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Abstract

In this paper a Boundary Integral Equation Method (BIEM) is described

for the computation of scattering from a finite, rigid, cylinder near a pressure-

release interface. The cylinder lies parallel or tilted with respect to the interface

plane so that the azimuthal symmetry of the problem is destroyed. The scatter-

ing solution is first described in terms of an azimuthally-symmetric free space

solution. The multiple interactions of the scattered field with the interface are

accounted for by an azimuthal-conversion matrix. In the numerical examples,

the method of this paper is benchmarked using wavefield superposition for a

sphere near a pressure-release surface. Computed scattered spectra are shown

for a finite cylinder, parallel and tilted with respect to the interface, and for

a variety of source/receiver geometries. The differences resulting from not in-

cluding multiple target/interface interactions (single scatter solution) and from

including all interactions are presented. The problem of irregular frequencies

for the single-scatter and the fully coupled BIEM are discussed and numerically

examined.

PACS numbers: 43.20.Fn, 43.30.Gv
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I. INTRODUCTION

The numerical solution of scattering from objects near or on an interface has been

described1−6 by previous authors. In Refs. 4 and 5, the scattering was solved using

a finite-element code. For some geometries, such as a sphere or a vertically-oriented

cylinder near an interface, the scattering problem can be solved as a sequence of az-

imuthal problems (i.e., the Fourier components are uncoupled). For a cylinder lying

parallel or tilted with respect to the interface, the azimuthal symmetry is broken and

one utilizes either a single-scattering solution or a full three-dimensional solution5.

The single-scattering solution is an approximate solution where the effects of the

interface are accounted for with respect to the incident field and also in the propa-

gation of the field, computed on the surface of the cylinder, to a receiver(s). For the

single-scatter approach the solution upon the target’s surface can still be computed

with an uncoupled azimuthal expansion method. The accuracy of the single scatter

solution has been explored by various authors2,6 and although, it is often a very good

approximation, it is also inaccurate for certain scenarios. This paper will consider

the accuracy of the single-scatter approximation for different monostatic scattering

angles and different orientations of a rigid target near a pressure-release surface. A

flat-ended cylinder, tilted or parallel to the interface, serves as an interesting test

case for the single-scatter approximation. The scattering will consist of both spec-

ular and diffraction returns. As well, for a tilted cylinder, there can be significant

target/interface interactions for certain geometries.

The solution method, Boundary Integral Equation Method (BIEM), using Fourier

expansions is first described for the free space problem7,8. Next, a finite, rigid cylinder

below a pressure release surface is considered. In this case, the concept of an image

cylinder is introduced and a conversion matrix, describing the conversion of the so-

lution upon this image cylinder into a field re-incident upon the physical cylinder is
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derived. This conversion matrix can be ignored in the BIEM system of equations

(leading to the single-scatter solution), can be included iteratively, or a fully-coupled

system of equations (all orders of interactions) can be solved. For the cylinder ly-

ing parallel to the interface, a computationally efficient method for computing the

conversion matrix is derived. For a cylinder tilted with respect to the interface, the

conversion matrix is somewhat more difficult to compute.

In the Numerical Examples section, the case of a sphere lying below a reflecting

interface is first considered as a benchmark case. With respect to the vertical axis, the

problem is azimuthally symmetric and we solve it with a virtual source method9−11

using the appropriate half-space Green’s function. However, we also consider the

Fourier expansion about the horizontal axis and use the cylindrical BIEM with a

conversion matrix. Next, using the BIEM technique, a finite cylinder lying parallel

to the interface is considered. The spectra for the scattered fields are computed

for 3 monstatic angles using the single-scatter and full-interaction solutions, and the

differences are discussed. The irregular frequencies7,8,12 of the single-scatter and full

multiple-scatter solutions are investigated. Finally, a cylinder tilted at -45◦ with

respect to the horizontal is considered. Once again, the single- and full-scattering

solutions are computed for 3 monstatic angles and the spectra and corresponding

time series computations discussed.

II. THEORY

A. A cylindrical target in free space

The BIEM for a cylinder in free space is first described. First, the problem is con-

sidered at a fixed angular frequency ω and we write the three-dimensional Helmholtz

Equation, for a rigid scatterer, as

p(r, z, θ) = pinc −
∫
S′

∫ 2π

0

∂G(r, z, θ; r′, z′, θ′)
∂n′ pdθ′dS ′. (1)
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Figure 1: Schematic drawing of a 1.5m long cylinder with radius 0.5. A generic

receiver position is shown at (r, θ, z = 0). A point on the surface at (r′ = 0.5, θ′, z′ = 0)

is also shown.

Here we are taking the normal vector to point out of the cylinder into the surrounding

fluid. The coordinates r, r′ are the radial coordinates with respect to the cylinder axis

and z, z′ are the coordinates along the axis of the cylinder. The normal vector will

have components in the r′ and z′ directions of the cylinder. A schematic of a three-

dimensional cylinder and its notation is shown in Fig. 1.

The three-dimensional Green’s function G is given by

G(r, z, θ; r′, z′, θ′) = −exp(iω/c|�R− �R ′|)
4π|�R− �R ′| (2)
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where c is the speed of sound in the surrounding fluid and �R denotes the three-

dimensional position vector. Let us expand the unknown pressure filed on the surface

of the target, p(r, z, θ), as

p(r, z, θ) =
M∑

m=−M

pm(r, z) exp(imθ) (3)

where the infinite Fourier sum has been truncated.

We write the distance term in the Green’s function of Eq.(2) as

|�R− �R ′| =
√
r2 + (r′)2 − 2rr′cos(θ − θ′) + (z − z′)2. (4)

Substituting the Fourier expansion for p, Eq.(3) into Eq.(1) , the expression

p(r, z, θ) = pinc +
∫
S′

∫ 2π

0

∂

∂n′
exp(iω/c

√
r2 + (r′)2 − 2rr′cos(θ − θ′) + (z − z′)2)

4π
√
r2 + (r′)2 − 2rr′cos(θ − θ′) + (z − z′)2

×
M∑

m=−M

pm(r
′, z′) exp(imθ′)dθ′r′(S ′)dS ′ (5)

is obtained. The (r′, z′) perimeter of the cylinder is denoted by S ′. Performing the

azimuthal integral and using the substitution that ψ ≡ (θ − θ′) one obtains

p(r, z, θ) = pinc +
M∑

m=−M

exp(imθ)
∫
S′
gm(r, z; r

′, z′)pm(r′, z′)r′(S ′)dS ′ (6)

where

gm(r, z; r
′, z′) =

∫ 2π

0

∂

∂n′
exp(iω/c

√
r2 + (r′)2 − 2rr′cos(ψ) + (z − z′)2)

4π
√
r2 + (r′)2 − 2rr′cos(ψ) + (z − z′)2

exp(−imψ)dψ.

(7)

Multiplying Eq.(6) by exp(−im1θ)/(2π) and integrating with respect to θ over the

interval [0 2π], we obtain from the orthogonality of exp(−im1θ)

pm1(r, z) = pincm1
(r, z) +

∫
S′
gm1(r, z; r

′(S ′), z′(S ′))pm1(r
′(S ′), z′(S ′))r′(S ′)dS ′, (8)
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where

pincm1
(r, z) =

1

2π

∫ 2π

0
exp(−im1θ)p

inc(r, z, θ)dθ. (9)

(it should be noted that, in fact, we will compute both g−m1 and gm1 in Eq.(7) using

a cosine transform over [0, π]). Thus, for each angular order m1 we have a system of

equations to solve,

(I/2−Rm1)�pm1 = �p inc
m1

(10)

where Rm1�pm1 represents a discrete-matrix version of

∫
S′
gm1(r, z; r

′(S ′), z′(S ′))pm1(r
′(S ′), z′(S ′))r′(S ′)dS ′. (11)

The matrix I in Eq.(10) is the identity matrix and the factor 1/2 is a result of the

standard limit for the Helmholtz equation as the observation point approaches the

surface.

In order to discretize the integral of Eq.(11) we discretize the contour S′ into

discrete panels. We consider pm1 to be constant over a panel and represent the value

at the midpoint of the panel. Similarly we use the midpoint value of r′. For gm1

we will consider the midpanel values of (r, z) and (r′, z′) except for cases where gm1

exhibits singular behaviour and we will perform an analytic integration over the panel.

From Eq.(7) , there is a singular behaviour to gm as (r′, z′) → (r, z). Let us rewrite

Eq.(7) as

gm(r, z; r
′, z′) =

∫ 2π

0

∂

∂n′

{exp(iω/c√r2 + (r′)2 − 2rr′cos(ψ) + (z − z′)2)

4π
√
r2 + (r′)2 − 2rr′cos(ψ) + (z − z′)2

exp(imψ)

− 1

4π
√
r2 + (r′)2 − 2rr′cos(ψ) + (z − z′)2

}
dψ +

GS(r, z; r
′, z′)

4π
(12)

where

GS(r, z, ; r
′, z′) ≡

∫ 2π

0

∂

∂n′
1√

r2 + (r′)2 − 2rr′cos(ψ) + (z − z′)2

}
dψ. (13)
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The integral of Eq.(13) can be expressed analytically11. In particular, following

the notation of Ref. 11,

GS(r, z, ; r
′, z′) = 2nr′

{R2
e[E(κ)−K(κ)(1− κ2)]− 2r′(r′ + r)E(κ)}

r′R3
e(1− κ2)

− nz′
4(z′ − z)E(κ)

R3
e(1− κ2)

(14)

where nr′ and nz′ are the 2 normal components along the cylinder profile and K and

E are the complete elliptic integrals of the first and second kinds respectively. The

terms Re and κ are defined by

κ2 =
4r′r
R2

e

, R2
e = (r + r′)2 + (z − z′)2. (15)

The first term in Eq.(14) is singular as r → r′ , z → z′, and κ→ 1. However, this

term can be analytically integrated over the panel where κ = 1 by using an expansion

of K(κ) in the neighbourhood of κ = 1.

In the case of a flat-ended cylinder, there is another source of singular-like terms

which occur in the matrix kernel for points near the edges of the flat endcaps. Con-

sider, for example, the second term in Eq.(14) for (r′, z′) on the flat endcap and

(r, z) along the length of the cylinder. On the endcap nz′ = 1, but since z is along

the length of the cylinder, z′ − z = Δz is non-zero with the denominator approach-

ing zero as (r′, z′) → (r, z). For these cases, (we will consider the discrete value of

r′ = rj) one can subtract a term with the correct singular behaviour and add back in

a corresponding analytical integral,

∫ rj+δr/2
rj−δr/2

nz′
4(z′ − z)E(κ)

R3
e(1− κ2)

dr′

=
∫ rj+δr/2

rj−δr/2
nz′(

4(z′ − z)E(κ)

R3
e(1− κ2)

− 4(z′ − z)

Re,j((r − r′)2 + (z − z′)2)
)dr′

+ 4nz′sgn(z
′ − z)(Atan(

r − rj + δr/2

|z − z′| )− Atan(
r − rj − δr/2

|z − z′| )) (16)
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Similarly, the nr′ term in Eq.(14) gives rise to an almost singular term when (r′, z′)

is on the length of the cylinder and (r, z) is on an endcap. In order to deal with

these behaviours near the endcaps, simple expressions which capture the singular

behaviours are subtracted from all the terms of Eq.(14) and then analytical integrals

of these terms are added back in.

The BIEM approach of this paper suffers from the problem of irregular frequencies7,8,12;

that is, specific frequencies where the BIEM system of equations does not have an

unique solution. In the free space case, these frequencies correspond to the inte-

gral equation (the continuous version of Eq.(10)) having a zero eigenvalue. This, in

turn, corresponds to a zero eigenvalue for the Dirichlet problem (i.e. p = 0 on the

boundaries)12 for the interior of the target. For the flat-ended cylinder, these irreg-

ular frequencies can be analytically predicted. The interior Dirichlet problem, for

azimuthal order m, is solved by eigenfunctions of the form

Ψ(r, z) = sin(nπ/Lz)Jm((
√
ω2/c2 − (nπ/L)2)r). (17)

Denoting the radius of the cylinder as r0, then for a given azimuthal order, the

irregular frequencies are given by

fn,q =
c

2π

√
(
nπ

L
)2 + (

τq
r0
)2. n = 1, ...,∞, q = 1, ...∞ (18)

(see, also, Ref. 12) where τq is a zero of Jm(u). In this paper, we will add Nsh extra

interior points at which to evaluate the Helmholtz equation. As these field points are

in the interior of the cylindrical object, the interior Helmholtz equation applies. For

example, for the set of interior points at (rq, zq), the interior equation is:

pincm (rq, zq) = −
N∑
j=1

Rm(rq, zq; rj, zj)p(j) (19)

where Rm is the discrete kernel at angular order m. In our implementation, the Nsh

points are displaced along radials connecting the interior origin of the cylinder to its
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(r′, z′) perimeter. The distance to be displaced along the radials is an user input.

For each radial, this distance is varied by a small random amount. For each angular

order, m, we will have a (N+Nsh)×N system of equations to solve in a least-squares

sense. As was shown in Ref.12, the resulting system of equations now has an unique

solution.

B. A cylinder below an interface

The previous derivation of the BIEM considered an axi-symmetric target in free

space. In the case that the target is below a pressure-release interface, the appropriate

three-dimensional Green’s function is

G(R;R′) = −exp(iω/c|�R− �R ′|)
4π|�R− �R ′| +

exp(iω/c|�R− �̃R ′|)
4π|�R− �̃R ′|

(20)

where �̃R ′ denotes the position vector of the image point of �R′.

This expression can be used in Eq.(1) . Once again, the unknown pressure field on

the surface of the cylindrical object can be expanded in a Fourier series with unknown

coefficients. However, in general, the sets of equations for the various azimuthal orders

are coupled, unlike the free space case where the integral equations for the different

azimuthal orders were uncoupled. The one exception occurs when the cylinder is

oriented vertically so that the vertical axis is the axis of symmetry for the scattering

problem. In this case, the systems of equations for the various azimuthal orders

remain uncoupled.

Instead of using the full three-dimensional Green’s function of Eq.(20) in Eq.(1)

to account for the presence of the interface, let us consider an iterative solution to

the problem using the free-space Green’s function. The zero’th order solution �s0 will

be determined by considering the incident field from a point source and its negative

image with respect to the upper interface. However, the solution on the surface of

the cylinder will be computed by using only the free-space Green’s function in the
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integral equation. The azimuthally uncoupled approach can be used in this case.

This solution can then be propagated back to a receiver using the half-space Green’s

function. Thus, the upper interface is accounted for with respect to the incident

and scattered fields, but not in the solution of the integral equation itself. This

corresponds to the single-scattering solution as discussed by various authors2,6.

In reality, the field scattered from the target reflects from the upper interface and

is reincident upon the target. This rescattering process will be characterized by an

azimuthal conversion matrix Cnm(�Ri, �Rj). This matrix expresses the nth azimuthal

coefficient of the pressure field reincident upon the cylinder at a discrete point �Ri due

to a solution coefficient of unity for the mth azimuthal order at the discrete point

�Rj. Considering all the possible azimuthal orders (positive and negative as well)

and all the discretization points of the cylinder, there is a global conversion matrix

C of dimension (2M+1)(N+Nsh)× (2M+1)N where M is the number of azimuthal

orders, N is the number of discretization points and Nsh is the number of added

interior points for Schenke’s method. Let us denote the zero-th order solution upon

the target as �s0. Then the series or iterative solutions can be formally expressed as

�s = �s0 + (G0)
−1C�s0 + (G0)

−1C(G0)
−1C�s0 + ...((G0)

−1C)N�s0 + ...

= (I − (G0)
−1C)−1�s0 = (G0 − C)−1G0�s0 = (G0 − C)−1pinc. (21)

The concept of irregular frequencies, and their relationship to the eigenvalues of

the interior Dirichlet problem was discussed for the case of a target in free space. In

the case of a target below an interface, the irregular frequencies for the exact BIEM

formulation are the same as for the free space case. In order to prove this, the theorems

of Ref. 12 (text and appendix) are followed. However, instead of considering the free

space Green’s function (or its normal derivative) as the kernel in these theorems, one

can use the half-space Green’s function (with the target considered in the half-space

domain) without changing the approach of Ref.12.
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C. Computation of the conversion matrix C

We now consider the computation of the conversion matrix C, either to use in

the iterative approach or in the exact matrix (G0 −C) of Eq.(21) . Given a pressure

distribution upon the object, what is the resulting field reincident upon the object

due to the scattered field? We found it helpful in our derivation to replace the original

half-space problem with the equivalent infinite space problem, where there is negative

image source reflected above the interface and also a reflected image of the target

shape. In the following, we refer to the target in the water as the real cylinder and

the reflected target as the image cylinder. There is a local (r, z, θ) coordinate system

for each of the cylinders where θ on the image cylinder has the same orientation as

on the real cylinder. These coordinate systems are illustrated in Fig. 2. Due to the

mirror-symmetry of the problem, if the pressure field on the real cylinder is denoted

as pR, then the pressure field pI on the image cylinder is given by

pI(r
′
i, z

′
i, θ

′
i) = −pR(r′i, z′i, π − θ′i) (22)

where for pR the coordinates on the real cylinder are the mirror-image coordinates of

those on the image cylinder. In terms of the Fourier coefficients cm of the pressure

field on the real cylinder,

pI(rp, zp) =
M∑

m=−M

−c−m(rp, zp) exp(imθi)exp(imπ). (23)

Now, let us consider the field incident upon the real cylinder due to a pressure

field of the form of Eq.(23) on the image cylinder. The three-dimensional free-space

Green’s function is used to propagate the field from the image cylinder back to the

real cylinder,

pR = p(ri, zi, θi) = −
∫
S′

∫ 2π

0

∂G(ri, zi, θi; r
′
i, z

′
i, θ

′
i)

∂n′ pIdθ
′
idS

′
i (24)

where all the coordinates refer to the coordinate system of the image cylinder. For

the representation of the Green’s function, the following Fourier-Bessel expansion is
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Figure 2: Schematic drawings of geometry and notation for (upper) tilted cylinder

with a source and the mirror image. The tilted cylinder has a centre offset H. (lower)

The angular coordinate system is shown on the endcaps of a cylinder lying parallel to

the interface. A receiver point P is indicated with the angles θr and θi the azimuthal

angles measured from the lower and image cylinders, respectively.
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used,

G(ri, zi, θi; r
′
i, z

′
i, θ

′
i) =

1

2π

M∑
m=−M

(∫ ∞

−∞
exp(ikz(zi − z′i))Jm(γr

′
i)Hm(γri)/(4i)dkz

)
exp(im(θi−θ′i)).
(25)

(this form can be simply derived by taking the azimuthal and z-Fourier transforms

first and then constructing the radial Green’s function for azimuthal order m). For

the case of a finite cylinder with constant radius r0, then the normal derivative of

the Green’s function corresponds to either the r′i derivative along the length of the

cylinder and the z′i derivative at the end caps. Utilizing Eqs.(23)-(25), and perfoming

the azimuthal integration in Eq.(24), the resulting expression for the field reincident

upon the real cylinder due to the solution coefficient cm is

pm(ri, zi, θi) = −
(∫ L

−L
cm(r

′
i = r0, z

′
i)

(∫ ∞

−∞
exp(ikz(zi − z′i))

d

dr′
J−m(γr

′
i)

× H−m(γri)dkz
)
r0dz

′)× exp(−imθi) exp(−imπ)/(4i)
+ endcap contributions (26)

In the following, we will concentrate upon the expressions for the reincident field due

to the pressure field along the length of the image cylinder. The expressions for the

endcap contributions are similar, but involve the z-derivative of the Green’s function.

For example, the expression for the contribution from the endcap (Z = L) with the

normal in the positive z direction is given by

pm,ec = −
∫ r0

0
cm(r

′ = r0, z
′)
(∫ ∞

−∞
−ikz exp(ikz(zi − L))J−m(γr

′
i)H−m(γri)dkz

)
ridr

′
i

× exp(−imθi) exp(−imπ)/(4i). (27)

In order to utilize Eqs.(26) and (27) for real cylinder coordinates, they will need

to be converted into the image cylinder coordinates. One of the discretization points
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(rq, zq) along the real cylinder is considered. For the value of rq, the Cartesian values

as a function of an angular variable are considered

xq(θ) = rq cos θ, yq(θ) = rq sin θ (28)

The Cartesian points (xq(θ), yq(θ), zq) are then converted into the coordinate system

of the image cylinder to yield the new coordinates zi(zq, xq(θ)), ri(zq, xq(θ), yq(θ)),

θi(zq, xq(θ), yq(θ)). We now consider a discrete version of Eq.(26) for one of the the

BIEM discretization points, z′i = zp, r
′
i = rp. The conversion matrix for the (n,m)

element is computed by projecting exp(−inθ) upon the expressions from Eqs.(26)

and (27) ,

Cnm(rq, zq; rp, zp) = − 1

2π

∫ 2π

0

∫ ∞

−∞
exp(−inθ) exp(−imθi(zq, xq(θ), yq(θ))) (29)

× exp(ikz(zi(zq, xq(θ))− zp))
d

dr
J−m(γrp)H−m(γri(zq, xq(θ), yq(θ))) exp(imπ)

r0Δp

4i
dθdkz.

where Δp is the discrete length of the pth BIEM panel. In this equation the term

cm(r
′
i = r0, z

′
i) of Eq.(26) is replaced by the value unity as we are considering the

conversion matrix.

The azimuthal integral of Eq.(29) is performed by utilizing a numerical discretiza-

tion. The expression of Eq.(29) is for (rp, zp) on the length of the cylinder. There is a

simlar expression for (rp, zp) on the endcaps. Numerically, all the (p, q) sets of points

are considered one-by-one and the coefficients for all values of the input and output

azimuthal orders (n,m) computed. The expression of Eq.(29) is not always valid as

it is assumed in the derivation that ri >= rp. For example, if the cylinder is oriented

vertically there are values of ri on the endcaps and values of rp on the image cylinder

such that ri < rp and this representation breaks down. There are, however, alternate

valid representations which can be used in this case.
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In the case that the real cylinder is lying parallel to the interface, the mathematics

can be simplified using the addition theorem13 for cylindrical Bessel Functions. In

particular, in Eq.(26), the term

H−m(γri) exp(−imθi) = exp(−imπ)
∞∑

n=−∞
Jn(γr)Hn+m(γD) exp(inθ) exp(inπ) (30)

where r, θ refer to coordinates measured from the axis of the real cylinder and D is

twice the distance from the interface (H in Fig. 2).

In this case, one obtains

Cnm(rq, zq; rp, zp) = − exp(inπ)/(4i)rpΔp

×
∫ ∞

−∞
exp(ikz(zq − zp))

d

dr
Jm(γrp)Jn(γrq)Hn−m(γD)dkz (31)

This result is for (rp, zp) along the length of the cylinder. The result for a discrete

panel in one of the endcaps is similar,

Cnm(rq, zq; rp, zp) = − exp(inπ)/(4i)rpΔp (32)

×
∫ ∞

−∞
−ikzαz exp(ikz(zq − zp))Jm(γrp)Jn(γrq)Hn−m(γD)dkz

where αz = 1 for the upper endcap and αz = −1 for the lower endcap. These integrals

would appear to involve a fair amount of computation. However, the computations

can be made very vectorizable. The kz integral is truncated and discretized for a set

of (kz,j, j = 1, ..., Nz). A NI ×Nz matrix is computed for NI the number of discrete

panels for the BIEM. A matrix can be defined for the points along the image cylinder,

CS(p, kz,j) = − exp(inπ)cm(rp, zp)ΔpΔkz,j

× rpfp(γjrp) exp(−ikz,jzp)Hn−m(γjD)
dJm(γjrp)

dr
(33)

and a matrix for points along the real cylinder,

CR(q, kz,j) = exp(ikz,jzq)Jn(γjrp)/(4i). (34)
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Here kz,j is a discrete value of kz, Δkz,j is the corresponding differential (computa-

tionally, we will add a small imaginary component to kz and thus the differential is

complex and in our implementation varies with respect to the real value of kz). Then

Eq.(32) can be written compactly as

Cnm(rq, zq; rp, zp) = CR(q, kz,j)C
T
S (p, kz,j) (35)

It can be seen that for different azimuthal orders (n,m), CR(n) and CS(m) are not cou-

pled with respect to the azimuthal orders with the exception of the term Hn−m(γjD).

III. NUMERICAL EXAMPLES

As a benchmark case, a rigid sphere beneath the interface is considered. In this

case, the most straightforward approach to solving the problem is to consider the axis

of symmetry as being the vertical axis. Even with the upper interface, the problem

is still axi-symmetric and one can use a de-coupled Fourier approach. There are a

variety of approaches for solving this problem. In this paper, we use the method of

virtual sources or wavefield superposition9−11. A set of 301 point sources of the form

S1(r, z, θ : r
′, z′, θ′) = − 1

4π
(
exp(ikR1)

R1

− exp(ikR2)

R2

) (36)

is used, where

R1 =
√
r2 + (r′)2 − 2rr′ cosψ + (z − z′)2)

R2 =
√
r2 + (r′)2 − 2rr′ cosψ + (z + z′)2) (37)

and ψ = θ − θ′. The second term in Eq.(37) accounts for the upper interface. The

coordinates for a set of point sources (r′, z′) are displaced radially inwards from the

surface of the sphere by δ1 = 0.007 m. The point sources for the mth azimuthal order

are computed from the three-dimensional point sources,

sm,1 =
∫ π

0
S1(r, z; r

′, z′;ψ) cosmψdψ (38)
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As with the standard BIEM, the method of wavefield superposition suffers from ir-

regular frequencies10. As a remedy to this, we consider another set of point sources,

sm,2 displaced inwards from the sphere’s surface by δ2 = 0.0072 m. Then we consider

the composite Green’s functions of the form

sm = (1 + 1000i/k)sm,1 + (1− 1000i/k)sm,2. (39)

This form of Green’s function has both monopole and dipole contributions. For

each angular order m we solve a system of equations of the form,

∂sm(ri, zi, r
′
j, z

′
j)

∂n
�am =

∂pincm (ri, zi)

∂n
, i = 1, ..., N, j = 1, ..., N (40)

where �am is the vector of unknown coefficients and N = 301 in our case. Once these

coefficients have been determined, then the pressure field at a receiver location can

be constructed by a Fourier superposition of the fields computed at the receiver for

each azimuthal order.

In the first example, a rigid sphere of radius 0.4 m is located 1 m below the

upper scattering surface. We use both the superposition and the cylindrical BIEM

(but for a sphere) methods to compute the scattered pressure field as a function of

frequency for source/receiver pairs located at a range of 10m from the sphere centre

(below the sphere) and at angles of 0,30, and 60 degrees off the vertical axis (axis is

oriented downwards). We will compute the full-scattering solutions. For the virtual

source technique we used 301 sources at all frequencies - the number of azimuthal

orders was computed from the formula Nθ = round(1.5ω × 0.4/1500. + 6). For the

cylindrical BIEM approach, we used 201 discretization points along the surface and

17 additional interior points for Schenck’s method. The number of azimuthal orders

was computed from Nθ = round(1.5ω× 0.4/1500.+5) (or, in general, for the value of

0.4 we use the radius of the cylinder). It should be emphasized that for the cylindrical

BIEM, the axis of symmetry of the sphere is taken to be the horizontal axis and the
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Figure 3: A comparison of the computed backscattered spectra using the virtual

source technique (sold lines) and the cylindrical BIEM (markers) for source/receiver

60◦ (circles), 30◦ (diamonds), and 0◦ (+) off the vertical axis below the sphere. For

clarity, the symbols are shown at every fifth frequency value.

azimuthal problem is fully coupled. In Fig. 3, the spectra of the scattered fields as

computed using the virtual source (solid) and the cylinder BIEM method (markers)

are shown for the angles of 0,30, and 60 degrees (0◦ corresponds to normal incidence

from below). As can be seen the agreement between the 2 methods is excellent.

Having obtained excellent agreement of our cylindrical method with a virtual

source approach for a sphere near an interface, the case of a flat-ended cylinder is

considered. The cylinder is discretized with 301 points and 21 interior points are

used for Schenck’s method. It has a total length of 1.5 m, a radius of 0.25 m and its

centre is located 1 m below the water/air interface. For the cylinder, there will be a

combination of specular reflections from the length of the cylinder, endcap reflections,

and diffractions from the edges of the endcaps. In Fig. 4, we show the computed

spectra for the 3 angles of source/receivers (the same angles as for the sphere) for all
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interactions (solid) and the single scatter solution (markers). As with the sphere, the

spectra for the 60◦ incidence are very similar, for 30◦ there are observable differences,

and for normal incidence the differences are large.

It is interesting to consider the solution of the BIEM without using the additional

interior points for Schenke’s method. From Eq.(18), the values of the irregular fre-

quencies can be predicted for the case of flat-ended cylinder. In Fig. 5a, we show

the computed spectra (a 5 Hz spacing is used) for the 3 source/receiver angles used

in the previous example. Both the azimuthally-uncoupled solution (single-scatter,

dashed) and the fully coupled solution (solid) are shown. However, no additional

interior points are used in the computations. As can be seen there are frequencies

near which the spectral amplitude is poorly behaved as a function of frequency. This

behaviour is more noticeable for some source/receiver angles. This is likely due to

the differing projections of the solution onto the eigenfunction corresponding to this

frequency. The frequency values predicted by Eq.(18) are shown in Fig. 5a as vertical

lines. In Fig. 5b, the computed Condition Number (ratio of amplitude of largest to

smallest eigenvalue for a matrix using the MATLAB routine) for the fully coupled ma-

trix(solid) and uncoupled matrix (dashed, single-scatter approximation) are shown.

The condition number behaviour is so similar for the coupled and uncoupled matrices

that is difficult to distinguish the different lines in Fig. 5b. Once again, for the full

and single-scatter method, the poor solution behaviour is related to the proximity of

irregular frequencies and as discussed earlier, these values are the same for the fully

coupled and uncoupled matrices.

Finally, we consider the case of the cylinder tilted at -45◦ (see Fig. 2) with respect

to the vertical. Three different source/receiver positions are considered, 10 m range

and at 45◦, 60◦, and 90◦ off the vertical (and to the right of the tilted cylinder in

Fig. 2) . For the source/receiver at 45◦ there is a specular reflection off the endcap of

the cylinder. For the source/receiver at 60◦ off vertical, there is a ray which reflects off
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Figure 4: A comparison of the computed backscattered spectra using the cylindrical

BIEM with the full solution (solid lines) and the single-scatter solution (lines with

markers) for source/receiver 60◦ (circles), 30◦ (diamonds), and 0◦ (+) off the vertical

axis below the cylinder. For clarity, the symbols are shown at every fifth frequency

value.
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Figure 5: (a) The computed backscattered spectral amplitude for the source/receiver

configurations of Fig. 4 using full solution (solid) and single-scatter solutions (dashed).

There have been no additional interior points used in the computations. (b) The

computed matrix condition number for the full solution matrix (solid) and uncoupled

single-scatter matrix (dashed). For both plots, the vertical lines indicate the predicted

locations of the eigenfrequencies of the interior Dirichlet problem.
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the upper surface and is then incident upon the cylinder at close to broadside. This

energy is then reflected back off the top surface before returning to the receiver. This

is still a single-scattering event as there is only one reflection off the cylinder. Finally,

for the source/receiver along the horizontal (90◦), the tilted cylinder is a type of

corner reflector. A horizontal ray is reflected vertically upwards and then is reflected

by the upper surface downwards and is then converted back to a horizontal ray after

a second reflection from the cylinder. In Fig. 6 we show the computed spectra with

all interactions (solid line) and with the single scatter approximation (markers). The

circles correspond to the 45◦ source/receiver, the diamonds the 60◦ case, and the

plus signs, the horizontal source/receiver. The largest differences between the single-

scatter (line with + markers at the bottom of the figure) and the full-scattering

solution (unassociated line near the middle of the figure) occur for the horizontal

source/receiver. This large difference is anticipated from the previous discussion with

respect to the strong echo from 2 interactions with the cylinder. In Fig. 7 we show the

computed echo time series for an incident 2500 Hz Ricker wavelet. The large multiple-

scattering echo can be seen in Fig. 7c as predicted by simple ray considerations (solid

lines, full solution, dashed lines, single-scatter solutions).
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Figure 6: A comparison of the computed backscattered spectra using the cylindrical

BIEM with the full solution (solid lines) and the single-scatter solution (markers) for

source/receiver 45◦ (circles), 60◦ (diamonds), and 90◦ (+) off the vertical axis below

the cylinder. The cylinder is tilted at -45◦ with respect to the horizontal. For clarity,

the symbols are shown at every fifth frequency value. The full-scattering solution for

90◦ is the line near the vertical centre of the plot which appears unassociated.
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Figure 7: The computed echo time series for a 2500-Hz Ricker wavelet using the

full solution (solid line) and the single-scatter solution (dashed) for: (a) 45◦ off the

vertical, (b) 60◦ off the vertical and (c) 90◦ off the vertical.
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IV. DISCUSSION OF RESULTS

In this paper a modified azimuthally-symmetric BIEM was presented for the solu-

tion of scattering from cylindrical objects below a pressure-release interface. Although

the results shown are for a sphere and a flat end-capped cylinder, the methods de-

scribed are valid for more general target shapes with azimuthal symmetry. The scat-

tering process for the cylindrical object in free space can be constructed by solving

a sequence of two-dimensional problems, one for each angular order. When the in-

teractions between the object and the interface are considered then there is coupling

between the Fourier orders. The computation of this azimuthal conversion matrix is

described for the cases of the cylinder lying parallel to the interface and also for the

cylinder tilted with respect to the interface. For the case of the parallel cylinder, this

conversion matrix can be efficiently computed by using a wavenumber integral. When

the conversion matrix is set to zero, the resulting computed pressure field corresponds

to the single-scattering approximation.

In the numerical examples, the proposed method was first benchmarked against

another solution method for a sphere and the agreement was found to be excellent.

Different scattering geometries were considered for a cylinder parallel to the interface

and for a cylinder tilted at -45◦ with respect to the vertical. For the parallel cylinder

it was found that for small monostatic scattering angles with respect to the cylinder’s

axis, the single-scattering solution was accurate and became less accurate as the

scattering angle increased. For the tilted cylinder, the cylinder and the interface

combined to form a corner-like reflector and in this case there was a strong, multiple-

scattering return for the source/receiver parallel to the interface. The significant

difference with the single-scattering solution was evident in both the spectral and

time domains.

In the method of this paper, the problem of irregular frequencies was addressed by

using additional interior equations in the BIEM. In order to investigate the location
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of the irregular frequencies for the single-scatter (uncoupled) and fully-coupled ap-

proaches the extra interior equations were removed. The computational values of the

irregular frequencies appeared to be in excellent agreement with the theoretically pre-

dicted values and these values were the same for the single-scatter and fully-coupled

formulations.
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List of Figures

Figure 1 - Schematic drawing of a 1.5m long cylinder with radius 0.5. A

generic receiver position is shown at (r, θ, z = 0). A point on the surface at

(r′ = 0.5, θ′, z′ = 0) is also shown.

Figure 2 - Schematic drawings of geometry and notation for (upper) tilted cylin-

der with a source and the mirror image. The tilted cylinder has a centre offset

H. (lower) The angular coordinate system is shown on the endcaps of a cylinder

lying parallel to the interface. A receiver point P is indicated with the angles

θr and θi the azimuthal angles measured from the lower and image cylinders,

respectively.

Figure 3 - A comparison of the computed backscattered spectra using the

virtual source technique (sold lines) and the cylindrical BIEM (markers) for

source/receiver 60◦ (circles), 30◦ (diamonds), and 0◦ (+) off the vertical axis

below the sphere. For clarity, the symbols are shown at every fifth frequency

value.

Figure 4 - A comparison of the computed backscattered spectra using the cylin-

drical BIEM with the full solution (solid lines) and the single-scatter solution

(lines with markers) for source/receiver 60◦ (circles), 30◦ (diamonds), and 0◦ (+)

off the vertical axis below the cylinder. For clarity, the symbols are shown at

every fifth frequency value.

Figure 5 - (a) The computed backscattered spectral amplitude for the

source/receiver configurations of Fig. 4 using full solution (solid) and single-

scatter solutions (dashed). There have been no additional interior points used

in the computations. (b) The computed matrix condition number for the full
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solution matrix (solid) and uncoupled single-scatter matrix (dashed). For both

plots, the vertical lines indicate the predicted locations of the eigenfrequencies

of the interior Dirichlet problem.

Figure 6 - A comparison of the computed backscattered spectra using the cylin-

drical BIEM with the full solution (solid lines) and the single-scatter solution

(markers) for source/receiver 45◦ (circles), 60◦ (diamonds), and 90◦ (+) off the

vertical axis below the cylinder. The cylinder is tilted at -45◦ with respect to

the horizontal. For clarity, the symbols are shown at every fifth frequency value.

The full-scattering solution for 90◦ is the line near the vertical centre of the plot

which appears unassociated.

Figure 7 - The computed echo time series for a 2500-Hz Ricker wavelet using the

full solution (solid line) and the single-scatter solution (dashed) for: (a) 45◦ off

the vertical, (b) 60◦ off the vertical and (c) 90◦ off the vertical.
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Figure 1: Schematic drawing of a 1.5m long cylinder with radius 0.5. A generic

receiver position is shown at (r, θ, z = 0). A point on the surface at (r′ = 0.5, θ′, z′ = 0)

is also shown.
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Figure 2: Schematic drawings of geometry and notation for (upper) tilted cylinder

with a source and the mirror image. The tilted cylinder has a centre offset H. (lower)

The angular coordinate system is shown on the endcaps of a cylinder lying parallel to

the interface. A receiver point P is indicated with the angles θr and θi the azimuthal

angles measured from the lower and image cylinders, respectively.
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Figure 3: A comparison of the computed backscattered spectra using the virtual

source technique (sold lines) and the cylindrical BIEM (markers) for source/receiver

60◦ (circles), 30◦ (diamonds), and 0◦ (+) off the vertical axis below the sphere. For

clarity, the symbols are shown at every fifth frequency value.
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Figure 4: A comparison of the computed backscattered spectra using the cylindrical

BIEM with the full solution (solid lines) and the single-scatter solution (lines with

markers) for source/receiver 60◦ (circles), 30◦ (diamonds), and 0◦ (+) off the vertical

axis below the cylinder. For clarity, the symbols are shown at every fifth frequency

value.
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Figure 5: (a) The computed backscattered spectral amplitude for the source/receiver

configurations of Fig. 4 using full solution (solid) and single-scatter solutions (dashed).

There have been no additional interior points used in the computations. (b) The

computed matrix condition number for the full solution matrix (solid) and uncoupled

single-scatter matrix (dashed). For both plots, the vertical lines indicate the predicted

locations of the eigenfrequencies of the interior Dirichlet problem.
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Figure 6: A comparison of the computed backscattered spectra using the cylindrical

BIEM with the full solution (solid lines) and the single-scatter solution (markers) for

source/receiver 45◦ (circles), 60◦ (diamonds), and 90◦ (+) off the vertical axis below

the cylinder. The cylinder is tilted at -45◦ with respect to the horizontal. For clarity,

the symbols are shown at every fifth frequency value. The full-scattering solution for

90◦ is the line near the vertical centre of the plot which appears unassociated.
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Figure 7: The computed echo time series for a 2500-Hz Ricker wavelet using the

full solution (solid line) and the single-scatter solution (dashed) for: (a) 45◦ off the

vertical, (b) 60◦ off the vertical and (c) 90◦ off the vertical.
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