

2)𝛾3(2𝛾′ + 𝛿′)(𝜆 − 𝑁𝑆0)𝑡

+ 4𝑐𝜎𝑡
2𝛾𝛾′𝜂(𝜆 − 𝑁𝑆0)𝜏 − 𝑁(𝑁 + 1)𝜎𝑥

2𝛾3𝛿′𝑡2 + 𝛾3𝛾′(𝛾′ + 𝛿′)𝑡𝜏

+ 𝑐2𝜎𝑡
2𝛾2𝛾′2𝜏2] 

 

 

𝐵 =
𝜒

𝛼
−

𝑐𝜎𝑇
2𝜇

𝛼2
−

𝑁𝜎𝑥
2

𝑐𝛼
−

𝑁𝑐𝜎𝑥
2(𝜎𝑇

2 − 𝜎𝑡
2)

𝛼𝛾′

−
(𝛼𝑆0 + 𝜎𝑥

2𝜆)

𝛼2𝛾2
(𝛼𝛾𝜏 + 𝑐𝜎𝑇

2(𝑁𝛼𝑆0 − (𝛼 + 𝛾)𝜆))

−
(𝛾𝑡 − 𝑐𝜎𝑡

2(𝜆 − 𝑁𝑆0))

𝛾2𝛾′2
(𝜂(𝜆 − 𝑁𝑆0) + 𝑐𝛾𝛾′𝜏 − 𝑁(𝑁 + 1)𝑐𝜎𝑥

2𝛾𝑡) 

 

𝐶 =
1

2
∑ [

𝑆𝑘
2(𝜃𝑘 − 𝜃̌𝑘)

2

𝜎𝑥
2 + 𝑆𝑘

2𝜎𝜃
2 + ln (1 +

𝜎𝑥
2

𝑆𝑘
2𝜎𝜃

2)]

𝑘

+
𝑡2

2𝜎𝑡
2 +

𝑆0
2

2𝜎𝑥
2

+
𝜇

2𝛼
−

(𝛼𝑆0 + 𝜎𝑥
2𝜆)2

2𝜎𝑥
2𝛼𝛾

−
(𝛾𝑡 + 𝑐𝜎𝑡

2(𝜆 − 𝑁𝑆0))
2

2𝜎𝑡
2𝛾𝛾′

 

 

 

 

 

(17) 
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and 

𝛼 = 𝜎𝑥
2 + 𝑐2𝜎𝑇

2  

𝛽 = 𝜎𝑥
2 − 3𝑐2𝜎𝑇

2  

𝛾 = (𝑁 + 1)𝜎𝑥
2 + 𝑐2𝜎𝑇

2  

𝛾′ = 𝛾 + 𝑁𝑐2𝜎𝑡
2  

𝛿 = (𝑁 + 1)𝜎𝑥
2 − 3𝑐2𝜎𝑇

2  

𝛿′ = 𝛿 − 3𝑁𝑐2𝜎𝑡
2  

𝜂 = (𝑁 + 1)2𝜎𝑥
4 − 𝑐4𝜎𝑇

2(𝜎𝑇
2 + 𝑁𝜎𝑡

2)  

𝜁 = −(𝑁 + 1)(𝑁 + 2)𝜎𝑥
6 + 3(𝑁2 + 2𝑁 + 2)𝜎𝑥

4𝑐2𝜎𝑇
2 + 9(𝑁 + 2)𝜎𝑥

2𝑐4𝜎𝑇
4 + 10𝑐6𝜎𝑇

6  

𝜅 = (𝑁 + 1)4𝜎𝑥
8 − 3(𝑁 + 1)3𝜎𝑥

6𝑐2(2𝜎𝑇
2 + 𝑁𝜎𝑡

2) − 12(𝑁 + 1)2𝜎𝑥
4𝑐4𝜎𝑇

2(𝜎𝑇
2 + 𝑁𝜎𝑡

2)

− (𝑁 + 1)𝜎𝑥
2𝑐6𝜎𝑇

2(𝜎𝑇
2 + 𝑁𝜎𝑡

2)(2𝜎𝑇
2 + 𝑁𝜎𝑡

2) + 3𝑐8𝜎𝑇
4(𝜎𝑇

2 + 𝑁𝜎𝑡
2)2 

 

𝜏 = ∑ 𝑇𝑘

𝑘

  

𝜐 = ∑ 𝑇𝑘
2

𝑘

  

𝜆 = ∑(𝑐𝑇𝑘 − 𝑆𝑘)

𝑘

  

𝜇 = ∑(𝑐𝑇𝑘 − 𝑆𝑘)2

𝑘

  

𝜒 = ∑ 𝑇𝑘(𝑐𝑇𝑘 − 𝑆𝑘)

𝑘

  

𝑆0 = √(𝑥0 − 𝑋)2 + (𝑦0 − 𝑌)2  

𝑆𝑘 = √(𝑥𝑘 − 𝑋)2 + (𝑦𝑘 − 𝑌)2  

cos𝜃̌𝑘 =
𝑋 − 𝑥𝑘

𝑆𝑘
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sin𝜃̌𝑘 =
𝑌 − 𝑦𝑘

𝑆𝑘
 

 

|𝜃𝑘 − 𝜃̌𝑘| ≤ 𝜋. (18) 

 Localization of the target then consists of finding the peak in the expression exp(−𝐶 + 𝐵2 4𝐴⁄ ) √𝐴⁄ , or 

equivalently the peak in the expression −𝐶 + 𝐵2 4𝐴⁄ − 1

2
ln𝐴, considered as a function of 𝐗.  Let 𝐗Bayes 

denote the position estimate derived in such a fashion.  In the implementation used in the Monte Carlo 

study of the next section, local maximization was used, via the “FindMaximum” function in Mathematica, 

with 𝐗BL used as the initial estimate. 

 To find the covariance matrix 𝐏Bayes, we assume that the probability distribution function is 

approximately Gaussian in the near vicinity of the peak, so that 

𝑃(𝐗|𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐) ≈ 𝐾exp [−
1

2
(𝐗 − 𝐗Bayes)

T
𝐏Bayes

−1 (𝐗 − 𝐗Bayes)]  

(19) 

for some constant K, as long as ‖𝐗 − 𝐗Bayes‖ is not much greater than the width of the peak.  Let D be a 

length that is characteristic of the size of the peak.  In the implementation used in the next section, the value 

used was 𝐷 = √1

2
trace(𝐏BL).  If 𝐞 is a two-dimensional unit vector, it follows from (19) that 

𝑃(𝐗 = 𝐗Bayes + 𝐷𝐞|𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐)

𝑃(𝐗 = 𝐗Bayes|𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐)
= exp [−

𝐷2

2
𝐞T𝐏Bayes

−1 𝐞]. 
 

(20) 

Again using a numerical local maximization algorithm, we find the maximum value of the probability 

distribution function restricted to a circle of radius D centered on the peak position 𝐗 = 𝐗Bayes.  In other 

words, we find the unit vector 𝐞 for which the quantity in (20) is maximized.  Let this unit vector be 

denoted 𝐞1, and let 𝐞2 be a unit vector that is orthogonal to 𝐞1.  Then the quantity in (20) is minimized at 

𝐞 = 𝐞2.  Moreover, 𝐞1 and 𝐞2 are eigenvectors of 𝐏Bayes.  Let 𝜎𝑖
2 denote the eigenvalue of 𝐏Bayes 

corresponding to the eigenvector 𝐞𝑖, for i = 1 or 2.  Then we have 
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𝑃(𝐗 = 𝐗Bayes + 𝐷𝐞𝑖|𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐)

𝑃(𝐗 = 𝐗Bayes|𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐)
= exp [−

𝐷2

2𝜎𝑖
2], 

 

(21) 

or in other words 

𝜎𝑖
2 =

𝐷2

2 ln (
𝑃(𝐗 = 𝐗Bayes|𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐)

𝑃(𝐗 = 𝐗Bayes + 𝐷𝐞𝑖|𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐)
)

 
 

(22) 

for i = 1 or 2.  The covariance matrix is then given by 

𝐏Bayes = 𝐑 (
𝜎1

2 0

0 𝜎2
2) 𝐑−1 

 

(23) 

for some rotation matrix 𝐑.  But 𝐞T𝐏Bayes𝐞 = 𝜎𝑖
2 for i = 1 or 2, so 𝐞1

T𝐑 = (1 0) and 𝐞2
T𝐑 = (0 1), and 

therefore 𝐑 is the rotation matrix whose ith column is equal to 𝐞𝑖, for i = 1 or 2. 

IV. MONTE CARLO STUDY 
The first comparison used 100,000 iterations, each iteration having its own geometry.  For each iteration, 

one transmitter, five receivers, and one target were each placed randomly (and independently, with a 

uniform distribution) within a square region of sea, 10 km on each side.  The true times of arrival of the 

echoes at the receivers were computed for a ping at a time coordinate of 0 s and a true sound speed of 

1500 m/s.  Measurements were generated randomly with Gaussian errors centered on the true values.  The 

sigmas were set to: 

 𝜎𝑥 = 20 m for each dimension of the transmitter position and each dimension of each receiver 

position; 

 𝜎𝑇 = 0.1 s for the TOA of the echo at each receiver; 

 𝜎𝑡 = 0.005 s for the ping time; 

 𝜎𝜃 = 0.02 radians for the DOA of the echo at each receiver; 

 𝜎𝑐 = 7.5 m/s for the local speed of sound. 

The target was localized, both by the baseline method and by the proposed method.  Absolute and 
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relative errors in localization were computed as follows: 

𝐸abs,BL = ‖𝐗BL − 𝐗true‖  

𝐸abs,Bayes = ‖𝐗Bayes − 𝐗true‖  

𝐸rel,BL = √(𝐗BL − 𝐗true)T𝐏BL
−1(𝐗BL − 𝐗true) 

 

𝐸rel,Bayes = √(𝐗Bayes − 𝐗true)
T

𝐏Bayes
−1 (𝐗Bayes − 𝐗true). 

 

(24) 

The RMS values, over the 100,000 iterations, of these four metrics were respectively 150 m, 67 m, 3.0, and 

1.4, showing that the proposed method has a clear advantage over the baseline method. 

One of the assumptions made in reaching the result given in (16)-(18) is that 𝑆0 ≫ 𝜎𝑥 and that 𝑆𝑘 ≫ 𝜎𝑥 

for all k.  A second and a third comparison were made in which this assumption is deliberately violated.  In 

the second comparison, the true target position is randomly generated from a Gaussian distribution, 

centered on one of the receivers, with a standard deviation of 𝜎𝑥 in each dimension.  Otherwise, the second 

comparison was performed in the same way as the first.  The third comparison is the same as the second, 

except that the Gaussian distribution from which the true target position was generated was centered on the 

transmitter.  The results appear in table 1. 

TABLE I 
EFFECT OF VIOLATING THE ASSUMPTIONS 𝑆0 ≫ 𝜎𝑥  AND 𝑆𝑘 ≫ 𝜎𝑥 

 
Target 
placement 

RMS absolute error 
(baseline) 

RMS absolute error 
(Bayesian) 

RMS relative error 
(baseline) 

RMS relative error 
(Bayesian) 

Independent, 
uniform 

150 m 67 m 3.0 1.4 

Near receiver 130 m 55 m 3.1 1.6 
Near transmitter 74 m 79 m 1.8 1.4 

 

Additional comparisons were made, all performed in the same way as the first comparison except that 

one parameter was varied.  The results appear in figure 4.  In figure 4a, the variable parameter is the size of 

the square region.  The side of the square is varied from 1 km to 20 km in steps of 1 km.  In figure 4b, the 

variable parameter is the number of receivers, which is varied from 1 to 20 in steps of 1.  In figures 4c 
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through 4g, the variable parameters are the sigmas: 𝜎𝑥 varies from 5 m to 100 m in steps of 5 m (figure 4c), 

𝜎𝑇 varies from 0.02 s to 0.4 s in steps of 0.02 s (figure 4d), 𝜎𝑡 varies from 0.001 s to 0.02 s in steps of 0.001 

s (figure 4e), 𝜎𝜃 varies from 0.005 radian to 0.1 radian in steps of 0.005 radian (figure 4f), and 𝜎𝑐 varies 

from 1 m/s to 20 m/s in steps of 1 m/s (figure 4g).  The RMS absolute error in meters is shown for each 

method in the left-hand column, while the RMS relative error for each method is shown in the right-hand 

column.  In each case the solid line represents the baseline method and the dashed line represents the 

Bayesian method.  In each of these plots, each point represents 100,000 iterations. 

The RMS relative error in the proposed method is consistently close to the ideal value √2 [8], with a few 

exceptions, visible in figures 4a, 4b, and 4g.  Aside from the bistatic case (figure 4b), these exceptions 

reflect the influence of a small number of outliers, the exclusion of which would bring the error down to the 

ideal value.  In the worst case, where the side of the square region is 19 km in figure 4a, the removal of a 

single outlier suffices to bring the RMS relative error below 1.5. 

This empirical study was implemented in Mathematica, with the “FindMaximum” function being used 

for the local maximization required by the proposed method.  The baseline estimate was used as the initial 

search point.  A constraint was imposed on the two-dimensional search, such that the resulting estimate was 

not permitted to be more than 50 km from the initial search point in either dimension.  There were a few 

occasions in which the quantity A (see (17)) reached negative values in the process of searching for a peak 

in −𝐶 + 𝐵2 4𝐴⁄ − 1

2
ln𝐴, making the method nonsensical.  The solution adopted here was simply to fall 

back on the baseline method whenever the latter problem arose.  This problem happened in one iteration 

when the side of the square region was 20 km (figure 4a), 51 iterations in the bistatic case (a single 

receiver, figure 4b), and in respectively 2, 5, 30, 54, and 118 iterations in the cases of 𝜎𝑐 = 16 m/s, 17 m/s, 

18 m/s, 19 m/s, and 20 m/s (figure 4g). 
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(a)        
 

(b)        
 

(c)        
 

(d)        
 
Fig. 4.  RMS errors as a function of various parameters.  The solid line represents the baseline method, and the dashed line 
represents the Bayesian method. 
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(e)        

(f)        

(g)        
 
Fig. 4 (continued).  RMS errors as a function of various parameters.  The solid line represents the baseline method, and the 
dashed line represents the Bayesian method. 
 

V. DISCUSSION AND CONCLUSIONS 
We have presented a Bayesian method for localization by multistatic active sonar.  The proposed method 

can account for transmitter and receiver location errors, errors in the local estimate of the speed of sound, 

and errors in the measurements of both time and bearing.  Monte Carlo tests show a performance advantage 

of the proposed method over a more conventional localization method used as a baseline. 

In order to account for the advantage of the proposed method over the baseline method, notice that each 
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bistatic (single receiver) result in the baseline method is summarized by a point estimate and a covariance 

matrix, before those results are combined via (1) into a final estimate.  Thus, there is a loss of information 

at an intermediate stage.  No such discarding of information takes place in the proposed Bayesian method. 

However, the proposed method has the disadvantage that it relies on numerical methods to find the peak 

in a probability distribution function.  In order to make this process practicable, the function in question 

was approximated by a closed-form expression (see (16)-(18)).  Even so, this process can take tens of 

milliseconds on a typical personal computer. 

The main simplifying assumption used here for the integral of (12) is that 𝑆0 ≫ 𝜎𝑥 and that 𝑆𝑘 ≫ 𝜎𝑥 for 

all k, which is to say that the distance from the target to the nearest receiver or transmitter is large in 

comparison to the uncertainty in the receiver or transmitter positions.  We investigated what would happen 

if this assumption were systematically violated, by running comparisons in which the true target position is 

placed close to the transmitter or to one of the receivers.  The proposed method still compares mostly 

favorably to the baseline method, with only a small disadvantage in the RMS absolute error in the case 

where the target is close to the transmitter. 

In spite of the overall favorable performance, there were a few cases where the approximations used to 

derive (16)-(18) led to problems.  There were a few iterations in which the quantity A (see (17)) became 

negative, causing the peak-finding procedure to fail, as already mentioned in section IV.  In addition, there 

were four outliers, which are manifested as the peak in the RMS relative error in figure 4a and the three 

peaks in the RMS relative error in figure 4g.  Removal of these four outliers would be sufficient to flatten 

those two figures, giving the Bayesian method an RMS relative error of about 1.4 throughout the range of 

parameters chosen. 

The degree of advantage of the proposed method over the baseline method, in the results of section IV, is 

greater with a larger region area, with a larger bearing measurement error, and with a smaller time 

measurement error, and slightly greater with a larger number of receivers, but it does not seem to depend 

on the transmitter/receiver position errors or on the error in the ping time.  Nor does it seem to depend on 



    
 

19 

the sound speed error, except that higher values of this error bring instability to the proposed method, as 

described in section IV. 

The use of a uniform unbounded prior for 𝑐̃ in (11)-(12) is questionable.  In the absence of a local 

measurement, we will still know that the speed of sound in water is somewhere in the rough vicinity of 

1500 m/s, and obviously a zero or negative value is impossible.  However, the form of the integrand 

ensures that only values of 𝑐̃ that are close to the estimate c will contribute. 

The assumptions here (see the introduction) could be generalized.  In particular, we could have different 

position uncertainties for each receiver and for the transmitter, along with correlations between the 

uncertainty in x and the uncertainty in y in each case; different uncertainties for each time measurement; 

and different uncertainties for each DOA measurement.  The integrand given in (13) would be modified 

straightforwardly: 

𝑃(𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐|𝐗, 𝑡̃, 𝐱̃0, {𝐱̃𝑘}, 𝑐̃)

∝ exp (−
1

2
[
(𝑡 − 𝑡̃)2

𝜎𝑡
2 +

(𝑐 − 𝑐̃)2

𝜎𝑐
2

+ (𝐱0 − 𝐱̃0)T𝚺0
−1(𝐱0 − 𝐱̃0)

+ ∑ ((𝐱𝑘 − 𝐱̃𝑘)T𝚺𝑘
−1(𝐱𝑘 − 𝐱̃𝑘) +

(𝜃𝑘 − 𝜃̃𝑘)
2

𝜎𝜃𝑘

2 +
(𝑇𝑘 − 𝑇̃𝑘)

2

𝜎𝑇𝑘

2 )

𝑘

]) 

 

 

 

 

 

(25) 

where the uncertainty in the kth TOA measurement is given by 𝜎𝑇𝑘
, the uncertainty in the kth DOA 

measurement is given by 𝜎𝜃𝑘
, the (two dimensional) uncertainty in the position of the kth receiver is 

expressed by the covariance matrix 𝚺𝑘, and similarly the (two dimensional) uncertainty in the position of 

the transmitter is expressed by the covariance matrix 𝚺0.  The corresponding integral (12) could still be 

evaluated with the same simplifying assumptions that were used here, but the result will be much lengthier 

than that of (16)-(18). 
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APPENDIX 
We evaluate (approximately) the integral in (12), with the integrand given explicitly in (13).  We first 

make the transformation 

(
𝑥̃′𝑘

𝑦̃′𝑘
) = (

−cos𝜃̌𝑘 −sin𝜃̌𝑘

sin𝜃̌𝑘 −cos𝜃̌𝑘

) (
𝑥̃𝑘 − 𝑋
𝑦̃𝑘 − 𝑌

) 
 

(
𝑥′𝑘

𝑦′𝑘
) = (

−cos𝜃̌𝑘 −sin𝜃̌𝑘

sin𝜃̌𝑘 −cos𝜃̌𝑘

) (
𝑥𝑘 − 𝑋
𝑦𝑘 − 𝑌

) 
  

(26) 

where 𝜃̌𝑘 is given by the last three lines of (18).  Thus 𝑥′𝑘 = 𝑆𝑘 and 𝑦′𝑘 = 0, and we can substitute an 

integral over 𝑥̃′𝑘 and 𝑦̃′𝑘 for the integral over 𝑥̃𝑘 and 𝑦̃𝑘.  If we write 

𝜃̃𝑘 = 𝜃̌𝑘 + 𝜀 (27) 

then to first order in 𝜀 we have 𝑥̃′𝑘 ≈ 𝑆̃𝑘 and 𝑦̃′𝑘 ≈ 𝜀𝑆̃𝑘 ≈ 𝜀𝑆𝑘.  So the summand in (13) can be rewritten 

with the substitutions 

(𝑥𝑘 − 𝑥̃𝑘)2 + (𝑦𝑘 − 𝑦̃𝑘)2 = (𝑆𝑘 − 𝑥̃′𝑘)2 + 𝑦̃′𝑘
2  

(𝜃𝑘 − 𝜃̃𝑘)
2

= (𝜃𝑘 − 𝜃̌𝑘 −
𝑦̃′𝑘

𝑆𝑘
)

2

 
 

(𝑇𝑘 − 𝑇̃𝑘)
2

= (𝑇𝑘 − 𝑡̃ −
𝑆̃0

𝑐̃
−

𝑥̃′𝑘

𝑐̃
)

2

 
 

(28) 

whence the 2N integrals over the 𝑥̃′𝑘 and 𝑦̃′𝑘 become simply Gaussian, and they result in 

𝑃(𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐|𝐗, 𝑡̃, 𝐱̃0, 𝑐̃)

∝ (
𝑐̃2𝜎𝑇

2𝜎𝑥
2

𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2)

𝑁
2

(∏ √
𝑆𝑘

2𝜎𝜃
2𝜎𝑥

2

𝜎𝑥
2 + 𝑆𝑘

2𝜎𝜃
2

𝑘

) exp (−
1

2
[
(𝑡 − 𝑡̃)2

𝜎𝑡
2 +

(𝑐 − 𝑐̃)2

𝜎𝑐
2

+
(𝑥0 − 𝑥̃0)2

𝜎𝑥
2

+
(𝑦0 − 𝑦̃0)2

𝜎𝑥
2

+ ∑ (
𝑆𝑘

2(𝜃𝑘 − 𝜃̌𝑘)
2

𝜎𝑥
2 + 𝑆𝑘

2𝜎𝜃
2 +

(𝑐̃(𝑇𝑘 − 𝑡̃) − 𝑆̃0 − 𝑆𝑘)
2

𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2 )

𝑘

]). 

 

 

 

 

 

 

(29) 

 The integration over 𝑥̃0 and 𝑦̃0 is handled similarly:  These variables are transformed (by a rotation and a 
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translation) to 𝑥̃′0 and 𝑦̃′0 such that 𝑥̃′0 ≈ 𝑆̃0 and (𝑥0 − 𝑥̃0)2 + (𝑦0 − 𝑦̃0)2 = (𝑆0 − 𝑥̃′0)2 + 𝑦̃′0
2, and the 

integral results in 

𝑃(𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐|𝐗, 𝑡̃, 𝑐̃)

∝ √
𝜎𝑥

2 + 𝑐̃2𝜎𝑇
2

(𝑁 + 1)𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2 (
𝑐̃2𝜎𝑇

2𝜎𝑥
2

𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2)

𝑁
2

(∏ √
𝑆𝑘

2𝜎𝜃
2𝜎𝑥

2

𝜎𝑥
2 + 𝑆𝑘

2𝜎𝜃
2

𝑘

) exp (−
1

2
[
(𝑡 − 𝑡̃)2

𝜎𝑡
2 +

(𝑐 − 𝑐̃)2

𝜎𝑐
2

+
𝑆0

2

𝜎𝑥
2

+ ∑ (
𝑆𝑘

2(𝜃𝑘 − 𝜃̌𝑘)
2

𝜎𝑥
2 + 𝑆𝑘

2𝜎𝜃
2 +

(𝑐̃(𝑇𝑘 − 𝑡̃) − 𝑆𝑘)2

𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2 )

𝑘

−
𝜎𝑥

2(𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2)

(𝑁 + 1)𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2 (
𝑆0

𝜎𝑥
2

+
∑ (𝑐̃(𝑇𝑘 − 𝑡̃) − 𝑆𝑘)𝑘

𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2 )

2

]). 

 

 

 

 

 

 

 

 

 

 

 

(30) 

 The integration over 𝑡̃ is straightforward, as the integrand (30) is already Gaussian in that variable.  Thus 

we get 
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𝑃(𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐|𝐗, 𝑐̃)

∝
1

√1 + 𝑁 (
𝜎𝑥

2 + 𝑐̃2𝜎𝑡
2

𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2)

(
𝑐̃2𝜎𝑇

2𝜎𝑥
2

𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2)

𝑁
2

(∏ √
𝑆𝑘

2𝜎𝜃
2𝜎𝑥

2

𝜎𝑥
2 + 𝑆𝑘

2𝜎𝜃
2

𝑘

) exp (−
1

2
[

𝑡2

𝜎𝑡
2

+
(𝑐 − 𝑐̃)2

𝜎𝑐
2

+
𝑆0

2

𝜎𝑥
2

+ ∑ (
𝑆𝑘

2(𝜃𝑘 − 𝜃̌𝑘)
2

𝜎𝑥
2 + 𝑆𝑘

2𝜎𝜃
2 +

(𝑐̃𝑇𝑘 − 𝑆𝑘)2

𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2 )

𝑘

−
𝜎𝑥

2(𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2)

(𝑁 + 1)𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2 (
𝑆0

𝜎𝑥
2

+
∑ (𝑐̃𝑇𝑘 − 𝑆𝑘)𝑘

𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2 )

2

− (
𝜎𝑡

2((𝑁 + 1)𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2)

(𝑁 + 1)𝜎𝑥
2 + 𝑐̃2(𝜎𝑇

2 + 𝑁𝜎𝑡
2)

) (
𝑡

𝜎𝑡
2 +

𝑐̃(∑ (𝑐̃𝑇𝑘 − 𝑆𝑘) − 𝑁𝑆0𝑘 )

(𝑁 + 1)𝜎𝑥
2 + 𝑐̃2𝜎𝑇

2 )

2

]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(31) 

 The final integration is over 𝑐̃.  Given the term (𝑐 − 𝑐̃)2 𝜎𝑐
2⁄  in the argument of the exponential, most of 

the contribution to this integral will be in the near vicinity of c.  This constraint suggests that a low-order 

expansion in powers of (𝑐̃ − 𝑐) should suffice.  The expression in (31) expands to 

𝑃(𝑡, {𝑇𝑘}, {𝜃𝑘}, 𝐱0, {𝐱𝑘}, 𝑐|𝐗, 𝑐̃) ∝ exp(−𝐶 − 𝐵(𝑐̃ − 𝑐) − 𝐴(𝑐̃ − 𝑐)2 + O(𝑐̃ − 𝑐)3) (32) 

where A and B and C are given by (17) and (18).  Cutting off the expansion at second order, then 

integrating over 𝑐̃, we get the result (16). 
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