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Abstract: Classification and tracking are two important techniques for enhancing active 
sonar performance. Classification rejects unwanted clutter using echo analysis, and 
tracking provides a history of target motion while rejecting clutter that doesn’t support 
realistic target motion. Continuous active sonar (CAS) has been proposed as an 
alternative to conventional pulsed active sonar (PAS), largely in order to provide tracking 
updates at a much higher rate than is possible with PAS. Unfortunately, these faster 
updates come at the cost of reduced classification performance, at least for CAS that uses 
linear frequency modulated waveforms. In this case, maximizing the update rate requires 
sub-band processing. Classification of echoes from these sub-bands is expected to be 
relatively poor, since the full bandwidth is favoured for classification. An alternate 
processing scheme for CAS uses full-band processing, which is typically used for PAS. 
This potentially maximizes classification performance rather than providing faster 
updates as in the sub-band approach. A risk of this scheme is the potential for 
complications in echo signals arising from coherence loss caused by the long duration of 
CAS waveforms. One facet of a recent Canada-U.S. sea trial, TREX13, focused on 
conducting experiments that allow direct comparison of the performance of CAS and PAS 
in shallow water. In this paper, DRDC’s echo classification software was tested with 
sonar echoes from TREX13. The software, which was originally developed for PAS 
applications, was used to evaluate whether CAS echoes can be classified as accurately as 
PAS echoes. 
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1. INTRODUCTION  

Active sonar is required to detect underwater targets that are either silent or too quiet to 
reliably detect using passive sonar. Active systems, however, can be less effective in 
shallow littoral environments due to increased false alarms caused by echoes from the 
seabed in these areas. Two key methods of reducing clutter to improve target detection are 
classification and tracking. Classification rejects unwanted clutter using signal analysis, 
while tracking rejects clutter by removing localized contacts that don’t support realistic 
target motion.  

Continuous active sonar (CAS) is an alternative to commonly used pulsed active sonar 
(PAS). One of the potential advantages of CAS is that it can provide tracking updates at a 
much higher rate than is possible with PAS. PAS can achieve target detection at most once 
per ping repetition interval (PRI), which is typically on the order of tens of seconds in 
order to provide a useful search radius. CAS, on the other hand, can provide many 
detections within one PRI, potentially obtaining target detections at rates faster than once 
per second. Unfortunately, these faster updates come at the cost of reduced classification 
performance and/or reduced signal-to-noise ratio (SNR). In the case of swept waveforms, 
maximizing the update rate requires sub-band processing, or segmenting the CAS pulse 
and processing each segment as an individual matched filter. Classification of echoes from 
these sub-bands is expected to be relatively poor because higher bandwidth is favoured for 
classification. This dependence on bandwidth was confirmed to be the case for DRDC’s 
aural classifier [1], which will be used for classifying sonar echoes in this paper.  

An alternate processing scheme for CAS applies a matched filter with the full-band 
replica as is commonly used in PAS. This is the approach used in this paper. This 
potentially maximizes classification performance rather than providing faster updates as in 
the sub-band approach. A risk of this scheme is the potential for complications in echo 
signals arising from coherence loss caused by the long duration of CAS waveforms. In the 
simplest case, coherence loss would result in lower SNR, which tends to lower 
classification performance [2]. Of greater concern, however, is the potential for 
complicated changes on signal features. These changes are difficult to predict and could 
result in reduced classification capabilities for CAS.   

In May 2013, the ONR-sponsored TREX13 sea trial was conducted off the coast of 
Panama City, Florida. DRDC’s focus during the trial was conducting experiments that 
allow direct comparison of the performance of CAS and PAS in shallow water. This paper 
reviews two TREX13 experiments, and compares classification results of full-band PAS 
and CAS echoes from the experiments using DRDC’s automatic aural classifier, which 
has not previously been tested on CAS data. 

2. EXPERIMENTS AT SEA 

2.1. Setup 

The TREX13 sea trial was held within 8 km of shore in Panama City, Florida. 
University of Delaware’s Research Vessel RV SHARP was positioned in a four-point 
mooring less than 3 km from shore at approximately 30.0599° N, 85.6811° W. The water 
depth was quite shallow at approximately 20 m over the trial area. The Five Octave 

 



Research Array (FORA) of Pennsylvania State University’s Applied Research Laboratory 
was positioned 70 m south of SHARP and oriented with a heading of 358°. An ITC 2015 
source was positioned 20 m south of SHARP. It was verified that the CAS pulses 
transmitted by the ITC 2015 did not saturate FORA in this configuration. This is a 
requirement for CAS operation because pulse transmission and echo reception must occur 
simultaneously. 

The two experiments considered in this paper took place on May 10th, 2013. The runs 
were each one-hour long with one hour in between. During the PAS run (trex13-r82), a  
0.5 s LFM sweep from 1800–2700 Hz was transmitted with a 20 s PRI. A CAS run 
(trex13-r80) was also performed, where an 18 s LFM swept over the same band was 
transmitted with the same 20 s PRI. The 2 s down time in the cycle was required for 
processing time in an echo repeater system used during the trial, resulting in a nearly 
continuous 90% duty cycle. 

DRDC’s CFAV QUEST also participated in TREX13. During each run, QUEST 
travelled along either the ‘clutter’ or ‘reverb’ track, as depicted in Fig. 1. For the runs 
considered in this paper, QUEST started near SHARP, and opened at a constant speed of 5 
kn at heading 240° along the clutter track. QUEST successfully operated an echo repeater 
that could repeat continuous transmissions with very low latency and impart a target 
impulse response on incident signals to simulate target echoes. Four echo repeater 
techniques were proposed in [3], and DRDC technical staff completed the hardware 
implementation of all four techniques for the trial. Some echo repeater signals are shown 
in the next section; however, early on during the trial it became apparent that the hull of 
QUEST also offered a strong echo, providing a target of opportunity. Furthermore, since 
this was the first attempt to compare CAS and PAS using the echo repeater, a simple ideal 
reflector was used for the echo repeater’s impulse response for most of the trial rather than 
a target response. Therefore, the authors chose to focus on the echoes from QUEST’s hull 
for the classification results presented in this paper. The data processing used to extract the 
QUEST echoes is presented next.   

 
 

 
 

Fig.1: Setup of TREX13 trial area off Panama City, Florida. 
 

 



2.2. Data Processing 

After beamforming, the PAS and CAS data were each matched filtered using their 
respective full-band replicas. Note that CAS processing would normally employ some 
form of sub-band processing in order to increase the potential number of target detections 
per ping. This would reduce risk of coherence loss by reducing the processing bandwidth 
and time; however, the lower bandwidth and lower expected SNR of sub-band echoes 
would be expected to reduce classification performance based on previous results with 
DRDC’s aural classifier [1,2]. Therefore, the full-band replicas were used for matched 
filtering.  

An automatic detector was employed after matched filtering. ‘Clutter-mitigation’ 
images (see Fig. 2) were then formed by plotting each ping as a vertical column of pixels 
whose brightness was proportional to the enveloped, matched-filter outputs. A sequence of 
pings formed the horizontal extent of each image. Only the beam corresponding to 
QUEST’s bearing from FORA is displayed for each ping. The clutter-mitigation images 
for the PAS and CAS runs are shown in Fig. 2(a) and (b), respectively. A clear trace of 
QUEST linearly increasing range from FORA can be observed. The echo repeater signal 
can be seen with a slight delay from QUEST, and only occurring every second ping cycle 
due to the echo repeater technique used for these runs. A delay had to be introduced in the 
echo repeater so that the low latency echo repeat would not coincide with the echo from 
QUEST. The traces in Fig. 2 were used to identify automatic detections that corresponded 
to echoes from QUEST and the echo repeater. Once identified, 1 s time-series snippets of 
un-enveloped, matched-filtered data were extracted for analysis using the classifier. Those 
echoes not associated with QUEST or the echo repeater were considered to be clutter; 
however, it is likely that echoes from vessels similar to QUEST were included in the 
clutter database which could reduce target-clutter discrimination. For example, in Fig. 2 
other traces of moving objects can be observed, some of which likely correspond to other 
vessels and are captured during automatic detection. 

 

(a) (b) 

Fig.2: First half of the PAS run (a) and CAS run (b). The solid line is formed by echoes 
from QUEST and the dashed line is formed by the echo repeater signals, which were 

transmitted every second ping with the echo repeater technique used during these runs. 
Only half of the PRI is shown on the vertical axis.  

 



In total, 120 PAS echoes were obtained from QUEST, with a mean SNR of 16.2 dB 
and standard deviation of 5.0 dB, with all statistics calculated from decibel values. There 
were 117 CAS echoes from QUEST with a mean SNR of 13.9 dB and standard deviation 
of 4.3 dB. In addition to the echoes from QUEST and the echo repeater, approximately 
175,000 clutter detections were obtained with the detection threshold of 10 dB used. Most 
of these were not considered in this paper, as will be discussed in the next section. 
Detection was performed on enveloped matched-filter output, and these detections formed 
the centre of 1 s snippets extracted from un-enveloped matched-filter output. The snippets 
containing QUEST echoes formed the target database for training the aural classifier.  

3. AURAL CLASSIFICATION RESULTS 

3.1. Background 

The aural classifier mimics the human auditory system by conditioning echo signals in 
a similar manner as the outer and inner human ear, and by simulating the cognitive process 
through representation of the echoes as perceptual features that are used by a Gaussian 
classifier to determine whether an echo should be designated as a target or clutter. Details 
on the aural classifier and the aural features it uses are published in [4], [5], and [6]. 

The classifier is trained by selecting a database of target and clutter echoes to form the 
training dataset. The training process uses discriminant analysis to formulate a 
combination of aural features that optimizes separation of the target and clutter echoes in 
the training dataset. The statistics of the training echoes determine how echoes in the 
testing dataset are classified. The testing dataset is typically independent of the training 
dataset to fully evaluate the classifier; however, in this paper, the same training data was 
used for testing. This removed the requirement to split the limited number of target echoes 
in the datasets into training and testing portions, which improved training statistics, and 
resulted in a measure of classification performance that represented the expected 
maximum achievable with that training configuration. 

Previous work verified that the aural classifier performs better with signals of higher 
SNR [2], as is generally expected for signal classification. Given this SNR dependence, it 
was important to match the SNR distributions of the target and clutter classes to ensure 
that discrimination between classes was due to signal features and not a consistent 
difference in noise background. This was accomplished by forming SNR histograms for 
each class and removing echoes such that the histogram bin counts matched within 40%. 
Allowing some discrepancy in the SNR of the two classes allowed more echoes to be 
included, which improved statistics.  

As in previous work [4,5,6], the area under the receiver-operating characteristic (ROC) 
curve (AUC) was used to evaluate classifier performance. 

3.2. Classification Results  

After matching the SNR distributions of the target and clutter training sets to within a 
reasonable approximation, the PAS dataset consisted of all 120 echoes from QUEST and 
192 clutter echoes. This data was used to train the classifier and generate a training ROC 
curve, shown in Fig. 3(a). The AUC value for the curve was 0.88, with probability of 

 



detection, PD = 0.86, and probability of false alarm, PFA = 0.28 at the minimum-error-
rate operating point [7]. AUC values above 0.8 indicate excellent discrimination [8]. 

The procedure was repeated for the CAS data, forming a training dataset with the 117 
QUEST echoes and 184 clutter echoes. The resulting ROC curve shown in Fig. 3(b) has 
AUC = 0.94, indicating outstanding discrimination [8], with PD = 0.87 and PFA = 0.13 at 
the operating point. 

Given that previous experimental validation used 2800 Hz of bandwidth (600–3400 
Hz) [5], the results obtained using 900 Hz of bandwidth (1800–2700 Hz) are very 
promising. The interesting result of higher performance with CAS than PAS was 
unexpected and warranted preliminary analysis. 

 

  
(a) (b) 

Fig.3: ROC curve for the QUEST/clutter training dataset for the PAS run (a) and the 
CAS run (b).  

3.3. Analysis of echoes 

When using the aural classifier, preliminary analysis usually involves listening to the 
echo snippets to see if there are any obvious aural characteristics that could affect 
classification. In this case, the CAS echoes from QUEST had a distinct chirp sound, 
compared to broadband impulsive sound of the PAS echoes from QUEST, which sounded 
similar to PAS echoes previously examined by the authors. A spectrogram of a CAS echo 
from QUEST, extracted from un-enveloped, matched-filter output, is shown in Fig. 4(d), 
and is centred on the peak sample within the echo. The chirp effect can be observed in the 
QUEST echo, and even more clearly on the slightly delayed echo repeat, which starts just 
after 0.6 s. This phenomenon was not observed in PAS echoes, or in CAS echoes from 
stationary objects. It was therefore deduced that the effect is due to Doppler mismatch 
between the replica and Doppler distorted echo from QUEST, and that the effect is 
dependent on pulse length.  

To further investigate the chirp phenomenon, the CAS replica was dilated in time to 
model 5 kn Doppler shift distortion. This distorted signal was then cross-correlated with 
the original CAS replica to observe the mismatch effect. A spectrogram of the cross-
correlation is shown in Fig. 4(b), and is centred on the peak sample. The chirp caused by 
the mismatch is clearly visible, and closely resembles the experimental CAS matched-
filter output displayed immediately below it in Fig. 4(d). The sweep rate estimated from 
the spectrogram is 8.0 Hz/ms. 

 



          (a)           (b) 

          (c)           (d) 

Fig.4: Spectrograms of un-enveloped matched-filter output for: 
(a) modeled 5 kn Doppler distortion   (PAS)   (b) modeled 5 kn Doppler distortion   (CAS)   
(c) QUEST and echo repeater echoes (PAS) (d) QUEST and echo repeater echoes (CAS)
  

The same procedure was followed to examine if the effect of Doppler mismatch could 
be observed for the PAS case. The spectrogram of the PAS cross-correlation is shown in 
Fig. 4(a) with an example of a PAS echo from QUEST shown immediately below it in 
Fig. 4(c). The chirp effect is not observable on the scale shown in Fig. 4, which was 
chosen to match the CAS example to allow comparison; however, it is present and could 
be observed when closely zoomed on the PAS cross-correlation spectrogram with a 
compressed vertical axis. The estimated sweep rate is approximately 220 Hz/ms. 

As the chirp effect is clearly audible, it can presumably affect the aural features, and it 
is therefore possible that the aural classifier is cueing on this signal feature, resulting in 
increased discrimination between QUEST echoes and clutter for the CAS case. 

4. CONCLUSIONS AND FUTURE WORK 

In this paper, we observed that CAS, when processed identically to PAS using a full-
band replica, produced echoes with comparable SNR to PAS echoes, even in the complex 
environment of 20 m littoral waters where coherence loss is expected to have the largest 
impact.  

Discrimination between echoes from the hull of CFAV QUEST and clutter using 
automatic aural classification was possible using 900 Hz bandwidth, where experimental 
validation had previously been performed using a much higher bandwidth of 2800 Hz. 
Discrimination between QUEST and clutter echoes was observed to be higher with CAS 
than PAS. It is speculated that the aural classifier was cueing on features related to the 
chirp structure of CAS echoes, which was caused by Doppler shift distortion. The chirp 
phenomenon was clearly audible and consistent over the entire run because of QUEST’s 
constant speed and heading. As observed in this paper, this phenomenon could be useful 
for discriminating moving targets from clutter. 

 



 

The results presented in this paper are preliminary and further analysis is required to 
draw conclusions on the classification performance expected for CAS echoes compared to 
that expected for PAS echoes. Due to the heavy marine traffic during the trial, the PAS 
and CAS clutter datasets potentially contain different numbers of echoes from other 
surface ships in the area. High SNR clutter contacts were used to match the SNR 
distribution of QUEST echoes, which increases the likelihood that echoes from passing 
ships were in fact included in these clutter databases. This would likely have a large 
impact on classification because the echo features from other vessels would presumably 
resemble those of QUEST. In future analysis of the TREX13 data, AIS data and clutter-
mitigation images will be used to identify echoes from moving vessels, which will avoid 
their inclusion in clutter datasets. 
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