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Abstract
Understanding spatial and temporal patterns in shipping traffic and ship 
movements on the approaches to Canada will enhance the ability of analysts 
to identify deviations from expected behaviour. The present paper expands 
on an earlier analysis of ship detections in Canadian coastal regions using 
RADARSAT-2 (RS2) and Satellite Automated Identification System (S-
AIS) data. It addresses several limitations of the previous approach, and 
expands the analysis by looking at the properties of sub-regions, in addition
to the overall coastal regions. The S-AIS is dependent on ships’ self-
reporting (which is mandated for cargo vessels over 300 gross tonnes and 
for all passenger-carrying vessels), while RS2 collects images over time 
using Synthetic Aperture Radar (SAR) thus limiting the need for the 
cooperation from tracked vessels. Employment of spatial entropy and the 
fractal dimension, calculated using the differential box-counting method, as 
measures of randomness in the spatio-temporal distributions of ship 
detections are presented in the paper; both quantities suggest a presence of 
non-random patterns of behaviour with annual changes possibly attributable 
to known causes (such as seasonal changes in shipping routes and fishing). 
Further work will include exploring additional measures, and the use of the 
existing measures to determine likelihood maps for expected behaviour for 
different vessel types.

INTRODUCTION

In order to protect their sovereign interests, coastal countries strive to 
monitor shipping traffic in their territorial waters and exclusive economic 
zones. This is required to ensure that the activities of the vessels adhere to 
international and national laws and regulations. Analysis of the patterns in 
the maritime detection data could help analysts to better understand the 
behaviour of vessels on the approaches to Canada in order to estimate what 
may constitute aberrations from expected behavioural patterns (and thus be 
identified as suspicious). There are two questions that the analysts attempt 
to answer, to which the proposed approach hopes to provide some response.
The first question seeks to understand the detection reliability; in particular, 
what is the likelihood of false positives (detections not corresponding to 
actual vessels)? The second question is whether there are any vessels 
exhibiting some kind of anomalous behaviour? Previous research (Dobias et 
al., 2015) suggested that the maritime detection data taken off the East and 
West coasts of Canada may indeed exhibit an intrinsic non-linear geo-
spatial structure reflecting non-random patterns. Understanding these 
patterns at the global scale, as well as for particular sub-regions, could then 
enable future development of probability distributions for detections in a
given sub-region at a particular time of year. However, potential 
methodological limitations associated with the saturation of the data patterns 

DRDC-RDDC-2015-P138



2 

 

due to the conversion of latitude-longitude data to an integer grid were 
identified; these limitations reduced the confidence in the findings reported 
in (Dobias et al., 2015).
There are several possible approaches to understanding the intrinsic 
structure of the geographic distributions of vessel detections. Spatial entropy 
and fractal dimension were selected as possible indicators of fractal 
properties for RADARSAT-2 (RS2) and Satellite-based Automated 
Identification System (S-AIS) detections. The data can then be filtered into 
time periods of interest to determine if seasonal effects are a factor in the 
pattern development. This paper discusses the practical implementation of 
the proposed methodology, including the impacts of approximations 
inherent in mapping continuous variables on integer grids. It looks at the 
data along each coast overall, as well as for a selected set of sub-regions.
Trends in spatial entropy and the fractal dimension are discussed, and some 
possible explanations in terms of known shipping and fishing trends are 
provided. However, this paper is not intended to provide in-depth analysis 
of the causes of the observed trends; its focus is on the practical 
implementation of the methodology for maritime data. 
The paper is organized as follows. At first, the concept of spatial entropy 
and fractal dimension is introduced. Then, the data sources are presented, 
followed by a discussion of the practical implementation of the two 
measures. In particular, dependence of the results on data density and the 
convergence of these measures are explored. The observed trends for spatial 
entropy and the fractal dimension of ship detections along the East and West 
coasts of Canada are shown and discussed. This is then followed by 
extended analysis of spatial entropy and the fractal dimension for several 
coastal sub-regions. The global measures, such as the fractal dimension and 
spatial entropy require a relatively significant shift in the geospatial 
distribution of the data to produce visible variations. However, it is shown 
in this paper that the analysis over the time can determine what constitutes 
expected (normal) behaviour; unresolved subsets could then be compared to 
this normal to determine if they might be aberrations. 

SPATIAL ENTROPY AND FRACTAL DIMENSION

In 2004, Ilachinski (2004) proposed a specific form of Shannon entropy for
the spatial distribution of soldiers on a battlefield:

ii ppS ln (1)

In Eq. 1 pi is the probability of finding a detection in the i-th cell of a grid 
covering the battlefield.  This metric for determining the randomness of the 
patterns of the spatial distribution of the individual entities can be applied to 
ship position reports in the area of interest. 
In general, a non-dispersed pattern typically yields low values of spatial 
entropy, while disorganized, almost uniform patterns would display high 
spatial entropy values. Theoretically speaking, the maximum value for 
spatial entropy defined by Equation (1) is Smax = ln N, where N is the total 
number of soldiers on the battlefield (i.e., points in the two dimensional 
space). In this paper, “soldiers” are substituted by RS2 and S-AIS 
detections. In addition, to account for different numbers of detections at 
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different times (and for each coast), the value of spatial entropy was 
normalized so that the maximum value of Smax = 1.
In order to compute spatial entropy, the area of interest of linear size B is 
split into a number of sub-blocks of linear size b (their area would be b2).
Then, assuming that Ni out of N detection points are in the ith sub-block, the 
probability of a detection being in the ith block will be:

NbNbP ii /)()( (2)

and Equation (1) becomes:
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The value of spatial entropy is dependent on the sub-block size. If the 
division is too coarse, most of the blocks will contain some detection points,
leading to an appearance of uniformity and a consequent increase in spatial 
entropy. A similar effect would be achieved if there are too many blocks,
and the division is too refined. In this case, most of the blocks would be 
empty; thus creating an appearance of greater organization of the set.
However, the impact of the latter would be likely less than the impact of too 
coarse a subdivision. Another limitation of the practical implementation of 
too fine a grid is the computational cost required to evaluate each grid point.
Later in this paper, the issue of the selection of an appropriate granularity of 
the division of the area to blocks will be discussed in greater detail.  
An alternative metric used by Ilachinski (2004) is the fractal dimension DF,
which measures the spatial distribution of units by providing the minimum
number of variables needed to specify a given pattern (Ilachinski, 2004). To 
calculate the fractal dimension, the overall area of the size L is again divided 
into equal boxes. In general, the relationship between the size of a box and 
the minimum number needed to cover all the points is a power law:

)(L/)N( FD (4)

where DF is the computed via the box-counting method. For uniformly 
distributed points, the entire area has to be covered for all box sizes, 
yielding the simple N( ) = (L/ )2 relationship characteristic for a non-fractal,
two dimensional space. When Equation (4) is rewritten by taking the 
logarithm of both sides, the formula for DF is obtained:

)ln(L/
))ln(N(lim

0FD (5)

In practice, the value of will be finite, but it should be reasonably small. 
To calculate the fractal dimension of the ship detections, a method called 
differential box-counting (Sarkar and Chaudhuri, 1994) is employed in this 
paper. In this approach, multiple values of are used; the slope yielding the 
DF is then found using a linear least squares fit. This approach is more 
robust than using a single, though small, value.
The fractal dimension of the system, when computed via the box-counting 
technique, is related to spatial entropy (Sprague and Dobias, 2008). The 
main difference is that spatial entropy considers the probability of finding a 
data point within a sub-block; hence, it is dependent on the actual point 
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density in sub-blocks. On the other hand, the fractal dimension considers 
simply the presence or absence of a point within the sub-block and thus is 
independent of the actual point density distribution within sub-blocks.

RS2 AND S-AIS DATA SETS

The data sets used in the analysis herein were obtained from two sources. 
The first source was provided by the Canadian Polar Epsilon project, with 
ship detections from RADARSAT-2. RS2 is a commercial, sun-
synchronous polar-orbiting synthetic aperture radar satellite providing 
imagery-based surveillance (Vachon et al., 2014). The Canadian RS2
satellite is owned and operated by MacDonald Dettweiler and Associates. 
There are two primary SAR imaging beam modes used for ship detection,
with 450 km and 530 km wide swaths; these were developed for the Polar 
Epsilon project, and are used in addition the standard imaging beam modes.
The area of surveillance is constrained by the orbit and beam modes, and the 
persistence is limited. RS2 uses active sensing, so the detection of ships 
does not require regulatory participation of the observed vessels. 
The second was the commercial satellite-based AIS (S-AIS) dataset. AIS is 
a radio-based transponder system for self-reporting, designed for enhancing 
safety of navigation at sea. It provides the vessel position and static 
identifying information for collision avoidance. AIS transponders are 
mandated by the United Nations Safety of Life at Sea (SOLAS) Convention 
(SOLAS) for all ships over 300 gross tonnes (GT), and all passenger-
carrying vessels; other vessels may use it as well. The Government of 
Canada purchases commercial S-AIS from exactEarth® for the purpose of 
enhancing maritime domain awareness (exactEarth, 2014). Both datasets 
cover the area off the East and West coasts of Canada for the year 2014 
(Figure 1). Note that there were significantly more AIS detections, since 
these are updated far more frequently than RS2 detections, and always cover 
the entire region while RS2 detections are obtained for only a subset of the 
monitored region for each pass. 
The data consisted of latitude and longitude locations of vessels detected by 
RS2 or S-AIS. Assuming that the original data was a fractional data set, the 
Complex Adaptive Systems Analysis (CASA) software developed by 
Defence Research and Development Canada had previously been used to 
compute the spatial entropy and fractal dimensions of the detections (Dobias 
et al., 2015). Because the fractal dimension and spatial entropy metrics were 
initially implemented in CASA using an integer grid of a limited size (up to 
a maximum of 200x200 cells), the large datasets appeared to be more 
uniform than they really were. In that implementation, the data had to be 
mapped to an integer set using an affine transformation of the latitude and 
longitude values to cover as much of the grid as possible. This led to a 
potential saturation for large data sets (such as AIS) since multiple nearby 
points would be mapped to the same grid cell. In contrast, this paper reflects 
the analysis using more robust implementation, thus avoiding the potential 
saturation issues. As will be discussed below, this led to much clearer 
identification of non-uniform structures in the data, and enabled also the 
additional analysis focusing on sub-regions of Canadian coastal approaches. 
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Figure 1. RS2 (top) and S-AIS (bottom) ship detections (black dots) off 
of the Canadian coasts for 2014. 

For large datasets, such as the RS2 and AIS data (Table 1), in addition to the 
saturation problem, CASA had problems with insufficient memory, since it
stored the entire dataset during computations. In order to bypass these 
limitations, the two metrics were re-implemented in MATLAB®. The main 
algorithms for computing spatial entropy and fractal dimension remained 
the same as in CASA. However, in the MATLAB® implementation, it was 
not necessary to use integer input, and the entire dataset did not need to be 
stored during the computations.

Table 1. Monthly detection numbers from RS2 and AIS sensors. 
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SPATIAL ENTROPY OF COASTAL DETECTIONS (BROKEN 
DOWN BY COAST)

As is mentioned in the introduction, one of the issues for a practical 
implementation of the fractal dimension and spatial entropy was the 
dependence of their values on the size of the grid. This is especially true in 
the case of spatial entropy because, unlike the fractal dimension, it only 
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used one length of the grid blocks, b. Therefore the dependence of spatial 
entropy values S on the grid size was investigated. This dependence can 
alternatively be expressed as a dependence of S on the number of grid cells, 
or a dependence on average detection point density.  
The number of sub-blocks on the pattern edge, x, can be expressed in terms 
of the grid block linear size b as:

Bbx / (6)
where B is the linear size of the entire pattern. In order to understand the 
dependence of spatial entropy on the number of cells S = S(x), a test dataset 
corresponding to randomly (near-uniformly) distributed points was first 
analyzed. A caveat needs to be included here: while randomly-generated 
points will be distributed nearly uniformly, there will always be some 
clustering. Thus the expected value of spatial entropy would be slightly 
below the maximum value Smax = 1 that would be obtained for uniformly 
distributed data. 
The analyzed pattern covered a two dimensional battlefield with the length 
of pattern edge of 100. The entire data set contains 10,000 data points; as is 
mentioned above, randomly generated data will actually feature some 
degree of clustering; therefore the expected value of S should be less than 
one. Figure 2 shows the shape of the spatial entropy (blue diamonds) for 
different value of x corresponding to different average point densities. The 
secondary axis shows the percentage of grid cells with no point in them (red 
dashes).

Figure 2. Spatial entropy for a random, near-uniformly distributed 
pattern.

If there were too few boxes (the average point density too high), the spatial 
entropy values remained close to one, creating an appearance of a uniformly 
distributed set. On the other hand, if there were too many boxes (with the 
corresponding average point density very low), spatial entropy would drop 
much more than expected for a random set. It was determined that the most 
reasonable values were obtained around the inflexion point corresponding to 
densities between one and two points per grid cell. Thus a rule-of-thumb 
using an average point density of two points per grid cell was employed in 
the analysis. For the analysis purposes a common grid resolution was 
required across all data but the number of detection varied from month to 
month. Thus, in order to account for the varying monthly detection 
numbers, and to enable using the same value across all months, the number 
of grid cells was defined by an expression:
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)2/min(int iNx (7)

where Ni is the number of detections for the ith month (i =1, 2, 3, … , 12);
the min() function is evaluated across all months.
There are two possible approaches for implementing spatial entropy
calculations in MATLAB®. One possibility, called Option 1, is to convert 
the data into an integer set a priori, and then map the resulting integer 
values onto a grid. This may lead to artificial clustering, if several points’ 
coordinates are rounded to the same integer. This would be the likely 
scenario, since the latitudes and longitudes of the detections fall into a very 
limited range. For example, on the West coast values fall between 30–65
degrees North and 110–180 degrees West, resulting in only approximately 
2400 possible integer combinations. For thousands of data points in the S-
AIS set this could represent a serious problem. To mitigate this problem, the 
data set was stretched over a greater range of values using an affine 
transformation:

dcyybaxx 'and' (8)

where a, b, c, and d are some pre-determined parameters. This approach is 
generally less expensive computationally.
An alternative (designated here as Option 2) would be to use a non-integer 
grid, using the actual values for points’ coordinates and testing whether the 
actual values of the points’ coordinates fell inside a grid cell. This approach,
while more accurate and robust, is computationally more intensive since it 
requires testing each of the cells for the presence of points. Figure 3 and 
Figure 4 show a comparison of spatial entropy for RS2 data calculated via 
both methods for the East and West coasts (respectively). From the 
similarity between the two plotted lines for both coasts, it is apparent that 
for the selected average point density of two per cell, the implication of 
using the integer grid leads to very little error when compared to the use of 
the non-integer grid. However, this error would increase if the average 
density varied significantly from two points per cell.  

Figure 3. Spatial entropy for RS2 detections for the East coast (integer 
vs. non-integer representation).
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Figure 4. Spatial entropy for RS2 detections for the West coast (integer 
vs. non-integer representation).

Spatial entropy for the East coast (Figure 3) shows little variability 
throughout most of the year, with the value holding at approximately S
0.7. This suggests a possible presence of some non-random behaviour 
(patterns) in the detections. There is a noticeable drop in April (indicating an 
emergence of a pattern), then entropy increases again; the summer values 
are slightly higher than December-February values. It was earlier proposed 
that the changes might be due to the start of a fishing season (Dobias et al., 
2015). However, more detailed analysis of area subsets is needed to 
ascertain the nature of the change. 
For the West coast (Figure 4), the spatial entropy values remain comparable 
to those for the East coast (S 0.7). However, the variability is smaller, 
with the exception of a small drop in November (again, possibly due to 
salmon fishing season). This may be a reflection of slightly less significant 
weather impacts on the West coast. More detailed analysis looking at 
subsets of the overall area will be discussed in a following section. 
In the work by Dobias et al. (2015), due to the use of a suboptimal (too 
coarse) grid in CASA, the spatial entropy values were slightly higher 
(implying more uniform distribution on the used grid). The difference was 
relatively small for RS2 data, but rather significant for S-AIS data, as shall 
be discussed below.
Spatial entropy of S-AIS data (Figure 5 and Figure 6, for the East and West 
coasts, respectively) exhibits a much greater difference between the two 
computational approaches. While the trend is practically identical between 
the two options (the use of integer approximation, blue line, and the use 
actual latitude and longitude values, red line), the use of the integer 
approximation yielded noticeably lower values of entropy suggesting a
greater level of organization. Since there are two orders of magnitude more 
data points for S-AIS than for RS2, it is possible that, in this case, the 
approximation forced too many data to particular grid cells despite the fact 
that the overall point density remained the same. Since the overall trend is 
the same between the two lines, and in both cases the values are within the 
expected range (i.e., there is no apparent effect of a grid saturation), due to 
the ~20% lower computational cost, the integer approximation is still 
preferred.
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Figure 5. Spatial entropy for S-AIS detections for the East coast 
(integer vs. non-integer representation).

Figure 6. Spatial entropy for S-AIS detections for the West coast 
(integer vs. non-integer representation).

The shape of the curves again suggests that there are some changes in the 
degree of organization in the detections in the course of a year. For the East 
coast, there is a spring decrease in entropy about a month before a similar 
change in RS2 data. The difference between the two sets may be due to the 
difference in target vessels. While fishing vessels may have been driving the 
RS2 trend, they are not required to use AIS. Thus the S-AIS trend might be 
driven by a different class of vessels (commercial shipping). Likewise, the 
West coast AIS pattern differs somewhat from the RS2 one. There is a slight 
drop in July followed by an increase toward the end of the year. Again, a 
possible explanation of the discrepancy may be the difference between the 
targets collected by the two sensors. The analysis of the sub-regions (further 
below) provided additional insights into this difference in trends.

FRACTAL DIMENSION OF COASTAL DETECTIONS (BROKEN 
DOWN BY COAST)

As discussed in an earlier section, the fractal dimension is a slightly more 
robust metric with respect to the subdivision of the analyzed domain into 
blocks than spatial entropy. This stems from the fact that the calculation of 
the fractal dimension employs a range of the sizes of a sub-block .
However, there still are some dependencies of the fractal dimension on the 
minimum and maximum values of . This range can be expressed as a range 
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of admissible numbers of sub-blocks ( ). Several options for the 
coarsest division (i.e., for the xmin values) were tested; the differences were 
negligible, therefore it was decided that, for simplicity, the smallest 
admissible division of the area would be 2x2 sub-blocks (i.e., xmin = 2). To 
facilitate the calculation, the number k of different block sizes (i.e., the 
number of different values of the N( ) fit) was kept between 20 and 40; 
these points were evenly distributed. 
Figure 7 shows the dependence of the fractal dimension of a set of 10,000
randomly distributed points on the maximum value of x for various values 
of xmin. The solid lines represent the fractal dimension for given interval 
[xmin, xmax]. The secondary axis shows the percentage of the grid cells with 
no detection point in them (dashed line).

Figure 7. Dependence of DF of randomly distributed data on the 
number of sub-blocks.

Both too coarse and too fine division would lead to an appearance of 
uniformity; in the former case, (almost) each cell would contain some 
points, thus DF 2, in the latter case the space would be (almost uniformly) 
empty and thus the DF 0. It was decided to use xmax corresponding to the 
average data density of one data point per sub-block which meant that 
approximately 50% of the cells would not be empty. This is somewhat 
different from the criterion employed for spatial entropy; the difference can 
be attributed to the different information content of each quantity, as 
discussed earlier. Thus, for the analyzed S-AIS and RS2 datasets the value 
of xmax was calculated as:

)min(max iNx (9)

where Ni is the number of detections in the ith month; i = 1, 2, 3, … , 12. 
Again, there were the same two possible computational approaches: one 
employing the integer representation of the detection data using affine 
transformation to expand the real domain to a wider range of integers 
(Equation (8)), and the second option using the actual (non-integer) values 
for latitude and longitude. Figure 8 and Figure 9 show the comparison of the 
two representations for the East and West coasts, respectively. It is apparent 
that, like for spatial entropy, for RS2 data the difference is negligible.
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Figure 8. Fractal dimension for RS2 detections for the East coast
(integer vs. non-integer approach).

Figure 9. Fractal dimension for RS2 detections for the West coast 
(integer vs. non-integer approach).

In the work by Dobias et al. (2015), the data saturation – driven by the 
implementation of the fractal dimension in CASA – led to the values of for 
S-AIS detections to converge close to the value of two, suggesting a near-
uniform distribution. This contradicted visual observation of the data 
structure (as seen in Figure 1). The adjusted implementation described 
herein, led to improved results. The values of DF for the East coast 
detections ranged between 1.5 and 1.6; the values for the West coast 
detections were slightly higher, around 1.7. These values of the fractal 
dimension for S-AIS correspond to the ones obtained for the RS2 data (DF
1.6 for both the East and West coast). A contributing factor for lower values 
on the East coast may be more complex coastal topography of that coast.
Along the East coast, there is a noticeable increase in the DF values during 
summer months. This might be attributable to higher shipping density in 
parts of the region during summer months. The low variability of DF for the 
West coast detections is consistent with the findings for spatial entropy.
Figure 10 and Figure 11 show a comparison of results for the two 
implementation options (the integer and non-integer representations of the 
S-AIS data) for the East and West coasts, respectively. Similarly to the 
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results for spatial entropy, the integer representation led to a decrease in DF
values, but the overall trend remained the same. As for spatial entropy, the 
use of the integer representation to calculate the fractal dimension yields 
approximately a 15-20% savings in computation time.

Figure 10. Fractal dimension for S-AIS detections for the East coast 
(integer vs. non-integer approach).

Figure 11. Fractal dimension for S-AIS detections for the West coast 
(integer vs. non-integer approach).

Interestingly, the S-AIS data show much smaller variability on the East 
coast than they do on the West coast. On the East coast there is a slight 
increase over the summer months, likely corresponding to increased 
shipping activity in the northern Atlantic. Along the West coast, there is a 
similar increase; in both cases DF exhibits a slight drop in July. In order to 
better ascertain the causes for this trend, deeper analysis of sub-regions was 
conducted and is discussed in following sections. 

SUB-REGION ANALYSIS OF SPATIAL ENTROPY AND FRACTAL 
DIMENSION OF COASTAL DETECTIONS

For each coast, the map was split into several sub-regions, and the spatial 
entropy and the fractal dimension of those sub-regions were calculated. The 
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West coast was divided into two sub-regions and the east coast was divided 
into three sub-regions (Figure 12). The fractal dimension and spatial entropy 
were implemented individually for each sub-region following the same 
approach to determining box sizes as discussed earlier. 

Figure 12. Sub-regions for the East coast (right) and the West coast 
(left).

Figures 13 and 14 show spatial entropy for the sub-regions and overall for 
both East and West coast detections, respectively. As is already mentioned 
earlier, spatial entropy for the East coast shows a noticeable drop in April 
(Figure 13, purple x’s). The same trend appears in sub-regions 1 and 3 (near 
the coast-line). In contrast, the values for sub-region 2 (open ocean) is more 
flat. This supports the previous assertion that the changes may be due to a 
commencement of the fishing season leading to an occurrence of non-
random clusters in the area (Dobias et al., 2015). Later in the year the 
fishing traffic would be supplemented by pleasure crafts leading to a 
decrease in the organization (an increase in entropy). For the West coast
overall (Figure 14, green triangles) spatial entropy shows a slight increase in
February followed by a slight drop in March. Overall, the trend is flat.
Interestingly, this is mostly consistent with sub-region 2 (closer to the 
coast), while sub-region 1 (further from the shore line) shows an almost 
opposite trend. There is no readily apparent explanation for this behaviour.
The opposing trend between the sub-regions for the West coast highlights an 
important fact. The relationship between the spatial entropy of sub-regions 
and that for the entire region is not linear. For instance, for the West coast
(Figure 14), spatial entropy for both sub-regions increased (indicating a 
more uniform distribution) between September and October, but the value 
for entire region decreased (thus indicating less uniform distribution). This 
may have been caused by a shift in relative distribution of detections 
between the two sub-regions. In practical terms it suggests that a single sub-
dividing of the region might not be sufficient to gain comprehensive insights 
into the system dynamics, and it may be necessary to use multiple different 
sub-divisions to gain further insights.
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Figure 13. Spatial entropy in RS2 data for the East coast and its sub-
regions. 

Figure 14. Spatial entropy in RS2 data for the West coast and its 
sub-regions.

The analysis of spatial entropy in S-AIS data (Figures 15 and 16) further 
confirms the non-linear nature of spatial entropy relative to sub-regions. For
the East coast, sub-region 2 (outer, southern area) seems to have a largely 
stabilizing effect, showing very little variability during the course of the 
year. Sub-regions 1 and 3 have opposing trends in the spring, while they 
become aligned in the late summer and in the fall. This might be caused by 
the significant impact of weather (e.g., melting ice) that would open 
northern Atlantic to shipping in the spring. For the West coast, the outer 
area (sub-region 1) appears to be the primary driver of the overall spatial 
entropy trend. This is the opposite from the observations made for the RS2 
data, and thus it reinforces the claim made earlier that the difference 
between the S-AIS and RS2 trends is possibly caused by the difference in 
target vessels for each of these sensors. 

Figure 15. Spatial entropy in S-AIS data for the East coast and its 
sub-regions.
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Figure 16. Spatial entropy in S-AIS data for the West coast and its 
sub-regions.

In the previous section, it was noted that there was a noticeable increase in 
the DF for the East coast during summer months while the West coast
variability was much smaller. Figures 17 and 18 show the fractal dimension 
of RS2 detections for sub-regions and overall for both coasts. Again, the 
relationship between the sub-regions and the coasts overall seems to be non-
linear. The significant peaks in the sub-region 1 of the East coast (Figure 17, 
blue diamonds) might suggest that the main drivers for this area would be 
fishing and recreational shipping. In contrast, the trend in the sub-region 3 
(increase in summer) is probably related to the climatic effects (ice, 
hurricane season). 

Figure 17. Fractal dimension of RS2 data for the East coast and its 
sub-regions.

Figure 18. Fractal dimension of RS2 data for the West coast and its 
sub-regions.

For the West coast (Figure 18), there are no such pronounced variations for 
either of the two sub-regions.  For this coast, the overall trend seems to be 



16 

 

driven by the relative shifts in the shipping density between the inner and 
outer area.  
The analysis of the S-AIS data for the sub-regions confirms earlier 
observations. For the East coast (Figure 19) sub-region 3 has the most 
varied behaviour; the other sub-regions are flat, which is consistent with the 
overall behaviour. Interestingly, for the West coast outer region (sub-region 
1) there is a steady increase for the summer and fall likely corresponding to 
an overall increase in shipping traffic once the storm season in the North 
Pacific ends. On the other hand, the overall trend is almost entirely driven 
by the inner sub-region suggesting that the variability might be due to 
various fishing seasons along the coast. 

Figure 19. Fractal dimension of S-AIS data for the East coast and its 
sub-regions.

Figure 20. Fractal dimension of S-AIS data for the West coast and 
its sub-regions.

SUMMARY AND CONCLUSIONS

Spatial entropy and the fractal dimension were used to analyze spatial trends 
in maritime detection data obtained from RS2 and S-AIS. This work 
addressed implementation issues identified in earlier work and it also 
extended previous analysis by exploring trends for a set of sub-regions to 
better understand the driving factors behind the overall coastal trends. 
The following four general observations have been made; the first two 
concern the implementation of the measures, while the other two are about 
the trends and behaviours exhibited by the detections:

The size of the grid blocks employed to calculate both spatial entropy 
and the fractal dimension need to be related to the detection density;
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It is possible to employ an integer approximation of the latitude and 
longitude to reduce computational demand; doing so might under-
estimate the resulting values, but the trends will still be reliable; 
There is a non-linear relationship between the sub-regions and the 
coastal areas as a whole. This implies that multiple different 
subdivisions might be required in order to sufficiently capture system 
dynamics; and,
Due to the different nature of target vessels for RS2 and S-AIS, it may 
not be possible to relate the trends in the two types of detections.

The key focus of the analysis at this stage is the temporal (month-to-month) 
change in the patterns. These changes were quite consistent for varying grid 
size thus showing that they were not simply a relic of changing detection 
numbers. As a secondary benefit, it was demonstrated that using integer 
representation of the data, while giving different absolute value of spatial 
entropy and the fractal dimension, yielded temporal variation in the trends 
consistent with the more accurate method using latitude/longitude data 
directly. The advantage of the integer approximation was approximately 
20% more efficient computation; the latter was a significant consideration 
for AIS data due to their volume.
Overall, the current results appear promising; the next possible step in this 
research is to look at multi-year data, comparing trends for corresponding 
months, followed by the analysis of month-to-month variations across 
multiple years. Additional follow-up steps might include removing zeroth-
order pattern (e.g., main shipping routes) and analyzing properties of the 
background detection distribution. Possible future work could also include
more in-depth analysis of sub-regions. For instance smaller sub-regions 
could be used in different combinations. In addition, the ship detections 
could be categorized by vessel type or size (if the information is available). 
Lastly, the trends can be combined with detections from other sensors as 
well as with the contextual information from other sources (historical 
weather and ice patterns, merchant shipping trends and routes, fishing 
regulations, law enforcement, etc.).  
Additional value of the methodology, apart from the temporal analysis of 
global patterns as has been done in this paper, might be in the comparison of 
large subsets of the detections (e.g., detections corresponding to a particular 
vessel type) with each other and with the overall detection distribution; the 
methodology is likely to be of limited applicability to the assessment of 
individual detections. However, understanding of larger subsets from 
different sensors may for instance provide important indications with 
respect to whether particular unresolved detections from certain sensors are 
likely to be real or false positives (i.e., the sensors showing detections which 
do not correspond to real vessels). In addition, by combining these measures 
for multiple sensors with contextual information, it may be possible to 
develop maps of normal behaviour that will enable rapid estimate of 
potential aberrations. This will be a subject of further research.



18 

 

REFERENCES

Dobias, P., Horn, S., Liu, M.J., Eisler, C., Sprague, K.B. (2015). Use of 
fractal-based approaches in the assessment of the Canadian recognized 
maritime picture, in Proceedings from 32nd International Symposium 
on Military Operational Research, Royal Holloway, Egham, Surrey, 
United Kingdom.

(exactEarth, 2014) exactEarth (2014). “exactEarth receives $19.2M AIS 
data contract from the Government of Canada” (online), retrieved from 
http:// www.exactearth.com/media-centre/recent-news/216-canadian-
govt-pr-sept-2014 (Access Date: 26 May 2015).

Ilachinski, A. (2004). Artificial War: Multiagent-Based Simulation of 
Combat, Singapore: World Scientific.

Sarkar N., Chaudhuri, B.B. (1994). An efficient differential box-counting 
approach to compute fractal dimension of image, IEEE Transanctions 
on Systems, Man and Cybernetics, 24, pp 115-120.

Sprague, K.B., Dobias, P. (2008). Modeling the Complexity of Combat in 
the Context of C2, The International C2 Journal, 2(2).

(Vachon et al., 2014) Vachon, P.W., Kabatoff, C., Quinn, R. (2014). 
Operational ship detection in Canada using RADARSAT, Geoscience 
and Remote Sensing Symposium (IGARSS), IEEE International, IEEE.

(SOLAS) Safety of Life at Sea (SOLAS) Convention, Chapter V, 
Regulation 19.

 


