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Abstract—Wireless Radiation Sensor Networks (WRSNs) are
promising for military and security applications as they can
provide remote detection of sources of radiation with simple,
robust radiation detection technologies. This paper shows the
results of a combined simulation of wireless networking, and
radiation detection with directional gamma-ray detectors. The
specific WRSN scenario under study involves a source of ra-
diation being transported through a crossroads. Two different
isotopes (60Co and 137Cs) with various activities were simulated
to pass through the crossroads at four different speeds (from
walking speed to 144 km/hr). A number of different networking
and communication protocols were studied. The performance of
two algorithms to localize and quantify the radiation sources is
presented.

Index Terms—Wireless Radiation Sensor Network, Crossroads,
Source Localization, Maximum Likelihood Method, Point of
Closest Approach, Zigbee, wireless networking.

I. INTRODUCTION

THIS paper shows the results of a combined simulation of

radiation propagation, radiation detection, and wireless

network performance. The scenario under study involves a

source of radiation being transported through a crossroads,

as described in Figure 1. The WRSN is comprised of twelve

sensor nodes, one fusion node and a command centre.

Fig. 1. The crossroads scenario. The fusion node is a computing centre where
radiation data from sensor nodes are aggregated and analyzed. The results of
threat detection will be informed to first responders at command centre.

II. DIRECTIONAL RADIATION SENSORS

The directional radiation detectors used in this study are

the RadCompassTM detectors built by Bubble Technology

Industries [1] at Chalk River, Ontario. The detection units

inside RadCompass are four shielded Geiger-Muller (GM)
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tubes, as shown in Figure 2. The shielding is configured and

optimized for rapid source localization. The direction of a

source of radiation is determined by comparing the relative

count rates between tubes.

Fig. 2. The RadCompassTM directional radiation detector. An array of
shielded GM tubes is used to provide source bearing information.

The response of the detectors was simulated with a simple

model based on detailed, experimental measurements of the

performance of the RadCompass detectors with a variety of

radiological sources in a laboratory setting. The background

radiation response has been measured by exposing detectors to

different background environments, and has been characterized

with statistical models. The models are in turn used for

background simulation and detection threshold determination.
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Fig. 3. An example of background radiation measurement with RadCompass.
The measurement is fitted with a modified Poisson function which is used to
determine the background threshold for a desirable false alarm rate.

Figure 3 gives an example of the background radiation

measurement, modelling and threshold determination. In this

case, any RadCompass readings less than 7 count per second

(cps) are deemed as background. The probability of false alarm

is then estimated as low as a few times per month. The false
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alarm rate can be dramatically reduced by requiring two side-

by-side sensors to simultaneously have a measurement above

the threshold.

III. SOURCE LOCALIZATION ALGORITHMS

Two source localization algorithms have been developed and

implemented for use in this work. They are (A) a point-of-

closest-approach (PoCA) algorithm, and (B) a maximum log

likelihood algorithm (MLL). Both algorithms make use of the

TMinuit [2] package in ROOT to carry out the minimization

process.

A. The PoCA Method

PoCA is in essence a “Chi-square” method. It formulates a

χ2 based on the distance from a candidate source location to

each measured bearing. The χ2 is calculated and minimized

in TMinuit. The iterative process is terminated if a minimum

is reached: the candidate source location that minimizes the

χ2 is the PoCA estimate on the location.

Fig. 4. The PoCA method. At each iteration step i, the distances denoted as
d1, d2 and d3 are calculated from the candidate location (pi) to each bearing
vector.

The distance used in χ2 is calculated based on the ge-

ometrical relation between a point (the candidate location)

and a line (the source bearing measurement). As Figure 4

describes, at iteration step i, the distances d1, d2 and d3
are calculated for the proposed candidate location pi with

respect to each bearing measurement. Then, χ2 is calculated by

χ2 =
∑sensors

i=1
d2
i

σ2(di)
. Here the weight σ(di) is the statistical

uncertainty on the distance measurements.

B. The MLL Method

In contrast to PoCA, the MLL method builds a statistical

model to describe sensor responses to a source of radiation.

The model includes many aspects impacting radiation mea-

surements and relates the sensor measurements to the source

activity and location. The aspects included are the inverse

square law, air attenuation, sensor shielding effects, detection

efficiency and a deadtime correction.

For each measurement, the WRSN sensors provide the

numbers of counts which follow Poisson statistics. A joint

likelihood function is used to estimate the model parameters

of interest for a set of sensor counts. The likelihood function

is

L =
∏sensors

i=1
pois(cexpectedi ; cobservedi ), (1)

where cexpectedi is the number of count expected for sensor i,
and cobservedi is the actual count observed. The minimum of

−log(L) is determined to estimate the source localization.

C. Algorithm Verification

The algorithms have been validated with laboratory exper-

iments, and the results of one such experiments are given in

Figure 5. Here a 2x2 array of RadCompass sensors, spaced

1 meter apart, was setup in the laboratory to localize a 60Co

source (73.6 MBq). The source is placed at a few locations

near the system.
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Fig. 5. The top plot displays the distance measurements as time evolves. The
distance measurements at each location are fitted with a Gaussian function.
The fit results are consistent with the actual distances (0.5, 1.0 and 1.5 meters
respectively), as indicated in the bottom plot.

IV. WIRELESS NETWORK SIMULATIONS AND RESULTS

The WRSN simulation comprises two parts: the radiation

simulation, as described previously in Section II, and a net-

work simulation. The latter studies the network communi-

cation aspects by simulating various networking protocols

and communications stacks. It determines the latency and

probability of data reaching the fusion node.

A. Wireless Network Simulations

The network simulation estimates a number of key metrics

that are relevant to military and security applications: (1)

the time delay from sensors, (2) the transmission losses (e.g.



Fig. 6. Simulations of the WiFi and Zigbee communication stacks.

percentage of data packets not reaching the fusion node), and

(3) the energy consumption of each node.

The wireless networking was simulated using the QualNet

platform [3] from Scalable Network Technologies Inc. The

crossroads scenario was modelled, assuming 10 or 20 m

separation between adjacent sensor nodes (including the width

of the road). Two communication stacks, WiFi and Zigbee,

were simulated for WRSN networking. A number of transport,

networking (routing) and radio protocols (see Figure 6) were

simulated and their performance was studied and compared.

B. Network Simulation Results

Transmission delay: The average transmission delay from

sensor nodes to the fusion node varies with the protocol that

was employed. The shortest delays occurred with the UDP

transport protocol (ranging from 3 ms to 10 ms), while the

longest delays occurred with the TCP transport protocol (

from seconds up to 40 s). The longer delay with TCP is

expected because the mechanism to ensure reliable transport

in TCP introduces extra message transmission and overhead.

For this metric, UDP is clearly preferable for the crossroads

application.

Error rate: UDP has a lower error rate (transmission loss)

than TCP. UDP’s error rate is typically at a level of a few

percent for both stacks, while TCP has about 3 to 10 times

larger error rates, depending on the other protocols that are

used. For the crossroads scenario, the average error rate is

estimated to be about 9% if using Zigbee with UDP. A level

of error rate like this one is found to have minimal impact on

the final localization performance due to the redundancy of

the WRSN sensor nodes.

Energy consumption: The performance of Zigbee and

WiFi on energy consumption has been studied. Both stacks

were configured to transmit messages at the same rate over

the same range. The study shows that Zigbee consumes much

less energy than WiFi: approximately 30 times less over the

same simulation time period. The power efficiency of Zigbee

was achieved by reducing of the packet size and the CPU usage

(at idle/sleep states). Zigbee can wake up from the sleep mode

in less than 30 ms.

Summary: In general, a WRSN application like the cross-

roads scenario has a moderate tolerance of transmission loss,

but requires small latency for quick detection and fast re-

sponse. As a result, the UPD transport protocol is an adequate

solution. The power consumption of Zigbee is superior to other

choices (such as WiFi) as it supports a long term, unattended

WRSN deployment.

V. THE CROSSROADS SCENARIO

A variety of scenarios were simulated in this study. As listed

in Table I, two sources of radiation (60Co and 137Cs) with four

activities were simulated to pass through a crossroads at four

different speeds. The WRSN system was deployed with two

topologies to study the impact of sensor spacing.

Source type: 60Co, 137Cs
Activity (Ci): 0.1, 1.0, 10.0, 100.0
Moving speed: Human walking: 3.6 km/h

Low: 36.0 km/h
Medium: 72.0 km/h
High: 144.0 km/h

System topology: An array of 12 10m-spacing sensors
An array of 12 20m-spacing sensors

TABLE I
THE SIMULATED CROSSROADS SCENARIOS.

The radiation responses of detectors were simulated and

transmitted through a Zigbee network. The information that

reached the fusion node was then aggregated and analyzed

by the localization algorithms to estimate the position (and

activity) of the radioactive source.
The system coordinates for the crossroads scenario are

defined in Figure 1. In this study, a source of radiation is

assumed to approach the intersection from the negative-y side

and leave it at the positive-y side.

A. Detection and Measurement Thresholds
As previously described, a threshold on count rate (cps>7)

was determined and it is defined as the detection limit. In

addition, a tight threshold is used in order to obtain a relatively

precise estimation on source measurements. Measurements

with 60Co show that the bearing precision level of RadCom-

pass can reach about 1 Octant if its highest cps is equal

or greater than 20. This tight threshold (cps ≥ 20) is also

implemented and is defined as the measurement threshold in

this study.

B. Detection Limits
For each crossroads scenario, the sensor’s detection limit in

distance and time is studied. The distance is estimated to be the

farthest distance that a sensor can “see” (above the detection

threshold) a source. This metric is dependent on the sensor’s

sensitivity and the source under study. An equivalent repre-

sentation of the detection distance is the detection “warning”

time, that factors in the moving speed of the source.
Similarly, the sensor performance is also examined if the

measurement threshold is used. Two metrics in this case are

the trackable distance and time.

C. Localization Efficiency And Accuracy
The source localization results are quantified with two

metrics: localization efficiency and accuracy. The efficiency

is the success rate of a localization algorithm in finding

a convergent solution, while accuracy refers to the relative

deviation of the estimated source location with respect to the

true location.



VI. CROSSROADS RESULTS AND DISCUSSIONS

An example of the source localization is demonstrated in

Figure 7. In this scenario, a 60Co source was simulated passing

through a crossroads at a speed of 72.0 km/h. It shows that

the source is trackable if within a range of 150 meter from the

closest side of the WRSN perimeter. The location is measured

more precisely as the source gets closer to the detection system

because of increased statistics.
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Fig. 7. An example of the localization results as a 60Co source passes
through the detection system at a crossroads.

The localization results for 60Co sources varying in activity

are presented in Figure 8. The solid coloured histograms in the

top plot show the highest count rates of all WRSN sensors.

The four plots below it show the localization results as the

source activity increases from 0.1 to 100 Ci. As expected, both

the detectable and trackable distances increase as the activity

increases. The accuracy of the localization also improves as

the source is close to or inside the sensor array.
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Fig. 8. The sensor count rates and localization results for 60Co sources
at different strengths. The hatched region in the middle represents the
geographical coverage of the sensor array.

A. Detection Limit Results

Figure 9 shows the detection distance results for various
60Co sources passing through a crossroads at four speeds. As

expected, the detection distance (and the trackable distance)

tends to follow the inverse square law.
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Fig. 9. The detection (cps>7) and measurement (cps≥20) distances for
various 60Co sources at four speeds.

The impact of the speed on detection limits is found to be

significant when a small source is moving fast. In this case,

the source-second (the distance that a source moves in one

second) can be used to quantify the relation between speed and

detection distance. Taking the 0.1 Ci source as an example,

the detection distance is about 20∼30 m at 3.60 km/h. The

comparable source-second to this distance requires the source

is moving at a speed of 20∼30 m/s (72∼108 km/h). At or

above this speed range, the results given in Figure 9 show

that the detection either suffers a large uncertainty or ends up

with no detection at all.
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Fig. 10. The detection and measurement times for various 60Co sources at
four speeds.

The “warning” time is another measure to characterize and

evaluate a WRSN system, especially for moving sources.

For the same scenarios discussed above, Figure 10 shows

the detection time results. Note the detection time here is

estimated at the full range of source propagation, while the

detection distance shown in Figure 9 considers only the source



approaching side of crossroads (excluding the sensor coverage

area and the departure side). The detection time result provides

in-depth information on sensor limit because it additionally

explores the speed effect for moving sources.

B. Results On Localization Efficiency And Accuracy

The robustness of the localization algorithms is investigated

by studying their efficiency and accuracy. The MLL efficiency

results are given in Figure 11 for various 60Co sources passing

through a crossroads with a 10 meter spacing WRSN deploy-

ment. The low efficiency for 0.1 Ci sources is mainly due

to the speed effect, while the other stronger sources are less

affected so as to have a higher efficiency overall. In addition,

the estimation on these results is subject to the limited counting

statistics.
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Fig. 11. The localization efficiency with MLL for various 60Co sources as
passing through a crossroads with a 10m-spacing WRSN deployment.

The PoCA is expected to produce different results from

MLL in terms of localization error. However, the TMinuit

algorithm that PoCA uses for minimization is the same as

what MLL uses; as such, the success rate (i.e. the detection

efficiency) for both algorithms tends to be very similar.
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Fig. 12. The localization accuracy with MLL for various 60Co sources
passing through a crossroads with a 10m-spacing WRSN deployment.

The localization accuracy was estimated relatively to the

true location. It averages all measurements over the detection

ranges for each crossroads scenario. The MLL results show

≤10% error on source location for most scenarios, as shown

in Figure 12. However, it occasionally performs poorly for fast

moving small sources. An example of such case is the result

of 0.1 Ci source moving at 72.0 km/h. A close look at the

results at a second basis can be found in Figure 8. Note the

accuracy estimated in this report is a relative value so that it

can become large as the true y-position is around zero.
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Fig. 13. The localization accuracy with PoCA for various 60Co sources
passing through a crossroads with a 10m-spacing WRSN deployment.

By contrast, PoCA performs poorly on accuracy estimation

overall. Figure 13 shows its performance for the same scenar-

ios considered in the MLL cases. The accuracy can only reach

a level of ∼50% for most cases.

A further comparison between MLL and PoCA is made by

studying the details of a specific crossroads scenario. The top

plot in Figure 14 demonstrates a good linearity of MLL local-

ization, over the full detection/measurement range, between

the true y-position and the measured position. A fit on the

distribution produces a slope of 1.072, suggesting an overall

robust localization performance. The bottom plot displays the

fractional difference between the true and measured locations.
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Fig. 14. Detailed MLL localization results for a 60Co scenario.

The PoCA results for the same scenario are shown in

Figure 15. The localization range seen in the top plot is smaller

than the one with MLL, implying a constrained ability to



localize sources faraway at an acceptable level of accuracy (i.e.

less than 50%). As the bottom plot suggests, the localization

accuracy using PoCA degrades quickly as distance increases;

the algorithm tends to fail to find a solution if the source is

beyond a certain range.
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Fig. 15. Detailed PoCA localization results for a 60Co scenario.

C. Other Results

All scenarios have been repeated with 137Cs sources. The

detection limit on distance and time is much shorter compared

to the same scenario with a 60Co source. The lower sensor

count rates for 137Cs due to γ-ray absorption in air is the main

reason for this. With regard to the localization performance, no

noticeable difference is found between the two source types.

Additionally, all scenarios have been repeated for the other

WRSN topology (20m sensor spacing). First, the advantage

with a larger spacing is expected and found to increase the

detection distance and to help measure fast moving sources.

However, the trade-off is the decreased weak source detec-

tion capability. Secondly, a large separation between sensors

improves the localization performance for both algorithms,

especially for the PoCA method, for relatively strong sources.

VII. SUMMARY AND FUTURE WORK

This paper studies the performance of a WRSN system

at crossroads for detecting and localizing moving radiation

sources. Various COTS networking technologies are inves-

tigated, and their performance is studied and compared. It

appears that a Zigbee LAN technology with a UDP transport

protocol meets the need of a typical WRSN application.

Zigbee with UDP features low energy consumption while

achieving an acceptable transmission loss with a short time

delay.

A variety of crossroads scenarios were simulated and ana-

lyzed. The detection limits are affected largely for fast moving

small sources. The spacing between sensors can be adjusted to

improve the WRSN performance. Regarding the localization

results, MLL produces more robust results than PoCA overall.

The localization accuracy improves as the source strength

increases.

The technologies and techniques explored, and the results

discussed in this study are generic and useful for other WRSN

applications. All results suggest that WRSN could be very

effective for defence and security applications.
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