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Abstract: In this study, the spatial distribution of false alarms is assumed to be a non-homogeneous Poisson point (NHPP)
process. Then, a new method is developed under the kernel density estimation (KDE) framework to estimate the spatial
intensity of false alarms for the multitarget tracking problem. In the proposed method, the false alarm spatial intensity
estimation problem is decomposed into two subproblems: (i) estimating the number of false alarms in one scan and
(ii) estimating the variation of the intensity function value in the measurement space. Under the NHPP assumption, the only
parameter that needs to be estimated for the first subproblem is the mean of false alarm number, and the empirical mean is
used here as the maximum likelihood estimate of that parameter. Then, for the second subproblem, an online multivariate
local adaptive Gaussian kernel density estimator is proposed. Furthermore, the proposed estimation method is seamlessly
integrated with widely used multitarget trackers, like the joint integrated probabilistic data association algorithm and the
multiple hypotheses tracking algorithm. Simulation results show that the proposed KDE-based method can provide a better
estimate of the false alarm spatial intensity and help the multitarget trackers yield superior performance in scenarios with
spatially non-homogeneous false alarms.

1 Introduction

In many multitarget tracking systems, the false alarms (i.e.
clutter points) reported by the sensor are non-uniformly
distributed in the measurement space with an unknown
distribution. On the other hand, many multitarget tracking
systems require the spatial distribution of false alarms for
the purpose of measurement-to-track association, track state
update and new track initialisation. Usually, the false alarms
are modelled by a non-homogeneous Poisson point process
(NHPP) in the measurement space [1] and to fully describe
the distribution of an NHPP process, only the
corresponding spatial intensity function is needed [2]. Thus,
multitarget tracking systems need the spatial intensity
function of false alarms as a priori information. In addition,
because the measurements originating from targets and the
false alarms are mixed together and indistinguishable before
being processed by the multitarget tracking algorithm [3, 4],
the output of the multitarget tracker should be used when
the spatial intensity of false alarms is estimated.
Furthermore, it would be desirable to integrate the clutter
estimation method into existing multitarget trackers, so that
current multitarget tracking systems can continue to be used.
In general, there are two different types of methods that are

capable of estimating the spatial intensity of false alarms. In
the first type, it is assumed that the spatial distribution of
false alarms is uniform inside track’s validation gate. Then
the measurements inside the validation gates, along with the
estimates of target states, are sent to the spatial intensity

estimator. In [1], the multitarget trackers use the sample
spatial intensity obtained from the set of measurement points
inside the validation gate as the spatial intensity of false
alarms. However, the method in [1] heavily depends on the
validation gate size, and in many multitarget trackers, the
validation gate is generated solely based on the innovation
matrix and the gate probability threshold [1], so it is quite
possible that the validation gate is not suitable for the spatial
intensity estimation problem. Furthermore, this estimation
method is biased, because it does not distinguish target
originated measurements from false alarms. In [5], ‘track
perceivability’, the target existence probability conditional on
all previous measurements [6], was used to yield the unbiased
estimate of the spatial intensity of clutter by probabilistically
excluding the measurements originated from targets in the
latest measurement set. It should be noted that these methods
are only able to estimate the spatial intensity of false alarms
for detections inside track validation gates. However, because
there are detections that do not fall in any track’s validation
gate, the values for the spatial intensity of false alarms
outside validation gates are also required, especially for the
cost calculation of newly initialised tracks [7].
The second type of clutter estimation methods tries to

estimate the clutter spatial intensity for any detection point
inside the measurement space. One widely used method is
the classic clutter map method [8]. This method needs the
operator to manually divide the measurement space into
bins and assumes that the clutter intensity is constant inside
each bin. Then, for bin i in the clutter map, the clutter

www.ietdl.org

IET Radar Sonar Navig., 2015, Vol. 9, Iss. 1, pp. 1–9
doi: 10.1049/iet-rsn.2014.0037

1
& The Institution of Engineering and Technology 2015



spatial intensity is calculated as

l̂ (z) = number of false alarms in bin i so far

Ai × number of measurement frames
(1)

where Ai is the size of bin i. The classic clutter map is
mathematically similar to a multivariate histogram method,
and according to [9], the histogram is not suitable for data
points with two or more dimensions.
Another method that is widely used to estimate the spatial

intensity of false alarms over the measurement space is the
clutter spatial intensity estimator using the nearest neighbour
detection point [8, 10, 11]. The nearest neighbour-based
estimator also needs the operator to manually partition the
measurement space into bins and the clutter spatial
distribution in each bin is assumed to be Poisson. Then, for
bin i, its spatial intensity of false alarms is set as the inverse
of a mathematical distance metric from bin i to the nearest
detection in the current frame of measurements. After using
the latest frame of measurements to estimate the spatial
intensity of false alarms, a time-averaging operation will be
taken to smooth the estimate over time. The mathematical
distance metric used here is usually different from the
Euclidean distance. The former is the volume of a
well-defined shape, which centres around the corresponding
bin and touches the selected detection point. From a
probability density function estimation perspective, the
nearest-neighbour intensity estimator presented in [8, 10, 11]
belongs to category of the K-nearest neighbour density
estimator [9]. It should be noted that the K-nearest neighbour
density estimator relies on the assumption that the data points
in and around bin i are homogeneously and isotropically
distributed, otherwise the inverse of the mathematical
distance between bin i and the nearest detection point will
not be equal to the spatial intensity anymore [12]. In
addition, for widely used non-linear-sensors like Doppler
radar and two-dimensional (2D) radar, it is unclear what
shape should be used to calculate the mathematical distance
in their measurement space. Furthermore, the output of this
clutter intensity estimator has a discontinuous ‘block’ nature,
just like the multivariate histogram.
In [13], an approximate Bayesian estimation method,

which also tries to provide the estimate of false alarm
spatial intensity over the whole measurement space, is
proposed to handle the non-homogeneous clutter
background using the random finite set (RFS) theory. In
that paper, besides the set of measurement points, Z = {z1,
…, zm}, and the set of targets, X = {x1, …, xn}, the set of
clutter generators, C = {c1, …, cl}, is defined in a space C,
just like in [14, 15]. Here C = {c1, …, cl} is assumed to
produce the non-homogeneous false alarms and C is
separate from X and Z, which represents the space of target
state and the space of measurement, respectively. In
addition, by assuming that the clutter generator ci produces
at most one clutter point z(C)i and C is an NHPP process,
the estimation of false alarm spatial intensity is transformed
into an estimation problem for the spatial intensity of clutter
generator, and a probability hypothesis density (PHD) filter
[16] is derived for clutter generator. To derive a
closed-form expression to iteratively update the PHD
function of clutter generator, it is further assumed in [13] that:

† The measurement model connecting ci and z(C)i has a
likelihood function in the form of a Gaussian function, whose
mean and variance are both unknown and need to be estimated.

† For RFS C, its PHD function can be expressed as a mixture
of the normal-Wishart probability density function.

In [17], also based on the assumption that one clutter
generator produces at most one clutter point, a PHD update
equation, which is similar to the one presented in [13], is
proposed for the clutter generator, but with a simpler
derivation. In [18], an extension of the method presented in
[13] is proposed, so it can be used with the classic
multitarget trackers [3, 4].
In this paper, a multivariate Gaussian kernel density

estimator (KDE), which is capable of handling the
measurement origin ambiguity, is proposed to obtain the
spatial intensity of false alarms. The proposed KDE is able
to estimate the spatial intensity of false alarms for the
whole measurement space. The proposed method is locally
adaptive, which means that the bandwidth matrix can vary
from one kernel to another, and the weights of kernels can
be automatically adjusted according to the Bayesian
principal. In addition, it is capable of working online and
the total number of the kernel components will not increase
without a bound. Furthermore, the bandwidth matrix is
automatically determined by the proposed estimator from
the data set, and that matrix is not constrained to be
diagonal. In addition, to accelerate the optimisation of the
bandwidth matrix, an expression for the gradient of the cost
function, which is used in the cross-validation (CV)
technique [19], with respect to the bandwidth matrix is
derived, and that expression does not contain any matrix
inversion operation.
Compared with the methods that only use the

measurements inside the validation gates, the proposed
method can provide the clutter spatial intensity estimate for
any point in the measurement space. Compared with the
classic clutter map method or the nearest neighbour
method, the proposed method does not require the
measurement space to be manually divided into sectors, and
the output of the proposed method is guaranteed to be
continuous and does not have the discontinuous ‘block’
nature. In addition, unlike the nearest neighbour method,
the proposed method does not rely on the calculation of the
mathematical distance, and can be used for non-linear
sensors, like 2D radar and Doppler radar. Compared with
the clutter generator method in [13, 18], the proposed
method does not rely on the assumed clutter generator and
no assumption is made related to the dynamic evolution of
the clutter generator. In addition, the proposed method does
not rely on the amplitude information of clutter, so it can be
used to handle the clutter with Gaussian distributed
amplitude as well as the clutter with non-Gaussian
distributed amplitude.
Preliminary results were presented in a conference paper

[20], whereas the current paper provides more technical
details and simulation results. The remaining part of this
paper is organised as follows. A general background on the
multivariate KDE is given in Section 2. In Section 3, a
multivariate KDE is presented to estimate the spatial
intensity of false alarms for the multitarget tracking
problem. The results of simulation experiments are shown
in Section 4. Finally, Section 5 concludes this paper.

2 Background on kernel density estimator

In this section, a general introduction to the multivariate KDE
is given.
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For a d-dimensional random sample set x1, x2, …, xn that
are drawn from a probability density function f (x), the KDE
for f (x) is defined as

f̂H (x) =
∑n
i=1

wiKH (x− xi) (2)

where K(x) is the multivariate kernel, H is the bandwidth
matrix, KH(x) = |H|−1/2K(H−1/2x), 0 <wi < 1 and

∑
i wi = 1.

The multivariate kernel K(x) is a spherically symmetric
probability density function that has the following
properties [9] ∫

K(x) dx = 1 (3)

∫
xK(x) dx = 0 (4)

∫
xxTK(x) dx = 0 (5)

and H is a symmetric and positive-definite matrix [21]. A
good property for f̂ H (x) defined in (2) is that all the
continuity and differentiability properties of the kernel
function K will be inherited. Thus, if K is, for example, the
normal density function, then f̂ H (x) will be a smooth curve
having derivative of all orders. On the contrary, for the
histograms or the nearest neighbour density estimator,
usually their estimated probability density function f (·) is
not smooth.
The performance of the multivariate KDE defined in (2)

strongly depends on the choice of the bandwidth matrix H,
whereas the exact type of the kernel function K(·) is much
less important [9]. For example, in a univariate case, where
the kernel function can be written as K[(x–y)/h] and the true
probability density function is f (x), the expectation and the
variance of the probability density function estimate from n
samples is [9]

Ef̂ h(x) =
∫
1

h
K

x− y

h

( )
f (y) dy (6)

Var f̂h(x) =
∑n
i=1

w2
i

( ) ∫
1

h2
K2 x− y

h

( )
f (y) dy

{

− 1

h

∫
K

x− y

h

( )
f (y) dy

[ ]2} (7)

Based on (6), the expectation of f̂ is equal to the convolution
of f with the kernel K, scaled by the bandwidth h, that is, a
smoothed version of f. Furthermore, the expectation of f̂
deterministically depends on the choice the bandwidth, but
not directly related to the sample size. This characteristic is
common for almost all density estimation methods, that is,
the estimate is always of the form

estimate = smoothed version of the true density

+ random estimation error
(8)

and the first term in the above is directly related to parameters
used in the kernel density estimation method, but not the
sample size. In other words, the bias in f̂ does not directly
depend on the sample size, and increasing the size of the
sample set alone does not guarantee an unbiased estimate

[9]. For a univariate KDE, to obtain an asymptotically
consistent estimate f̂ at a single point x, the kernel function
K should have the following characteristics:

† The kernel function K is a bounded Borel function
satisfying

∫
|K(x)| dx , 1,

∫
K(x) dx = 1 (9)

and

|xK(x)| � 0 as |x| � 1 (10)

† hn is the bandwidth used in the KDE when the sample size
is n, satisfies

hn � 0 and nhn � 1 as n � 1 (11)

Under above assumptions, provided that the true probability
density function f is continuous at x, there is

f̂ (x) � f (x) in probability as n � 1 (12)

In other words, to obtain an asymptotically unbiased estimate,
the bandwidth for the kernel must approach 0 as n→∞, but
with a speed slower than n−1 [9]. For a d-dimensional
multivariate KDE, the same principle can be applied. For
example, under the constraint that the bandwidth matrix is
diagonal, the optimal bandwidth along each coordinate
directions should decrease as O[n−1/(4 + d)] and the
converging speed for the estimate f̂ is O[n−4/(4 + d)] if the
optimal bandwidth matrix is used [19].

3 Estimating clutter spatial intensity with a
kernel density estimator

In this section, a multivariate kernel density estimation
algorithm is proposed to estimate the spatial intensity of
false alarms. To use the KDE, the original false alarm
spatial intensity estimation problem is decomposed into two
sub-problems: (i) estimating the probability distribution of
the number of false alarms and (ii) estimating the spatial
variation of clutter intensity. In addition, because a
measurement can be generated by a target or a clutter, the
output of the multitarget tracker is integrated into the
proposed clutter spatial intensity estimator. Furthermore,
because the sensor continuously provides measurements, a
modification is made to the KDE to handle the
continuously arriving measurements and to find the optimal
bandwidth matrix numerically.

3.1 Decompose the problem of intensity
estimation

In this paper, the false alarms are assumed to be an NHPP, and
the problem to estimate spatial intensity of false alarms is
decomposed into two independent sub-problems:

(1) Estimating the probability mass function for the number of
false alarms per scan.
(2) Estimating the non-homogeneity of the spatial distribution
of false alarms.
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Since the false alarms are assumed to be an NHPP, the
number of false alarms in each scan is mutually
independent and follows the same Poisson distribution [1].
Thus, for the first problem listed in the above, only l, the
mean of the number of false alarms per scan, has to be
estimated. Assuming that there are n scans, the maximum
likelihood estimator for l is [2]

l̂MLE =
∑n

i=1 ki
n

(13)

where ki represents the number of false alarms in scan i.
For the non-homogeneity of the spatial distribution of false

alarms, from the definition of the intensity function of point
process, one has [2]

l =
∫
S
c(z) dz (14)

where S represents the measurement space, c(z) is the clutter
spatial intensity function and l is the mean number of false
alarms per scan, then the normalised clutter spatial intensity
function can be defined as

f (z) = 1

l
c(z) (15)

To obtain the spatial variation of the clutter intensity, all we
need to know is f (z). In addition, f (z) can be considered as
a probability density function because

∫
S
f (z) dz = 1, f (z) ≥ 0 (16)

Thus, the estimation of the variation of the clutter spatial
intensity becomes a probability density estimation problem.
That is, given the measurement sets Z i =
z(i)1 , . . . , z(i)ni

{ }
, (i = 1, 2, . . . , n), a probability density

function f̂ (z) has to be estimated such that it can best fit the
given measurement sets. Once f̂ (z) and l̂ are obtained, the
estimate for the clutter spatial intensity function can be
calculated as

ĉ(z) = l̂ f̂ (z) (17)

3.2 Solve measurement origin ambiguity and
integrate with JIPDA/MHT tracker

The main difference between the clutter spatial intensity
estimator considered in this paper and the classic
probability density estimator is that for the former, some
samples are generated by targets and they should not be
used in the clutter spatial intensity estimator, whereas in the
latter all measurements are drawn from the unknown
probability density. Furthermore, in the clutter spatial
intensity estimation problem, given a set of measurement
{zi}, i = 1, 2, …, N, it is usually impossible to tell whether
zi is a clutter or a target-originated measurement with 100%
confidence, even after the multitarget tracking process.
Thus, to avoid overestimating the clutter spatial intensity,
the output of the multitarget tracker has to be used as an
input to the clutter intensity estimator, and the measurement
origin ambiguity has to be solved statistically.
To solve the measurement origin ambiguity, many widely

used classic multitarget tracking algorithms (e.g. multiple

hypotheses tracking (MHT) algorithm and joint integrated
probabilistic data association (JIPDA) algorithm) enumerate
the association events, and inside each association event, a
one-to-one assignment between the measurement and the
track is made. The probability for each association event
being true is updated recursively by the multitarget tracker.
To solve the measurement origin ambiguity, the proposed
clutter spatial intensity estimator uses the association event
and its corresponding probability calculated by the
multitarget tracker, because given the association event χi,
the source of the measurement is totally determined. In
other words, the association event answers the question that
whether the measurement zk is a clutter or generated by a
target with a certain probability. For the measurement set

Z (k) = z(k)1 , . . . , z(k)nk

{ }
at time k, the association event χi

defines a set Z (k)
i,C # Z (k), where all measurements in Z (k)

i,C

are clutter. Thus, Z (k)
i,C can be used as the input to the

multivariate KDE to estimate the normalised clutter
intensity conditional on the association event χi. Given
Z (k)
i,C , the output of the KDE is c(i)(z), the estimate of the

normalised spatial intensity function conditional on the
association event χi.
Furthermore, it should be noted that the following

relationship between the conditional expectation and the
unconditional expectation always holds

E[Z] = E[E[Z|X ]] (18)

and the clutter intensity c(z) is defined as the average number
of false detections falling in an infinitesimal area centred at z.
Thus, one has

c(z) =
∑n
i=1

P(xi)c
(i)(z) (19)

where P(χi) is the probability of the association event χi,
which is calculated by the classic multitarget tracker [3, 4].
The integrated procedure of clutter estimation and

Fig. 1 Integrated tracking and clutter estimation for JIPDA and
MHT trackers

www.ietdl.org

4
& The Institution of Engineering and Technology 2015

IET Radar Sonar Navig., 2015, Vol. 9, Iss. 1, pp. 1–9
doi: 10.1049/iet-rsn.2014.0037



multitarget tracking is demonstrated by the flowchart in
Fig. 1. Note that, in this method, the total number of
measurement-to-clutter events will increase exponentially
with the cardinality of the measurement set Zk. Thus,
enumerating all measurement-to-clutter events for Zk is
usually infeasible. However, by using each measurement’s
posterior target originated probability, Murty’s K-best
algorithm [22] is able to find the most probable K
measurement-to-clutter events.

3.3 Choose bandwidth for kernel density estimator

For the multivariate KDE, the most important design
parameter is the bandwidth matrix H and it should be
chosen optimally under some criteria. One commonly used
criterion to determine an optimal H is the mean integrated
squared error (MISE) defined as

MISE{f̂ H (z)} = Ef

∫
f̂H (z)− f (z)
( )2

dz

[ ]
(20)

which can be decomposed into the integrated squared bias
and the integrated point-wise variance

MISE{f̂H (z)} =
∫

Ef f̂H (z)
[ ]− f (z)

{ }2
dz +

∫
Varf f̂H (z)

[ ]
dz

(21)

The optimal bandwidth matrix is the one that can minimise
MISE and can be chosen through CV technique [9, 21].
In the CV approach, instead of using (20) directly, the

following score function is minimised with respect to H

M0(H ) =
∫
f̂H (z)

2 dz − 2n−1
∑n
i=1

f̂ (−i)
H (zi) (22)

where f̂ (−i)
H (·) is defined as the estimated density function

from all available n data points except zi

f̂ (−i)
H (z) = 1

1− wi

∑n
j=1, j=i

wjKH (z − zj) (23)

The reason behind using M0(H) is that the expectation of
M0(H) is equal to MISE minus a constant term. If the
minimiser of M0 is not far away from the minimiser of
E(M0), then minimising M0 should give a bandwidth matrix
close to the optimal one [9]. Further define K∗

H as the
convolution of the kernel KH with itself, then (22) becomes

M0(H ) =
∑n
i=1

∑n
j=1

wiwjK
∗
H (zi − zj)

{ }

− 2n−1
∑n
i=1

1

1− wi

∑n
j=1, j=i

wjKH (zi − zj)

{ } (24)

When KH is a Gaussian kernel with zero mean and covariance
matrix H, (24) can be calculated quite easily, because in this
case K∗

H is also a Gaussian kernel with zero mean and
covariance matrix 2H. To find the optimal H, a numerical
minimisation algorithm has to be used on M0(H) with an
over-smoothed bandwidth matrix as the starting initial [23].

To achieve a reliable performance, usually the numerical
optimisation algorithm requires the gradient of the objective
function. In addition, to make the numerical optimisation
procedure stable, the matrix inverse operation should be
avoided. For Gaussian kernel, defining the precision matrix
S as the inverse of H, then because there is a one-to-one
correspondence between S and H, minimising M0(S) over S
is equivalent to minimising M0(H) over H. With S, the
Gaussian kernel locating at zj becomes

KS(z) = (2p)−m/2|S|1/2 exp − 1

2
nTSn

{ }

= (2p)−m/2|S|1/2 exp − 1

2
tr nnT

( )
S

[ ]{ } (25)

where tr(·) means the matrix trace, ν = z− zj and the
dimension of z is m. In the above equation, there is no
matrix inverse anymore.
However, as the inverse of covariance matrix H, matrix S

also needs to be symmetric. Thus, general matrix derivative
rules do not apply to S because of its special structure [24].
To relax the symmetric constraint, in the proposed method,
defining S = ΞTΞ and optimise CV score function with
respect to Ξ under the constraint that Ξ is invertible [i.e.
≤det(Ξ)2 > 0] [21]. In addition, in this paper, by using the
following facts [24, 25]

ddet(JT
J)

dJ
= 2[det(J)]2((J)−1)T

dtr[(xxT)JT
J]

dJ
= 2J(xxT)

(26)

an expression for the gradient of the score function with
respect to Ξ is derived as

∇JM0(J) =
∑n
i=1

∑n
j=1

wiwj(4p)
−m/2 exp − tr[Si,jJ

T
J]

4

{ }

× det(J)[J−1]T − 1

2
det(J)JS

{ }

−
∑n
i=1

1

1− wi

∑n
j=1, j=i

wj exp − tr[Si, jJ
T
J]

2

{ }

× 2

n
(2p)−m/2{det(J)[J−1]T − det(J)JS}

(27)

where Σi, j = (zi− zj)(zi− zj)
T.

One weakness of (27) is that the inverse of Ξ is used and
this matrix inversion process may bring instability into the
numerical optimisation procedure. However, from Cramer’s
rule, det(Ξ)[Ξ−1]T is equal to [adj(Ξ)]T, the transpose of the
adjugate matrix of Ξ, and to obtain adj[Ξ], only the matrix
determinant operation is needed. Thus, in the following
implementation, instead of calculating det(Ξ)[Ξ−1]T, the
adjugate matrix [adj(Ξ)]T is used.
Furthermore, besides requiring H to be invertible, it is

usually required that the det(H) to be larger than a
threshold min|H| to avoid introducing spurious features.
Thus, in our implementation, the following constraint is
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also imposed in the bandwidth matrix optimisation procedure

(detJ)2 ,
1

min|H |
(28)

It should be noted that, for many types of sensors, the
measurements are not spread equally along all coordinates
in the measurement space. For example, for a 2D radar, it is
quite common that the maximum detection range can be
hundreds of kilometres, whereas the coverage in the
azimuth is only from 0 to 90°. Therefore, before optimising
the bandwidth matrix, the measurements must be pre-scaled
[26], otherwise the numerical optimisation technique will
fail. For a d-dimensional random vector X = [X1, …, Xd]

T,
after the pre-scaling pre-process, the pre-scaled version of X
becomes X* = [X1/σ1, …, Xd/σd], where σi is the standard
deviation of random variable Xi. By pre-scaling, the data
are transformed so that they have unit variance in each
coordinate direction.

3.4 Choose weight for each kernel component

In the classic KDE method, the kernel components are usually
assigned with equal weights, that is, wi = 1/n in (2), where n is
the total number of sampling points [9]. However, in our
proposed KDE method, the kernel components need to have
unequal weights, because multiple association events are
used to solve the measurement origin ambiguity. Note that,
for two different association events χi and χj, it is quite
likely that:

† The number of false alarms in χi is different from that
number in χj.
† The measurement point z, which is deemed as a clutter in
χi, is deemed as being generated by targets in χj.

In the following, the classic KDE method is modified, so
depending on the association events and their probability,
the weight of each kernel component can be unequal.
Assuming that given the association event χi, the false

alarms in the kth scan’s measurement sets Z (k) = {z1, …, zN}

are Z (k)
i,C = zkxi, 1, . . . , zkxi,Ni

{ }
, then the estimate for the

clutter spatial intensity conditional on χi will have the
following form

f̂ (z) =
∑Ni

j=1

1

Ni
KH (z − zxi, j) (29)

Thus, given a single association event, the weights of kernels
are equally assigned, just as in the classical KDE method.
Equation (29) can be rewritten as

f̂ (z) =
∑N
j=1

1

Ni
Ixi (zj)KH (z − zj) (30)

where Ixi (zj) is an indication function such that

Ixi (zj) =
1, if zj [ Z (k)

i,C
0, otherwise

{
(31)

In other words, conditional on χi, the weight for any kernel
will be 1/Ni, if its corresponding measurement is deemed to
be a clutter or 0 if its measurement is deemed to be
generated by a target. Taking the expectation over all

association events, the weight for the kernel component
centred at measurement zm will become

wm =
∑PiIxi (zm)

Ni
(32)

where Pi is the probability of association event χi, Ni is the
number of false alarms in association event χi and the
summation is taken over all association events.

3.5 Processing continuously arriving
measurements

The multivariate KDE defined by (2) employs the full data
set. On the other hand, in the multitarget tracking problem,
the sensor continuously provides measurements to the
tracker. Thus, if (2) is used in the kernel clutter spatial
intensity estimator without a proper modification, the total
number of the kernel components will linearly increase
without bound over time. In addition, in most scenarios, the
temporal variation of the clutter spatial distribution is much
slower than the update rate of the sensor. Thus, it is usually
unnecessary to update the kernel components or recalculate
the optimal bandwidth matrix at every scan.
To avoid continuously increasing the number of kernel

components and to decrease the computational requirement,
in our proposed method, the kernel components and the
corresponding optimal bandwidth matrix are only updated
every K scans, using the measurements and the
corresponding association events accumulated in the latest
K scans. In addition, to update the bandwidth matrix more
efficiently, the old kernel mixture function, which was
calculated using the measurements sets in the last 2K to K
+ 1 scans, is used to help the bandwidth optimisation
procedure, based a method modified from the adaptive
KDE [9].
Assuming that at the current time, it is K scans after the last

update of the kernel components and bandwidth matrix, and
the Gaussian kernel mixture function, which is calculated
based on the measurements in the last 2K to K + 1 scans, is

ĉ−2K:−(K+1) (z) =
∑N−2K:−(K+1)

i=1

w(−2K:−(K+1))
i N (z; mi, H i) (33)

To use the information contained in the kernel mixture
function ĉ−2K:−(K+1) (z) to accelerate the bandwidth matrix
optimisation, the following procedure is adopted in the
proposed kernel clutter spatial intensity estimator:

(1) Assuming that in the last K scans, the sensor sent a
sequence of measurement sets Z (−K:−1) = {Z (−K), …, Z (−1)}
to the multitarget tracker and the kernel clutter spatial
intensity estimator. Define aj as the jth measurement point
in set Z (−K:−1). Calculate the pilot normalised clutter spatial
intensity estimation at aj as ĉ−2K:−(K+1) (aj).
(2) For aj, define its local bandwidth factor as

hj = ĉk−1 (aj)/g
{ }−a

(34)

in which g is the geometric mean of the pilot normalised
clutter spatial intensity estimation of all elements in
Z (−K:−1) and α is the sensitivity parameter, a number
between 0 and 2. Following the suggestion given in [9], α
is set as 1 in the proposed method.
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(3) Set the functional form for the kernel mixture function,
which will be calculated using measurements sets Z (−K:−1), as

ĉ−K:−1 (z) =
∑N−K:−1

j=1

w(−K:−1)
j N (z; aj, hjH) (35)

where H is the optimal bandwidth matrix that will be
determined by the CV technique presented in Section 2 and
wj is calculated using the method presented in Section 3.4.

The above steps guarantee that: (i) the mixture function
ĉ−K:−1 (z) is a continuous probability density function and
(ii) each kernel has a different bandwidth matrix.
Furthermore, the above procedure matches the common
sense that in the low-intensity area, a kernel with a larger
bandwidth matrix will be used to cover that area [9].
A numerical method, which is almost the same as the one

presented in Section 3.3, can be used to find the optimal
bandwidth matrix Ξ. The only difference is that, after
considering ηj, the equation for the jth kernel becomes

K (j)(zi) = (2p)−m/2det h−1/2
j J

( )
exp − h−1

j tr[Si, jJ
T
J]

2

{ }

(36)

The gradient of the above equation with respect to Ξ is

dK (j)(zi)

dJ
= (2phj)

−m/2 exp − h−1
j tr[Si, jJ

T
J]

2

{ }

× [adj(J)]T − h−1
j det(J)JSi, j

{ } (37)

4 Simulations

To demonstrate the performance of the proposed method, the
spatial intensity estimation method presented in Section 3 is
integrated with the JIPDA tracker [3], and then tested on a
simulated scenario. In the simulation, whose setting is similar
to the one used in the first experiment in [18], a linear 2D
position-only sensor is deployed with 100 Monte Carlo trials.
Here, besides the method proposed in this paper, two other
methods are implemented for comparison. One of them is the
clutter spatial intensity estimator using the nearest neighbour
distance, which was identified in [8] as the best one among
the three estimators presented there. The other one is the
spatial intensity estimator proposed in [18].
In this simulation, there are four targets in a 2D region of

interest (RoI) covering [0 m, 1000 m] × [0 m, 1000 m]. All
targets follow the nearly constant velocity model with white
Gaussian process noise. The target velocity process noise
variance is 0.001 m2/s2 along each coordinate. All four
targets become detectable at time k = 31 s and stay inside

the RoI during the rest of the Monte Carlo trial. The states
of each target at k = 31 s are shown in Table 1.
A stationary linear position-only sensor, which stays at

[0 m, 0 m], is used in this simulation. The measurement
noise, which is white and independently-and-identically
distributed, follows a Gaussian distribution with zero mean
and standard deviation σω = 1 m along each coordinate. The
probability of detection, pD = 0.95, for all targets. One
Monte Carlo trial has 70 scans of measurements reported
by the sensor and the sensor reports every 1 s. Two dense
clutter areas exist in the measurement space and both areas
have a rectangular shape. On average, each of them have
eight false alarms per scan. In addition, there are two false
alarms in each scan outside the dense clutter areas. For each
rectangular area with dense false alarms, Table 2 gives the
X–Y coordinates of its four vertices. The trajectories of all
four targets and all detections reported by the sensor in the
first Monte Carlo trial are given in Fig. 2.
To give a better comparison, there are five combinations

of spatial intensity estimators and the JIPDA multitarget
tracking algorithm in this subsection. For all combinations,
the parameters for the scenario and the JIPDA tracker
are the same. The values for the variance of the process
noise, the measurement noise and the detection probability
match those used in the simulation generation. A new track
is initialised using the two-point initialisation method [1]
with the maximum speed of 25 m/s. The track existence
probability for each newly initialised track is set to 0.1. The
initial track will become confirmed when its existence
probability value grows to ≥0.98. The track will be ceased
once the value of its existence probability becomes smaller

Table 1 Target initial position and velocity in the first
simulation

Positions, m Velocities, m/s

target 1 (700, 200) (2, 12)
target 2 (790, 500) (−1.5, 0)
target 3 (465, 780) (−0.75, −10)
target 4 (420, 500) (1.5, 0)

Table 2 x–y Coordinates of dense clutter area vertices in the
first simulation

Dense clutter area 1, m Dense clutter area 2, m

[440, 300] [740, 300]
[440, 700] [740, 700]
[460, 700] [760, 700]
[460, 300] [760, 300]

Fig. 2 Target trajectories and all measurements in the first trial
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than 0.04. To update the probability of track existence,
Markov chain I model [3] is used with P(dead|exist) = 0.02
and P(exist|dead) = 0.
In the first and the second combinations, the JIPDA

multitarget tracker uses the clutter spatial intensity value
reported by the nearest neighbour-based estimator [8]. In
the first combination, the RoI is divided into a 10 × 10 grid
and all cells have the equal size for the purpose of the
clutter estimation, whereas in the second combination, the
RoI is divided into a 50 × 50 grid. For both spatial intensity
estimators, the mathematical distance metric is calculated
based on the square shape and an auto regressive filter
based on the following equation [8], is used to obtain the
time-smoothed estimates of spatial intensity

Nk(c) = akNk−1(c)+ (1− ak )mk(c)

ak =
k − 1

k
, k ≤ ML; ak =

ML − 1

ML
, k . ML

(38)

In (37), μk(c) is the reciprocal of the estimate of the clutter
spatial intensity in cell c using the latest measurement set at
time k, whereas Nk(c) is the time-smoothed version of μk(c)
and ML = 15 is the smoothing time length.
The third combination uses the estimator proposed in [18],

which relies on the recursive update of the clutter generator
PHD function, to obtain the spatial intensity of false alarms.
The parameters used here are the same as those used in the
first simulation in [18].
In the fourth combination, the KDE-based estimation

algorithm proposed here is used. The kernel mixture
function and the bandwidth matrix are updated every 15
scans. At the 15th scan, that is, the first time of the kernel
mixture function update and bandwidth matrix optimisation,
the initial bandwidth matrix Ξ0 is set as

J0J0 = [4/(2d + 1)]−2/(d+4)S (39)

where S is the empirical precision matrix obtained from the
measurement set accumulated in the first 15 scans and d is
equal to 2, that is, the dimension of the measurement space.
In the following updates, the initial matrix in bandwidth
matrix optimisation is equal to the optimal bandwidth
matrix obtained in the previous update. From the simulation
experiment, it can be observed that, for a background with

slowly varying clutter spatial intensity, using the previous
optimal bandwidth matrix as the initial start in the
bandwidth matrix optimisation procedure can greatly reduce
the time for optimisation.
To provide a base line, the true spatial intensity of false

alarms is given to the tracker in the last combination.
The definitions of a validate track and a false track follow

those given in [27] and the association gate, which is
necessary for excluding the ground truth to the track, is 35 m.
Figs. 3 and 4 show the Monte Carlo mean number of valid

confirmed tracks and the Monte Carlo mean number of false
confirmed tracks, respectively. Fig. 3 indicates that the
proposed KDE method has significantly reduced the number
of confirmed false tracks such that the performance of the
JIPDA tracker is comparable with the situation where the
true clutter spatial intensity is known exactly. In addition,
from Fig. 4, it can be observed that the proposed estimator
has faster true track initiation compared with the nearest
neighbour-based estimator and the clutter generator-based
estimator. In other words, without specifically tuning any
setting in the JIPDA multitarget tracker, the proposed KDE
clutter spatial intensity estimator is able to obtain faster track
initiation speed and lower false track rate at the same time,
compared with the nearest neighbour estimator [8] and the
clutter generator estimator [18].

Fig. 3 Monte Carlo mean of confirmed false tracks

Fig. 4 Monte Carlo mean of confirmed valid tracks

Fig. 5 Monte Carlo average RMSE for Target 1
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Fig. 5 shows the Monte Carlo mean of the root mean
squared error (RMSE) for the position estimates of target
1. The RMSE results match the statement presented in [28],
which said that the RMSE improvement because of clutter
estimation is usually insignificant (all clutter spatial
intensity estimators yielded nearly the same RMSE in [28]).
The same RMSE trend was observed for target 2 to target 4.
Table 3 gives the Monte Carlo mean of the computational

time for a single trial in this simulation. All estimators and the
JIPDA trackers are coded in MATLAB® 7.12 and tested on a
computer with an Intel® Core™2 Duo E6550 central
processing unit (CPU) and 2 GB of random access memory.
The CPU usage by MATLAB® is around 50% during the
execution. From Table 3, it can be observed that the
proposed method needs a longer computational time
compared with the other methods. However, it should be
noted that, in many mission critical scenarios, like the
ballistic missile defence, torpedo defence and
anti-submarine warfare, the computational power is not a
bottleneck, but it is more important to achieve faster track
initialisation and lower false track rate.

5 Conclusions

In this paper, a KDE based method is proposed to estimate the
spatial intensity of false alarms for multitarget tracking
systems. In this estimator, the clutter spatial intensity estimation
problem is first decomposed into two separate subproblems:

† Estimating the probability mass function of the false
detection number per scan.
† Estimating the non-homogeneity of the spatial distribution
of false alarms.

Then, based on the NHPP assumption, a multivariate
kernel intensity estimator was proposed to estimate the
spatial intensity of false alarms. In the proposed estimator,
the output of the multitarget tracker is used to solve the
measurement origin ambiguity. The proposed KDE is
locally adaptive, which means that the bandwidth matrix
can vary from one kernel to another, and the weights of
kernels can be automatically adjusted according to the
Bayesian principal. In addition, it is capable of working
online and the total number of the kernel components will
not increase without a bound. Furthermore, the bandwidth
matrix is automatically determined by the proposed
estimator from the data set, and that matrix is not
constrained to be diagonal. In addition, to accelerate the
optimisation of the bandwidth matrix, an expression for the
gradient of the cost function with respect to the bandwidth
matrix is derived, and that expression does not contain any
matrix inversion operation. Simulations have shown that the
proposed KDE-based algorithm is able to make the JIPDA
tracker perform better over non-homogeneous clutter
background, when compared with classic approach, the

nearest neighbour approach and the clutter generator
approach for clutter estimation.
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3 Musǐcki, D., Evans, R.: ‘Joint integrated probabilistic data association:
JIPDA’, IEEE Trans. Aerosp. Electron. Syst., 2004, 43, (3),
pp. 1093–1099

4 Reid, D.B.: ‘An algorithm for tracking multiple targets’, IEEE Trans.
Autom. Control, 1979, 24, (6), pp. 843–854

5 Li, X.R., Li, N.: ‘Integrated real-time estimation of clutter density for
tracking’, IEEE Trans. Signal Process., 2000, 48, (10), pp. 2797–2805

6 Li, N., Li, X.R.: ‘Target perceivability and its applications’, IEEE Trans.
Signal Process., 2001, 49, (11), pp. 2588–2604

7 Bar-Shalom, Y., Blackman, S.S., Fitzgerald, R.J.: ‘Dimensionless score
function for multiple hypothesis tracking’, IEEE Trans. Aerosp.
Electron. Syst., 2007, 43, (1), pp. 392–400
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