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Abstract …….. 

In 2008, a simulation model was developed in the Integrated Performance Modelling 
Environment (IPME) to evaluate different crew-automation options for naval damage control. 
This previous work demonstrated the feasibility and value of applying modelling and simulation 
to explore a large number of factors related to optimized crewing for damage control, but stopped 
short of performing detailed statistical analysis on the simulation outputs. The current report re-
examines the data collected from the 2008 simulation experiment and subjects them to formal 
hypotheses testing. In particular, it investigates the effects of automation level, automation 
reliability, and scenario complexity on damage control effectiveness, where damage control 
effectiveness was measured by time to complete fire response, number of compartments affected 
by fire, time to complete flood response, and maximal height reached by floodwater. The analyses 
compared three automation levels (full, medium, and the baseline) that were coupled with three 
crew sizes (small, medium and large, respectively), two levels of automation reliability (100% 
and 75%), and two levels of scenario complexity (high, medium). Of the studied factors, 
automation level was found to have the most significant impact on damage control. Full 
automation was found to perform best in terms of fire response. Both full automation and the 
baseline were found to outperform medium automation in terms of flood response. Based on these 
analyses, this report identified a number of strategies for streamlining future development of 
related simulation models, as well as future data collection and analysis for related simulation 
experiments. Finally, this report identified a number of directions for future research on the use of 
modelling and simulation to inform optimized crewing, including the evaluation of different 
crew-automation options for whole-ship operation. 

Résumé …..... 

En 2008, on a élaboré l’environnement intégré de modélisation du rendement (EIMP), un modèle 
de simulation servant à évaluer différentes formes d’automatisation des équipages aux fins du 
contrôle des avaries à bord des navires. Ces travaux ont démontré la faisabilité et la valeur de 
l’application de la modélisation et de la simulation à l’examen d’un grand nombre de facteurs liés 
à l’optimisation des équipages aux fins du contrôle des avaries, mais sans toutefois élaborer des 
analyses statistiques détaillées sur les produits de la simulation. Le dernier rapport publié examine 
à nouveau les données recueillies de l’expérience de simulation de 2008 et les soumet à des 
vérifications d’hypothèses. Plus précisément, les facteurs examinés sont les effets du degré 
d’automatisation, de la fiabilité de l’automatisation et de la complexité du scénario sur l’efficacité 
du contrôle des avaries; l’efficacité du contrôle des avaries étant mesurée en fonction du délai 
d’exécution de l’intervention en cas d’incendie, du nombre de compartiments touchés par 
l’incendie, du délai d’exécution de l’intervention en cas d’inondation et de la hauteur maximale 
atteinte par les dégâts d’eau. Les analyses ont permis de comparer trois degrés d’automatisation 
(complète, moyenne et de base) selon trois tailles d’équipage (respectivement restreint, moyen et 
nombreux), deux niveaux de fiabilité de l’automatisation (100 p. 100 et 75 p. 100) et deux 
niveaux de complexité du scénario (élevé ou moyen). Parmi les facteurs étudiés, on a constaté que 
le degré d’automatisation avait le plus grand impact sur le contrôle des avaries. On a trouvé que 
l’automatisation complète donnait les meilleurs résultats pour l’intervention en cas d’incendie. On 
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a jugé que l’automatisation complète et l’automatisation de base donnaient un rendement 
supérieur à l’automatisation moyenne pour l’intervention en cas d’inondation. À partir de ces 
analyses, les auteurs du rapport ont énoncé un certain nombre de stratégies permettant de 
rationaliser l’élaboration de modèles de simulation connexes, ainsi que la collecte et l’analyse 
ultérieures de données aux fins d’expériences de simulation semblables. Enfin, les auteurs du 
rapport ont établi des pistes d’orientation des futurs travaux de recherche sur l’emploi de la 
modélisation et de la simulation pour documenter l’optimisation des équipages, y compris 
l’évaluation de différents scénarios d’automatisation de l’ensemble des fonctions du navire. 
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Executive summary  

Analysis of a simulation experiment on optimized crewing for 
damage control:   

Renee Chow; DRDC Toronto TR 2010-128; Defence R&D Canada – Toronto; 
March 2012. 

Introduction or background: In 2008, a simulation model was developed in the Integrated 
Performance Modelling Environment (IPME) to evaluate different crew-automation options for 
naval damage control. This previous work demonstrated the feasibility and value of applying 
modelling and simulation to explore a large number of factors related to optimized crewing for 
damage control, but stopped short of performing detailed statistical analysis on the simulation 
outputs. The current report re-examines the data collected from the 2008 simulation experiment 
and tests specifically for the effects of automation level (full, medium, or baseline), automation 
reliability (100%, 75%), and scenario complexity (medium, high) on the effectiveness of fire 
response and flood response.  

Results: Automation level was found to have a significant effect on damage control 
effectiveness. Full automation with small crew size was found to perform best in terms of fire 
response. In terms of flood response, both full automation with small crew size and the baseline 
with large crew size were found to outperform medium automation with medium crew size. There 
was also a significant interaction between automation level and automation reliability. However, 
main effects of automation reliability and scenario complexity were found only for a subset of the 
measures.   

Significance: A number of strategies were identified for streamlining future development of 
related simulation models, as well as future data collection and analysis for related simulation 
experiments. These included the possibilities to apply a reduced set of specific dependent 
variables, and to use IPME in a standalone mode if task completion times were the primary 
variables of interest. 

Future plans: Future work should investigate the application of modelling and simulation to 
optimized crewing for whole-ship operation. Supporting work could take the form of comparing 
multiple crew levels for the same automation level, sensitivity analyses on key simulation 
parameters such as automation reliability, or comparing different classes or purposes of 
automation in addition to or instead of levels of automation. 
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Sommaire ..... 

Analyse d'une expérience de simulation de l'équipage optimal 
aux fins du contrôle des avaries  

Renee Chow; DRDC Toronto TR 2010-128; R et D pour la défense Canada – 
Toronto; Marche 2012. 

Introduction ou contexte : En 2008, on a élaboré un modèle de simulation à l’aide de l’outil de 
l’environnement intégré de modélisation de la performance (EIMP) afin d’évaluer différentes 
formes d’automatisation de l’équipage aux fins du contrôle des avaries à bord des navires. Ces 
travaux ont démontré la faisabilité et la valeur de l’application de la modélisation et de la 
simulation à l’examen d’un grand nombre de facteurs liés à l’optimisation des équipages aux fins 
du contrôle des avaries, mais sans toutefois élaborer des analyses statistiques détaillées sur les 
produits de la simulation. Le dernier rapport publié examine à nouveau les données recueillies de 
l’expérience de simulation de 2008 et vérifie en particulier les effets du degré d’automatisation 
(complète, moyenne et de base), de la fiabilité de l’automatisation (100 p. 100 et 75 p. 100) et de 
la complexité du scénario (élevée ou moyenne) sur l’efficacité de l’intervention en cas d’incendie 
et en cas d’inondation. 

Résultats : On a constaté que le degré d’automatisation avait un impact significatif sur 
l’efficacité du contrôle des avaries. L’automatisation complète d’un équipage restreint donne les 
meilleurs résultats pour une intervention en cas d’incendie. En ce qui regarde l’intervention en cas 
d’inondation, on a remarqué que l’automatisation complète d’un équipage restreint et 
l’automatisation de base d’un équipage nombreux produisent un rendement supérieur à 
l’automatisation moyenne d’un équipage de taille moyenne. Il y avait aussi une interaction 
significative entre le degré d’automatisation et la fiabilité de l’automatisation. Cependant, les 
principaux effets de la fiabilité de l’automatisation et de la complexité du scénario n’ont été 
constatés que pour un sous-ensemble de données mesurées.   

Portée : On a relevé un certain nombre de stratégies permettant de rationaliser l’élaboration de 
modèles connexes de simulation, ainsi que la collecte et l’analyse ultérieures de données aux fins 
d’expériences connexes de simulation. Mentionnons, entre autres, la possibilité d’appliquer une 
série réduite de variables dépendantes précises et celle d’utiliser l’EIMP en mode autonome si les 
délais d’exécution des tâches sont les variables d’intérêt principales. 

Recherches futures : Les travaux à venir devraient porter sur l’application de la modélisation et 
de la simulation à l’optimisation de l’équipage total du navire. Les travaux connexes pourraient 
prendre la forme d’une comparaison entre différents niveaux d’équipage pour le même 
pourcentage d’automatisation, d’analyses de sensibilité des principaux paramètres de simulation 
comme la fiabilité de l’automatisation, ou d’une comparaison entre différents types ou motifs 
d’automatisation en plus ou en remplacement des pourcentages d’automatisation. 



 

DRDC Toronto TR 2010-128  v 
 
 

 

Table of contents  

Abstract …….. ................................................................................................................................. i 
Résumé …..... ................................................................................................................................... i 
Executive summary ........................................................................................................................ iii 
Sommaire ..... .................................................................................................................................. iv 

Table of contents ............................................................................................................................. v 

List of figures ................................................................................................................................. vi 
List of tables .................................................................................................................................. vii 
Acknowledgements ...................................................................................................................... viii 
1 .... Introduction ............................................................................................................................... 1 

1.1 Previous research ........................................................................................................... 1 
1.2 Simulation Experiment .................................................................................................. 2 

2 .... Method ...................................................................................................................................... 5 
2.1 Overview of Simulation Model ..................................................................................... 5 
2.2 Independent Variables ................................................................................................... 7 
2.3 Dependent Variables ................................................................................................... 10 

3 .... Results..................................................................................................................................... 13 
3.1 Multivariate analysis ................................................................................................... 13 
3.2 Univariate analyses ...................................................................................................... 13 

3.2.1 Time to complete fire response ..................................................................... 15 
3.2.2 Time to complete flood response .................................................................. 17 
3.2.3 Number of compartments affected by fire .................................................... 19 
3.2.4 Maximal height of flood water ...................................................................... 22 
3.2.5 Comparison of five automation options ........................................................ 23 

3.3 Summary...................................................................................................................... 27 

4 .... Discussion ............................................................................................................................... 29 
4.1 Implications re: Automation Levels ............................................................................ 29 
4.2 Implications re: Automation Reliability ...................................................................... 29 
4.3 Implications re: Scenario Complexity ......................................................................... 30 
4.4 Limitations ................................................................................................................... 31 
4.5 Future Research ........................................................................................................... 33 

5 .... Conclusion .............................................................................................................................. 34 

References ..... ............................................................................................................................... 35 

Annex A .. Data Tables for Dependent Variables .......................................................................... 37 

List of symbols/abbreviations/acronyms/initialisms ..................................................................... 41 



 

vi DRDC Toronto TR 2010-128 
 
 
 

List of figures  

Figure 1: Experimenter’s Interface for Specifying Crew Numbers ................................................. 7 
Figure 2. Design of Simulation Experiment .................................................................................... 8 
Figure 3. 2x2x2 ANOVA on effects of automation level, reliability, and scenario ...................... 14 
Figure 4. 3x2 ANOVA on effects of automation level and scenario ............................................. 15 
Figure 5: Effects of Automation Level and Automation Reliability on Fire Response Time ....... 16 
Figure 6: Effect of Automation Level on Fire Response Time, At High Automation 

Reliability .................................................................................................................... 17 
Figure 7: Effects of Automation Level and Automation Reliability on Flood Response Time .... 18 
Figure 8: Time to Complete Flood Response for Full Automation with High vs. Low 

Reliability .................................................................................................................... 18 
Figure 9: Effect of Automation Level on Flood Response Time, At High Automation 

Reliability .................................................................................................................... 19 
Figure 10: Effects of Automation Level and Reliability on Compartments Affected by Fire ...... 20 
Figure 11: Effects of Automation Level and Scenario on Compartments affected by Fire .......... 20 
Figure 12: Effect of Scenario Complexity on Compartments Affected by Fire ............................ 21 
Figure 13: Effect of Automation Level on Compartments Affected by Fire, At High 

Reliability .................................................................................................................... 21 
Figure 14: Effects of Automation Level and Reliability on Maximum Floodwater Height .......... 22 
Figure 15: Maximum Floodwater Height for Full Automation with High vs. Low Reliability .... 23 
Figure 16: Effect of Automation Level on Floodwater Height, At High Automation 

Reliability .................................................................................................................... 23 
Figure 17. 5x2 ANOVA on effects of automation option and scenario ........................................ 24 
Figure 18: Comparison of Automation Options by Fire Response Time ...................................... 25 
Figure 19: Comparison of Automation Options by Flood Response Time ................................... 26 
Figure 20: Comparison of Automation Options by Maximum Floodwater Height ...................... 26 
Figure 21: Comparison of Automation Options by Compartments Affected by Fire ................... 27 
 



 

DRDC Toronto TR 2010-128  vii 
 
 

 

List of tables  

Table 1: Sample output data – Task start and completion times ..................................................... 6 
Table 2: Sample output data – Maximum compartment temperatures (K) ..................................... 6 
Table 3: Crewing Levels Corresponding to Each Automation Level .............................................. 9 
Table 4: Summary statistics for the fire-related dependent variables ............................................ 11 
Table 5: Summary statistics for the flood-related dependent variables ......................................... 12 
Table A-1: Fire response completion time (in seconds) ................................................................ 37 
Table A-2: Number of compartments affected by fire .................................................................. 38 
Table A-3: Flood response completion time (in seconds) ............................................................. 39 
Table A-4: Maximum height of flood water (in m) ....................................................................... 40 
 



 

viii DRDC Toronto TR 2010-128 
 
 
 

Acknowledgements  

The author wishes to acknowledge Curtis Coates and Chris Cooper from Esterline | CMC 
Electronics, Inc. for their assistance with the interpretation of the simulation output files, Dr. 
Justin Hollands, Dr. David Smith, and Dr. Ann-Renee Blais from DRDC Toronto for their helpful 
guidance on various aspects of statistical analysis, and Dr. Wenbi Wang for his collaboration on 
the previous research and for his thoughtful feedback on the current work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

DRDC Toronto TR 2010-128 1 
 

 

1 Introduction 

In recent years, navies around the world have been interested in crew optimization, partly to 
reduce the operating (and therefore whole life) costs of naval platforms, but also because of the 
challenge associated with recruiting and retaining sufficient personnel to operate platforms that 
require very large crew sizes.  In addition, advances in technology have opened up the possibility 
of delivering the same or even enhanced capability with the same or fewer crew members. 
Therefore, it has become important to investigate how crew and automation can work together to 
meet the requirements of the modern navy.  

1.1 Previous research 

In 2005, Defence Research and Development Canada (DRDC) began an Applied Research 
Project (ARP) on Optimized Crewing for Damage Control (DC) [1].  Although DC is only one of 
many functions that need to be performed by a ship’s crew, it is both a safety-critical and labour-
intensive function. It is also a function that needs to be performed on all varieties of naval 
platforms (e.g., surface combatants, submarines, supply ships, etc.). Therefore, it presents an 
interesting and potentially generalizable test case for investigating how different crew designs 
may be complemented by advanced automation to deliver the necessary capabilities.  

Within this ARP, a line of research was initiated to determine if modelling and simulation may 
present a feasible and productive approach to explore the effectiveness of different levels of crew 
and automation to perform DC. A multi-phase approach was implemented, which included: 

1. Functional modelling [2] - where a hierarchy of DC functions were identified without 
specification of which crew member(s) or automation would be responsible for performing 
each function. This was essentially a requirements analysis for naval DC; 

2. Scenario development [3] - where two scenarios of different complexity were developed to 
test the effectiveness of any given crew size and automation configuration. The functional 
model developed in Phase 1 was applied to ensure that the scenarios challenged key DC 
functions and that each scenario challenged different if overlapping functions. Scenario 
development also supported the identification of specific tasks that crew and/or automation 
would be required to perform in each scenario; 

3. Options analysis [4] – where three options for crew and automation were specified that would 
be subjected to an evaluation using the scenarios developed in Phase 2. The three options 
were: 

a. large crew with baseline automation  - this represented traditional practices and 
mature technologies, and was intended to be reflective of in-service platforms 
commissioned in the 1980s; 

b. medium crew with medium automation – this represented emerging practices and 
newly available technologies, and was intended to be reflective of platforms being 
commissioned in the 2000s; and 
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c. small crew with full automation – this represented novel practices specifically 
designed for reduced crewing and emerging technologies, and was intended to be 
reflective of platforms that may be commissioned in the mid-2010s. 

These three phases of analysis then paved the way for the development of a simulation model 
to assess and compare the effectiveness of the crew-automation options identified in Phase 3 
using the scenarios developed in Phase 2. 

1.2 Simulation Experiment 

In 2008, a simulation model was developed in the Integrated Performance Modelling 
Environment (IPME) to evaluate different crew-automation options for naval DC [5]. This IPME 
model, which simulated the activities of crew and automation over the course of different 
scenarios interacted with a physics-based model of fire and smoke propagation called Fire and 
Smoke SIMulator (FSSIM) [6] provided by the United States Naval Research Laboratory, 
Washington, DC. Together, the combined and enhanced models predicted how the activities by 
the crew and/or automation led to different extents of damage in various compartments aboard the 
modelled ship. In addition to three crew-automation options mentioned above, the model 
supported manipulation of other input variables including scenario complexity (i.e., high versus 
medium), automation reliability (100% vs. 75%), as well as other contextual variables such as fire 
intensity or permeability of construction materials. The model also produced various forms of 
output data, including: time to complete specific DC tasks (e.g., extinguishing a fire in a given 
compartment, removing the source of a flood in a given compartment), and the number of 
compartments affected (e.g., by smoke, heat). A large number of simulation runs were performed 
including 25 runs in each of 26 different configurations, and some interesting trends were noted 
based only on the examination of summary statistics (e.g., means and standard deviations) [7], for 
example: 

 Automation reliability (100% vs. 75%) appeared to make a bigger difference in the full 
automation option than in the medium automation option; 

 For fire response, in particular extinguishing a fire and confirming the extinction of a fire, full 
automation appeared to perform best; 

 For fire response, in particular containing a fire by closing doors and hatches, bounding a fire, 
and isolating power for personnel safety, full automation appeared to perform best but only 
when automation reliability was high; 

 For flood response, in particular containing the flood and removing the source of flood, full 
automation and the baseline appeared to perform better than medium automation. 

However, the most important contribution of the original study [5] was as a proof-of-concept 
for how modelling and simulation can be applied to the evaluation of crew and automation 
effectiveness, and to demonstrate the large variety of factors that can be considered in such an 
evaluation. It was beyond the scope of that study to conduct detailed statistical analyses on the 
simulation outputs. Therefore, it would appear prudent to re-examine the original data and to 
subject them to formal hypothesis testing, to verify if significant differences indeed existed 
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between the various experimental conditions, and to identify any ambiguous results that may 
warrant follow-on investigation through the collection of additional data. In particular, this report 
tests the following hypotheses: 

1. Full automation performs better than medium automation and the baseline. 

2. Medium automation option performs better than the baseline. 

3. Full automation with high reliability performs better than medium automation with high 
reliability. 

4. Full automation with low reliability performs better than medium automation with low 
reliability. 

5. Medium automation with high reliability performs better than full automation with low 
reliability. 

6. When scenario complexity is high (and heavy casualties are involved), full automation and 
the baseline perform better than the medium automation option. 

7. When scenario complexity is medium (and no casualties are involved), full automation and 
the medium automation perform better than the baseline. 

The motivation behind hypotheses 1. and 2. is to explore whether or not each level of investment 
in advanced automation (and correspondingly each level of reduction in crew size) can be 
justified by a performance benefit. It is possible, for example, for a performance difference to 
exist only between the highest level of automation (i.e., smallest crew size) and the lowest level 
of automation (i.e., largest crew size), which would raise the question of whether or not an 
intermediate level of investment in automation (and correspondingly, moderate strategies for 
crew reduction) can be warranted. Alternatively, the relationship between automation level and 
performance may not be monotonic, so an intermediate level of investment in automation (and 
moderate crew reduction) may be associated with a performance benefit, but a high level of 
investment in automation (and drastic crew reduction) may be associated with a performance 
decrement.  Overall, the posing of hypotheses 1. and 2. does not imply that the author necessarily 
anticipates advanced automation to be associated with better performance, because advanced 
automation is coupled with small crew size, and a finding that a larger crew (even one given 
limited automation) performs better is quite plausible. 

The motivation behind hypotheses 3. to 5. is to assess the impact of automation reliability, to 
assess potential interaction between automation level and automation reliability, and together 
with the previous hypotheses, to assess the relative importance of automation level versus 
automation reliability. Automation reliability is an important consideration in the design of any 
complex system involving both human operators and automation because of the potential for 
over- or under-utilization of the automation. On one hand, human operators may over-rely on 
automation and fail to monitor it effectively, possibly because they perceive it to be more reliable 
than it actually is. On the other hand, human operators may under-utilize automation by ignoring 
it or turning it off, possibly because they perceive it to be less reliable than it actually is [8, 9]. 
Various studies have also pointed to the effects of automation reliability and/or the interaction 
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between automation level and automation reliability on performance in military applications such 
as automated decision aids for command and control [10] and the control of unmanned aerial 
vehicles [11]. In the current study, we are particularly interested in determining if a high level of 
automation regardless of its reliability is always associated with performance benefit, or if the 
performance benefit is only observed when automation reliability is high. It would also be 
interesting to compare a high level of automation with relatively low reliability against a medium 
level of automation with relatively high reliability, because it may suggest whether or not it 
would be more worthwhile to invest in more pervasive and/or powerful automation that may be 
more prone to failures or in less and/or simpler automation that may not be as prone to failures. 
Admittedly, these comparisons can only be considered a first step in investigating the effect of 
automation reliability, since the model simulated system reliability rather than perceived 
reliability, and did not yet address the issue of misuse or disuse of automation [8] based on mis-
calibration by the human operator. 

Finally, hypotheses 6. and 7. are intended to explore how scenarios may affect the effectiveness 
of any crew-automation option in their DC response. When a scenario is relatively 
straightforward (i.e., a ship is designed to withstand this type of damage with minimal impact on 
mission effectiveness, and the crew has ample practice and/or experience in handling similar 
situations), one may expect a high level of performance to be achieved by any crew size, and an 
even higher level of performance when the crew is supported by advanced automation. However, 
when a scenario is very challenging (e.g., including the suffering of heavy casualties), it seems 
more difficult to predict which crew-automation will perform best. For example, the large crew 
option may perform best because there are enough extra people to take over any duties that would 
have been assigned to the now-indisposed personnel. Alternatively, the high automation option 
may perform best because a minimal number of crew is required for the DC response, so even 
with the casualties, the crew requirement could be met by the still-available personnel. 
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2 Method 

2.1 Overview of Simulation Model 

As mentioned in Sub-Section 1.2, the simulation model analyzed in this study was developed in 
IPME. IPME is a discrete event simulation environment that can be used to model the activities of 
human operators as a hierarchical network of tasks that they need to perform. For each task within 
an IPME network, the model developer can define attributes including but not limited to initiating 
conditions, a probability distribution for the task completion time, and ending effects (which may 
include a probability of task failure and specific effects of such failure). Instead of a human 
operator, it is also possible to assign a task to another resource (e.g., automation), or to have task 
assignment dependent on criteria that are evaluated at run-time.  

IPME supports the detailed modelling of human perceptual and cognitive processes (e.g., by 
specifying if a task demands visual, auditory, cognitive, and/or psychomotor resources and the 
expected degree of interference between tasks). It also supports the prediction of cognitive 
workload (e.g., based on a comparison between the time required and the time available for a 
given task). However, these capabilities were not utilized in the current simulation model. Instead 
of in-depth modelling of the tasks for one (or a small number of) operators, the current model 
focused on representing the broad set of tasks that are required to perform DC on a naval platform 
(i.e., a function that may involve 70 or more crew members depending on the automation level 
available) [5]. For example, some of the tasks in the current model include: Detect fire, Contain 
fire, and Confirm fire extinction. Some lower level tasks associated with Contain Fire include: 
Shut down ventilation to affected section, Close bulkhead isolation valves, and Close all relevant 
doors and hatches [5]. In this model, once a given human operator is engaged in one task, he/she 
is considered unavailable for a different task. The model was not as concerned with the workload 
experienced by any individual operator in any one task, as it was with how the success or failure 
of a task impacts subsequent tasks and ultimately the performance of the overall system. 

IPME was used to track the initiation time and completion time of each task, thereby providing 
process measures for understanding how DC was performed. In fact, one of the key outputs of 
IPME was a detailed timeline of all events that occurred during each simulation run. Table 1 
shows an excerpt of the timeline produced for one simulation run.  As mentioned in Sub-Section 
1.2, IPME was also integrated with FSSIM to produce estimates of how the (timely or delayed) 
actions of the crew and automation affected how fire and smoke propagated on the simulated 
ship, thereby providing outcome measures for understanding whether DC was effective. 
Specifically, IPME together with FSSIM produced data tables showing the maximal temperature, 
level of carbon monoxide, or soot in each compartment of the simulated ship for each simulation 
run. Table 2 shows an excerpt of one such data table on maximal temperature in each 
compartment. These data tables were then processed further to compute measures such as the 
number of compartments that exceeded a threshold temperature for each simulation run. 
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STARTING RUN 1      

Task Name 

CES 
Model 

Task ID 
IPME 

Task ID Clock 
Task 

Duration Task Status 
Detect Hull Breaches (2.1.3.1) - 
compartment 164 2.1.3.1 71_3_3_1 10.2 61.43530992 STARTED 
Detect Flood Location (2.1.2.1) 
- compartment 164 2.1.2.1 71_3_2_1 10.4 149.7932748 STARTED 
Detect Flood Source (2.1.2.2) - 
compartment 164 2.1.2.2 71_3_2_2 10.4 173.8716464 STARTED 
Detect Flood Volume  (2.1.2.3) - 
compartment 164 2.1.2.3 71_3_2_3 10.4 129.0064062 STARTED 
shut down ventilation system to 
affected section (3.1.1) - 
compartment 139 3.1.1 72_1_1 20.2 4.500840841 STARTED 
detect fire intensity (2.1.1.3) - 
compartment 139 2.1.1.3 71_3_1_3 20.3 97.975535 STARTED 
detect fire type (2.1.1.2) - 
compartment 139 2.1.1.2 71_3_1_2 20.3 97.975535 STARTED 
detect fire location (2.1.1.1) - 
compartment 139 2.1.1.1 71_3_1_1 20.3 9.181022523 STARTED 
shut down ventilation system to 
affected section (3.1.1) - 
compartment 139 3.1.1 72_1_1 24.70084 4.500840841 COMPLETE 
detect fire location (2.1.1.1) - 
compartment 139 2.1.1.1 71_3_1_1 29.48102 9.181022523 COMPLETE 
Determine Damage Control 
Strategy (2.4.1) - compartment 
139 2.4.1 71_6_1 29.58102 258.9755738 STARTED 

Table 1: Sample output data – Task start and completion times 

 

 Compartment Number 
Run 

Number 99 100 101 102 103 104 105 106 107 
1 298.15 298.15 298.151 298.1511 298.1507 298.1506 298.1507 298.1506 298.1507 
2 298.15 298.15 298.151 298.1511 298.1507 298.1506 298.1507 298.1506 298.1507 
3 298.15 298.15 298.151 298.1511 298.1507 298.1506 298.1507 298.1506 298.1507 
4 298.15 298.15 298.151 298.1511 298.1507 298.1506 298.1507 298.1506 298.1507 
5 298.15 298.15 298.151 298.1511 319.7954 315.997 305.6565 310.4945 311.255 
6 298.15 298.15 298.151 298.1511 298.1507 298.1506 298.1507 298.1506 298.1507 
7 298.15 298.15 298.151 298.1511 298.1507 298.1506 298.1507 298.1506 298.1507 
8 298.15 298.15 298.151 298.1511 298.1507 298.1506 298.1507 298.1506 298.1507 

Table 2: Sample output data – Maximum compartment temperatures (K) 
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It is important to note that only one task network was developed to support the entire simulation 
study. Factors such as crew size, automation configuration, or scenario details (e.g., fire size or 
location, fire intensity) were specified as part of the configuration file used for each (set of) 
simulation run(s). Figure 1, re-printed from [5] is a screenshot of the experimenter’s interface that 
had been developed to enable the setup of each simulation run. In particular, this screen enabled 
the specification of how many crew numbers were available for various DC functions. Other 
screens were available to specify other simulation parameters. With this experimenter’s interface, 
it would be possible to investigate the impact of other levels of the aforementioned factors 
without changing the underlying task network model. 

 

 
Figure 1: Experimenter’s Interface for Specifying Crew Numbers 

2.2 Independent Variables 

To test the seven hypotheses identified in Section 1, a 3 x 2 x 2 factorial design was required to 
examine the main and interaction effects of automation level (full, medium, base), automation 
reliability (high, low), and scenario complexity (high, medium). An incomplete factorial design 
was used because it was not meaningful to consider the baseline option (which had only minimal, 
simple automation) with low automation reliability. Figure 2 illustrates the overall experiment 
design, and highlights the specific treatments that were excluded. 
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Figure 2. Design of Simulation Experiment 

Details of the three automation levels that were simulated were based on the options analysis 
reported in [4]. To highlight some of the key differences between the levels, full automation  
included flood detectors in all compartments as well as remote monitoring of liquid levels in 
tanks; medium automation included flood detectors in all compartments below the water line;  
while base automation relied on the physical presence of human operators in an affected 
compartment to detect flood location. To assist in flood response, full automation also included 
hull integrity sensors and a stress and load detection system that were not available for medium or 
base automation. In terms of fire response, full automation and medium automation both included 
automatic shutdown of the ventilation system to the affected section and automatic closure of 
bulkhead isolation valves, subject to the approval of the DC operator; for base automation, these 
two actions were performed by the DC operator or the Rapid Response Team. In addition, water 
mist systems were available to set and maintain boundaries around a fire only for full automation. 

Perhaps more importantly, the three automation levels were coupled with three different crew 
sizes. Table 3, adapted from [5, p.20], shows for each automation level, the number of crew 
members who were assigned to each DC function. In reality, the ship would sail with many 
additional crew members who are responsible for non-DC functions. However, these other crew 
members were not included in this simulation because the objective of this study was only to 
examine the effectiveness of DC. 
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 Base Automation 
(Large Crew) 

Medium Automation 
(Medium Crew) 

Full Automation 
(Small Crew) 

Total Crew – available 
for Damage Control 160 120 70 

Command Team 3 3 2 
Damage Control –
HQ1 5 4 2 

Watch Keepers 2 2 1 
Rapid Response 4 4 4 
Forward Section Base 18 12 10 
After Section Base 18 12 10 
Section Base 3 11 12 0 
Casualty Power 6 4 2 
Switch Board 
Operators 2 2 0 

Casualty Clearing 19 10 6 
ERT 20 16 8 
Manning pool 52 39 25 

Table 3: Crewing Levels Corresponding to Each Automation Level 

Automation reliability was simulated at 100% (high) and 75% (low). One literature review has 
shown that with decreasing automation reliability to below a level of around 70%, diagnostic 
monitoring was worse than had the human not used the automation at all [12]. Another literature 
review found that there was a level of automation reliability (ranging from 90% and 70% to 60% 
depending on the system and context) at which trust in automation dropped off sharply [13]. 
Therefore, while automation had the potential to improve operator safety (e.g., by enabling fire 
suppression with no or few human operators on scene) and to reduce task times, it was important 
to acknowledge in the simulation model that automation was fallible, and that a minimal level of 
automation reliability was required to warrant the appropriate use of automation.       

At both levels of scenario complexity, two fires were simulated in the same two compartments of 
the ship. However, the high complexity of the scenario was characterized by flooding induced by 
a hull breach that was both deeper (2.0 m vs. 1.0 m below the water line) and larger (15 cm vs. 10 
cm in diameter) than the medium complexity scenario. In addition, the high complexity scenario 
included 20 casualties, while the medium complexity scenario included zero casualties.  

Although the entire data set from the original study included additional experimental conditions 
that varied the contextual variables of fire intensity and construction material permeability, these 
variables were not of primary interest. Therefore, the current analysis considered only low-
intensity (i.e., 100 kW) fire in the medium complexity scenario and only high-intensity (i.e., 1000 
kW) fire in the high complexity scenario. The medium and high complexity scenarios already 
differed in terms of the hull breaches  and the number of casualties . It was reasonable to extend 
these differences to include fires of low versus high intensity in the medium versus high 
complexity scenarios, respectively. This helped to ensure that the two scenarios differed in terms 
of the demand for fire response as well as the demand for flood response. In addition, the current 
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analysis examined the output data for only one level of construction material permeability (i.e., 
2%).  

2.3 Dependent Variables 

In terms of simulation outputs, fire response was measured in terms of the following 12 variables, 
as reported in [5]: 

 Times to extinguish fire in compartments 139, 1591 (V1, V2)2 

 Times to confirm extinction of fire in compartments 139, 159 (V3, V4) 

 Times to contain fire in compartments 139, 159 (V5, V6) 

 Times to bound fire in compartments 139, 159 (V7, V8) 

 Time to isolate power for personnel safety (V9) 

 Number of compartments affected by smoke (V10) 

 Number of compartments affected by heat (V11) 

 Number of compartments affected by toxicity (V12) 

V1 to V9 were extracted from the type of simulation timelines shown in Table 1, while V10 to 
V12 were based on the type of data tables shown in Table 2. When there is a large number of 
output variables, and statistical tests are applied to each of the variables individually, then given 
the probability of Type I error associated with each test, it becomes very likely that at least one (if 
not more) of the tests will produce a statistically significant result even when one does not really 
exist (cf., the Bonferroni inequality in [14]). Therefore, it is important to derive meaningful 
aggregate measures based on the available data to reduce the number of statistical tests required. 
To this end, new dependent variables (DVs) were defined for this study by aggregating the 
original output variables as follows: 

 DV1: Time to complete fire response (i.e., the simulation time at which the last of the tasks 
corresponding to V1-V9 above was completed); 

 DV2: Number of compartments affected by fire (i.e., the number of compartments in the 
superset of compartments corresponding to V10-V12 above). 

Annex A presents the raw data for these two DVs, but the summary statistics are presented in 
Table 4 below. For the number of compartments affected by fire (i.e., by smoke, heat, or toxicity), 
the following operationally relevant thresholds [5] were used.  For smoke, a compartment was 
considered to be affected if there is at least 5 x 10-5 kg soot/ kg gas. For heat, a compartment was 
                                                      
1 Compartments 139 and 159 were the locations of the simulated fires. 
2 V1 and V2 are variable numbers. A number is assigned to each of the simulation output variables, to 
make it easier to refer to these variables throughout the report. 
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considered to be affected if the temperature was at least 85 °C or 358 K which represented the 
maximal temperature for military standard computer hardware. For toxicity, a compartment was 
considered to be affected if the level of carbon monoxide was at least 80 parts per million (ppm), 
which was the level at which it becomes hard to breathe and eyes start to sting. There were 77 
compartments in the partial ship model used in this simulation experiment. 

 

Automation Full Full Full Full Med Med Med Med Base Base 
Reliability 100% 100% 75% 75% 100% 100% 75% 75% 100% 100% 
Scenario Med High Med High Med High Med High Med High 

DV1: Time to complete fire response (seconds) 

Mean 774 782 1282 1421 1817 1817 2033 2052 1996 2037 
Std Dev 130 145 315 425 209 226 379 381 243 251 

DV2: Number of compartments affected by fire 

Mean 4.1 13.6 20.7 40.9 48.8 54.4 49.3 54.8 48.2 54.8 
Std Dev 9.6 16.2 13.1 9.5 1.2 0.8 2.2 0.8 1.2 0.4 

Table 4: Summary statistics for the fire-related dependent variables 

Similarly, flood response was originally measured in terms of the following variables as 
reported in [5]: 

 Time to contain flood in compartment 1643 (V13); 

 Time to remove / manage source of flood in compartment 164 (V14); 

 Number of compartments affected by water (V15). 

V13 and V14 were extracted from the type of simulation timelines shown in Table 1, while V15 
was based on the type of data tables shown in Table 2. For all of the simulation runs in each 
experimental condition, exactly one compartment was affected by water (cf., V15). Therefore, 
V15 was not particularly diagnostic. The following DVs were defined to assess the effectiveness 
of the flood response: 

 DV3: Time to complete flood response (i.e., the simulation time at which the last of the tasks 
corresponding to V13-V14 above was completed); and 

 DV4: Maximal height of flood water (i.e., instead of V15 which always had a value of one, 
this measure assessed the severity of the flood in that affected compartment) 

                                                      
3 Compartment 164 was the location of the simulated hull breach (i.e., source of flood). 
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Annex A presents the raw data for these two DVs, but the summary statistics are presented in 
Table 5 below. 

Automation Full Full Full Full Med Med Med Med Base Base 
Reliability 100% 100% 75% 75% 100% 100% 75% 75% 100% 100% 
Scenario Med High Med High Med High Med High Med High 

DV3: Time to complete flood response (seconds) 

Mean 1843 1828 1522 1683 1977 2033 2090 2058 1704 1774 
Std Dev 217 256 382 408 177 172 253 239 200 239 

DV4: Maximum height of flood water (metres) 

Mean 2.36 2.34 1.94 2.15 2.53 2.60 2.68 2.64 2.18 2.27 
Std Dev 0.28 0.33 0.49 0.53 0.23 0.22 0.32 0.31 0.26 0.31 

Table 5: Summary statistics for the flood-related dependent variables 

Conceptually, each of the four DVs of: 1) time to complete fire response, 2) number of 
compartments affected by fire, 3) time to complete flood response, and 4) maximal height of 
flood water provide different but complementary ways to assess the effectiveness of DC on a 
naval platform. The four DVs were expected to be moderately correlated: on one hand, shorter 
response times are likely to be associated with smaller extents of (fire or water) damage; on the 
other hand, depending on the strategies employed by the crew and automation (e.g., performing 
different tasks in series or in parallel), similar response times could still have different damage 
outcomes. 
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3 Results 

3.1 Multivariate analysis 
A multivariate analysis of variance (MANOVA) was conducted using a statistical package called 
SPSS 17.0 to investigate the main and interaction effects of automation level, automation 
reliability, and scenario complexity on DC effectiveness, where DC effectiveness was assessed by 
the four DVs of time to complete fire response, number of compartments affected by fire, time to 
complete flood response, and maximal height reached by flood water. The MANOVA revealed 
significant main effects of automation level (Pillai’s trace4 = 1.094, F (8,476) = 71.915, p = 
0.000, p

2 = 0.547), automation reliability (Pillai’s trace = 0.452, F (4,237) = 48.850, p = 0.000, 
p

2 = 0.452), and scenario complexity (Pillai’s trace = 0.284, F (4,237) = 23.512, p = 0.000, p
2 = 

0.284). The MANOVA also revealed significant two-way interaction effects of automation level 
* automation reliability5 (Pillai’s trace = 0.340, F (4,237) = 30.500, p = 0.000, p

2 = 0.340), and 
automation level * scenario complexity (Pillai’s trace = 0.080, F (8,476) = 2.475, p = 0.012, p

2 = 
0.040), as well as a significant three-way interaction effect of automation level * automation 
reliability * scenario complexity (Pillai’s trace = 0.041, F (4,237) = 2.548, p = 0.040, p

2 = 
0.041).  

Although the above main and interaction effects were statistically significant (p < 0.05), the 
MANOVA also produced partial eta-squares ( p

2) as indices to describe the "proportion of total 
variation attributable to (each) factor, partialling out (excluding) other factors from the total 
nonerror variation" [16, p. 918]. This examination revealed a medium effect size ( p

2 > 0.50) [17, 
18] for automation level, and small effect sizes ( p

2 > 0.20) for automation reliability, scenario 
complexity and for automation level * automation reliability. The effect sizes for the remaining 
two-way and three-way interactions were too small to have any practical significance ( p

2 < 0.05).  

3.2 Univariate analyses 
Since the MANOVA found significant main effects of all three independent variables, and a 
significant interaction effect of automation level * automation reliability, tests of between-subject 
effects were conducted for each of the four DVs. To prevent inflation of the Type I error rate, a 
Bonferroni adjustment [14] was made by dividing the original alpha level (0.05) by four to arrive 
at an adjusted alpha level (0.0125) for the univariate tests corresponding to the four DVs. 

As shown previously in Figure 2, this study used an incomplete factorial design where two of the 
twelve possible treatments had zero observations, making it quite difficult to implement and to 
interpret a 3 x 2 x 2 Analysis of Variance (ANOVA). Therefore, for each for the four DVs, two 
complementary ANOVAs were conducted where each ANOVA covered a subset of the 
treatments as shown in Figure 3 and Figure 4. 

                                                      
4 Although Wilk’s lambda is the more commonly used test statistic for a MANOVA, the Pillai’s trace is 
considered to be more robust when the homogeneity of covariances assumption is violated (Box’s M = 
1386.906, F(90, 62778) = 14.376, p=0.000). [15]  
5 * implies interaction between components. 
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Figure 3. 2x2x2 ANOVA on effects of automation level, reliability, and scenario  

Essentially, ANOVA #1 (as shown in Figure 3) enabled an investigation of the main effects of all 
three independent variables (automation level, automation reliability, and scenario complexity), 
and their two-way and three-way interactions. However, it does not afford a comparison between 
the base automation level and the other two automation levels. In a way, the base automation 
level (tested only at the high automation reliability of 100%) may be viewed as a control 
condition to which the other conditions can be contrasted. On the other hand, ANOVA #2 (as 
shown in Figure 4) does afford a comparison between all three automation options (full, medium 
and base). It also affords opportunities for further investigation of the effect of scenario 
complexity, and the two-way interaction between automation level and scenario complexity. 
Since two ANOVAs were conducted for each DV, a further Bonferroni adjustment was made to 
prevent inflation of the Type I error. Therefore, for each ANOVA reported below, the alpha level 
was ultimately set at 0.0125 / 2 = 0.006. 
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Figure 4. 3x2 ANOVA on effects of automation level and scenario  

3.2.1 Time to complete fire response 

For the time to complete fire response (DV1), ANOVA #1 which considered all three factors of 
automation level, automation reliability, and scenario complexity revealed significant main 
effects of automation level (F (1,192) = 426.798, p = 0.000), and of automation reliability (F 
(1,192) = 91.005, p = 0.000), and a significant two-way interaction effect of automation level * 
automation reliability (F (1,192) = 17.302, p = 0.000). No significant main or interaction effect 
associated with scenario complexity was found. Figure 5 presents the means and 95% confidence 
intervals (CIs) for DV1 as functions of automation level and automation reliability. It shows that 
the full automation level outperformed the medium automation level, and high automation 
reliability outperformed medium automation reliability.  

Two independent sample t-tests were performed to examine further the interaction between 
automation level and automation reliability: At both the medium automation level and the full 
level, performance was significantly better for high reliability than for low reliability (t (78.097) = 
-3.675, p = 0.000 and t (61.590) = -10.118, p = 0.000 respectively)6. In other words, the 

                                                      
6 One would have expected the degrees of freedom for each of these independent sample t-tests to be 98, 
since there were 50 observations in each of the two experimental conditions that were being compared. 
However, the t-test assumes equal variances, and this assumption was violated in both cases as per the 
Levene’s test (p = 0.000 in both cases). As a result, the Behren-Fisher T statistic needed to be used instead 
of t. The statistic T is distributed approximately as t, but on fewer degrees of freedom as determined by the 
Welch-Satterthwaite solution (or similar) [19, p.30]. Please note that SPSS 17 automatically computed 
similar adjustments to the degrees of freedom for all subsequent t-tests, which were applied whenever the 
assumption of equal variances was violated. 
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interaction between automation level and automation reliability was ordinal, but automation 
reliability had a more pronounced effect on the full automation level (where mean difference 
between reliability levels was 573 seconds) than on the medium automation level (where mean 
difference between reliability levels was 225 seconds).  

 

Effects of Automation Level and Reliability on 
Fire Response Time

0

500

1000

1500

2000

2500

Med Full

Automation Level

Fire 
Response 

Time 
(sec)

High Reliability
Low Reliability

 
Figure 5: Effects of Automation Level and Automation Reliability on Fire Response Time 

ANOVA #2, which considered only the two factors of automation level and scenario complexity, 
revealed a single significant main effect of automation level (F (2,144) = 520.752, p = 0.000). No 
significant main or interaction effect associated with scenario complexity was found. Post hoc 
Games-Howell7 tests [20] found significant differences (p = 0.000) between each pair of 
automation levels, where full automation outperformed medium automation, and medium 
automation outperformed base automation. These differences are highlighted in Figure 6. 

                                                      
7 The Games-Howell test was used instead of the more commonly used Tukey test because the assumption 
of equal variances was violated as per the Levene’s test (F (2,147) = 6.192, p = 0.002). 
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Figure 6: Effect of Automation Level on Fire Response Time, At High Automation Reliability 

3.2.2 Time to complete flood response 
For the time to complete flood response (DV3), ANOVA #1 revealed a significant main effect of 
automation level (F (1,192) = 67.668, p = 0.000) and a significant two-way interaction effect of 
automation level * automation reliability (F (1,192) = 14.969, p = 0.000). No significant main or 
interaction effect associated with scenario complexity was found. Figure 7 shows the effects of 
automation level and automation reliability, where the full automation level outperformed the 
medium automation level.  

Two independent sample t-tests were performed to examine further the interaction between 
automation level and automation reliability: At the medium automation level, no significant 
difference was found between levels of automation reliability. At the full automation level, 
performance was better at the low reliability level (t (79.345) = 3.546, p = 0.001). This result was 
counter-intuitive, but no specific explanation could be found except that (as would be expected) 
there was more variance in the results for full automation with low reliability than for full 
automation with high reliability (see Figure 8).  
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Figure 7: Effects of Automation Level and Automation Reliability on Flood Response Time 
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Figure 8: Time to Complete Flood Response for Full Automation with High vs. Low Reliability 

 
ANOVA #2 revealed a single significant main effect of automation level (F (2,144) = 520.752, p 
= 0.000). No significant main or interaction effect associated with scenario complexity was 
found. Post hoc Tukey8 tests found significant differences between the medium automation level 
and base automation level (p = 0.000), and between the medium automation level and full 
automation level (p = 0.000). These differences are highlighted in Figure 9, which shows that 
                                                      
8 The Tukey test was used to investigate differences between automation levels for DV3 because the 
assumption of equal variances was not violated as per the Levene’s test (F (2,147) = 1.214, p = 0.300). 
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both the base automation level and the full automation level outperformed the medium 
automation level. No significant difference was found between the full automation level and base 
automation level. 

 
Figure 9: Effect of Automation Level on Flood Response Time, At High Automation Reliability 

3.2.3 Number of compartments affected by fire 
For the number of compartments affected by fire (DV2), ANOVA #1 revealed significant main 
effects of automation level (F (1,192) = 655.022, p = 0.000), of automation reliability (F (1,192) 
= 80.047, p = 0.000), and of scenario complexity (F (1,192) = 66.119, p = 0.000). In addition, 
significant two-way interaction effects were found for automation level * automation reliability 
(F (1,192) = 73.876, p = 0.000), and for automation level * scenario complexity (F (1,192) = 
13.823, p = 0.000). Figure 10 shows the effects of automation level and automation reliability, 
where the full automation level outperformed the medium automation level, and high reliability 
outperformed low reliability. Two independent sample t-tests were performed to examine further 
the interaction between automation level and automation reliability: At the medium automation 
level, no significant difference was found between levels of automation reliability. At the full 
automation level, performance was better at the high reliability level (t (98) = -7.487, p = 0.000). 

Figure 11 shows the effects of automation level and scenario complexity on the number of 
compartments affected by fire, where the full automation level outperformed the medium 
automation level, and where performance was better in the medium complexity scenario than in 
the high complexity scenario. Two independent sample t-tests were also performed to examine 
further the interaction between automation level and scenario complexity: At both the medium 
automation level and the full level, performance was significantly better in the medium 
complexity scenario than in the high complexity scenario (t (98) = -20.051, p = 0.000 and t 
(90.454) = -4.417, and p = 0.000, respectively). In other words, the interaction between 
automation level and scenario complexity was ordinal, but scenario complexity had a more 
pronounced effect on the full automation level (where mean difference between scenarios was 
14.8 compartments) than on the medium automation level (where mean difference between 
scenarios was 5.5 compartments).  
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Figure 10: Effects of Automation Level and Reliability on Compartments Affected by Fire 
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 Figure 11: Effects of Automation Level and Scenario on Compartments affected by Fire 

ANOVA #2 revealed significant main effects of automation level (F (2,144) = 508.392, p = 
0.000) and of scenario complexity (F (1,144) = 32.779, p = 0.000). No significant interaction 
effect of automation level * scenario complexity was found. Figure 12 shows the main effect of 
scenario complexity, where performance was better in the medium complexity scenario than in 
the high complexity scenario. To further investigate the main effect of automation level, post hoc 
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Tukey9 tests found significant differences between the full automation level and medium 
automation level (p = 0.000), and between the full automation level and base automation level (p 
= 0.000). No significant difference was found between the medium automation level and base 
automation level. Figure 13 shows the main effect of automation level, and highlights significant 
differences between specific automation levels.  
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Figure 12: Effect of Scenario Complexity on Compartments Affected by Fire 

 
Figure 13: Effect of Automation Level on Compartments Affected by Fire, At High Reliability 

                                                      
9 Similar to the case of DV1, the Games-Howell test was used because the assumption of equal variances 
was violated as per the Levene’s test (F (2,147) = 101.816, p = 0.000). 
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3.2.4 Maximal height of flood water 
For maximal height of flood water (DV4), ANOVA #1 revealed a significant main effect of 
automation level (F (1,192) = 68.449, p = 0.000) and a significant two-way interaction effect of 
automation level * automation reliability (F (1,192) = 15.422, p = 0.000). No significant main or 
interaction effect associated with scenario complexity was found. Figure 14 shows the effects of 
automation level and automation reliability, where the full automation level outperformed the 
medium automation level. Two independent sample t-tests were performed to examine further the 
interaction between automation level and automation reliability: At the medium automation level, 
no significant difference was found between levels of automation reliability. At the full 
automation level, performance was better at the low reliability level (t (79.376) = 3.556, p = 
0.001). As with the time to complete flood response, this result was counter-intuitive, but no 
specific explanation could be found except that as would be expected, there was more variance in 
the results for full automation with low reliability than for full automation with high reliability 
(see Figure 15).10  
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Figure 14: Effects of Automation Level and Reliability on Maximum Floodwater Height 

ANOVA #2 revealed a significant main effect of automation level (F (2,144) = 20.096, p = 
0.000). No significant main or interaction effect associated with scenario complexity was found. 
Post hoc Tukey11 tests found significant differences between the medium automation level and 
base automation level (p = 0.000), and between the medium automation level and full automation 
level (p = 0.000). No significant difference was found between the full automation level and base 
automation level. These findings are presented in Figure 16, which shows that both the full and 
base automation levels outperformed the medium automation level. 

 

                                                      
10 It would be prudent, before further application and extension of the simulation model, to investigate the 
possibility of a software bug causing this pattern of results. 
 
11 Similar to the case of DV2, the Tukey test was used because the assumption of equal variances was not 
violated as per the Levene’s test (F (2,147) = 1.274, p = 0.283). 
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Figure 15: Maximum Floodwater Height for Full Automation with High vs. Low Reliability 

 
Figure 16: Effect of Automation Level on Floodwater Height, At High Automation Reliability 

3.2.5 Comparison of five automation options 

One other reasonable perspective on the two factors of automation level and automation 
reliability would be to view each combination of the two factors as a distinct and meaningful 
automation option to be compared directly with the other combinations. This comparison could 
be of practical value because each of these options could potentially represent the product 
offering from a particular vendor at a specific cost. For example, vendor A may propose a very 
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comprehensive and sophisticated set of DC automation that had relatively low reliability (i.e., 
full-automation-low-reliability) at price point X; while vendor B may propose a less ambitious set 
of DC automation that had relatively high reliability (i.e., medium-automation-high-reliability) at 
a similar price point Y; and vendor C may propose similarly comprehensive and powerful 
automation as vendor B but with relatively low reliability (i.e., medium-automation-low-
reliability) and at a lower price point Z. It would be important to assess the effectiveness of the 
options proposed by different vendors (e.g., A, B, C) to enable further cost-benefit analysis. In 
fact, direct comparison of the five tested combinations of automation level and automation 
reliability may yield results that are more readily interpreted and acted upon by decision makers 
than comparisons that speak to the main and interaction effects of the two factors. 

As a result, a third type of ANOVA (as illustrated in Figure 17) was conducted to investigate 
potential differences between the five tested automation options, where each “option” is defined 
by a specific automation level (full, medium, or base) as well as a specific automation reliability 
(i.e., high or low). Since ANOVA #3 can be seen as an alternative analysis to the ANOVA results 
reported in Sub-Sections 3.2.1-3.2.4, a Type I error rate of 0.05 / 4 = 0.125 was employed for the 
test corresponding to each of the four DVs. 

 
 Figure 17. 5x2 ANOVA on effects of automation option and scenario 

For three of the four DVs (except DV2 – number of compartments affected by fire), ANOVA #3 
revealed only a significant main effect of automation option. Figure 18 shows the means and 95% 
CIs for the time to complete fire response (DV1), with the five automation options ordered from 
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the best-performing to the worst-performing. Post hoc Games-Howell12 tests indicated significant 
differences between all but one pair of automation options. Specifically, the two worst-
performing options (i.e., base automation with high reliability, and medium automation with low 
reliability) were not significantly different. 

 
Figure 18: Comparison of Automation Options by Fire Response Time 

Figure 19 shows the means and 95% CIs for the time to complete flood response (DV3), with the 
five automation options ordered from the best-performing to the worst-performing. Post hoc 
Games-Howell tests indicated no significant difference between three pairs of adjacent options 
(i.e., best and second-best option, second-best and third-best option, and the two worst options), 
but significant differences between all other pairs of options. 

Figure 20 shows the means and 95% CIs for the maximal height reached by flood water (DV4), 
with the five automation options ordered from the best-performing to the worst-performing. 
Similar to the results for the time to complete flood response, post hoc Games-Howell tests 
indicated no significant difference between three pairs of adjacent options (i.e., best and second-
best option, second-best and third-best option, and the two worse options), but significant 
differences between all other pairs of options. 

For the number of compartments affected by fire (DV2), ANOVA #3 found significant main 
effects of the automation option (F (4,240) = 291.111, p = 0.000) and of scenario complexity (F 
(1,240) = 89.219, p = 0.000), as well as a significant interaction effect of automation option * 
scenario complexity (F (4,240) = 7.645, p = 0.000). Figure 21 shows the means and 95% CIs for 
DV2, with the five automation options ordered from the best-performing to the worst-performing. 
Post hoc Games-Howell tests indicated no significant differences between the three worst-
performing options, but significant differences between all other pairs of options. 

 
                                                      
12 The Games-Howell test was used for all post hoc pairwise comparisons associated with ANOVA #3 
because for each of the four DVs, the assumption of equal variances was violated as per the Levene’s test 
(F (4,245) > 9.004, p = 0.000). 
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Figure 19: Comparison of Automation Options by Flood Response Time 
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Figure 20: Comparison of Automation Options by Maximum Floodwater Height 
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Figure 21: Comparison of Automation Options by Compartments Affected by Fire 

As for the main effect of scenario complexity, performance in the medium complexity scenario 
(mean = 34.2 compartments) was found to be better than performance in the high complexity 
scenario (mean = 43.7 compartments). Five independent sample t-tests were performed to further 
investigate the interaction between the automation option and scenario complexity: For each 
automation level, performance was better in the medium complexity scenario than in the high 
complexity scenario (p < 0.05), so the interaction between automation option and scenario 
complexity was ordinal. However, the mean differences between levels of scenario complexity 
varied from 20.2 compartments (in the case of full automation with low reliability) to 5.5 
compartments (in the case of medium automation with low reliability). 

3.3 Summary 

In summary, every relevant multivariate or univariate test that was conducted indicated a 
significant main effect of automation level. The main effect of automation reliability was 
consistently found for fire-related measures (DV1, DV3) but not for flood-related measures 
(DV2, DV4). The main effect of scenario complexity was found for only one fire-related measure 
(i.e., DV3 - number of compartments affected by fire). 

With regards to automation level as a standalone factor, the full automation level outperformed 
the medium and base automation levels in fire response; while the medium automation level 
underperformed relative to the full and base automation levels in flood response. With regards to 
automation reliability as a standalone factor, automation with high reliability outperformed 
automation with low reliability on fire-related measures (DV1, DV2), but not on flood-related 
measures (DV3, DV4). With regards to scenario complexity as a standalone factor, results from 
all three types of ANOVAs found significantly better performance in the medium complexity 
scenario than in the high complexity scenario but only in terms of number of compartments 
affected by fire (DV2).  
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Every relevant multivariate or univariate test that was conducted also indicated a significant 
interaction between automation level * automation reliability. On the fire-related measures (DV1, 
DV2), automation reliability had greater effects on performance at the full automation level than 
at the medium automation level. Higher performance was observed at high reliability than at low 
reliability, but the performance differences between reliability levels were not always significant 
(e.g., no significant difference on DV2 at the medium automation level). On the flood-related 
measures (DV3, DV4), performance differences between reliability levels were only significant at 
the full automation level, where performance was better at low reliability. 

A significant interaction between automation level * scenario complexity was found for only one 
measure (i.e., DV2 – number of compartments affected by fire). Performance was better in the 
medium complexity scenario than in the high complexity scenario, and scenario complexity had a 
greater effect at the full automation level than at the medium automation level. On a similar note, 
when the factors of automation level and automation reliability were used in combination to 
produce five complete, distinct definitions of automation options (cf., ANOVA #3), a significant 
interaction between automation option * scenario complexity was found for the same DV. 
Performance was always significantly better in the medium complexity scenario than in the high 
complexity scenario, but the magnitudes of the performance differences between scenarios varied 
across the automation options. 

Finally, when five distinct automation options were defined based on a combination of 
automation level and automation reliability and these options were compared, a main effect of 
automation option was found for all four DVs. In terms of fire-related measures (DV1, DV2), FH 
performed best, and FL performed second-best, while the remaining three options performed 
more poorly. In terms of flood-related measures (DV3, DV4), the five automation options could 
be divided into two groups, with Full-Automation-High-Reliability (FH), Full-Automation-Low-
Reliability (FL), and Base-Automation-High-Reliability (BH) in the higher-performing group, 
and Medium-Automation-High-Reliability (MH) and Medium-Automation-Low-Reliability (ML) 
in the lower-performing group. 
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4 Discussion  

This chapter will begin by re-visiting the seven hypotheses presented in Sub-Section 1.2 in light 
of the evidence gathered in Section 3, and noting the implications of the acceptance or rejection 
of these hypotheses. 

4.1 Implications re: Automation Levels 

Hypothesis (1): Full automation performs better than medium automation and the baseline. 

For fire response (where good performance includes both a fast response time and fewer affected 
compartments), full automation did perform better than both medium automation and the baseline 
(refer to Figures 5, 6, 10, 13). For flood response (where good performance includes both a fast 
response time and less severe flooding), full automation did perform better than medium 
automation, but performed similarly to the baseline (refer to Figures 7, 9, 14, 16). 

Hypothesis (2): Medium automation performs better than the baseline. 

For fire response, there was some, incomplete evidence that medium automation performed better 
than the baseline (i.e., in terms of response time but not necessarily in terms of affected 
compartments) (refer to Figures 6, 13). For flood response, the available evidence pointed to the 
opposite situation where the baseline performed better than medium automation (refer to Figures 
9, 16). 

Looking across the evidence related to Hypotheses (1) and (2), investment in full automation 
appeared worthy of consideration because of its performance benefit over both of the other 
automation levels in fire response, and at least over the medium automation level in terms of 
flood response. Investment in full automation would be especially attractive if the life cycle costs 
associated with the advanced automation (as compared to the baseline) were comparable or lower 
than the life cycle costs associated with the large crew size required by the baseline (as compared 
to the much smaller crew size enabled by full automation). However, there was little support for 
investment in medium automation because overall, it did not seem to perform better than the 
baseline. 

4.2 Implications re: Automation Reliability 

Hypothesis (3): Full automation with high reliability performs better than medium automation 
with high reliability. 

In all aspects of DC, full automation with high reliability performed better than medium 
automation with high reliability.13 

                                                      
13 Sub-Sections 3.1-3.4 reported on the automation level * automation reliability interaction for all four 
DVs. The two t-tests that were reported for each DV investigated differences between reliability levels for 
each automation level. However, for each DV, two complementary t-tests were also conducted on the 
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Hypothesis (4): Full automation with low reliability performs better than medium automation 
with low reliability. 

In all aspects of DC, full automation with low reliability performed better than medium 
automation with low reliability.14 

Hypothesis (5): Medium automation with high reliability performs better than full automation 
with low reliability. 

There was no evidence to support this hypothesis. In fact, in all aspects of DC, full automation 
with low reliability performed better than medium automation with high reliability (see Figures 
18-21). 

Looking across the evidence related to Hypotheses (3)-(5), it appeared that automation level was 
a more important determinant of DC performance than automation reliability. It is important to 
keep in mind, however, that this study only examined two levels of automation reliability (100% 
vs. 75%), so it is possible that for automation with still lower reliability (i.e., < 75%), the benefit 
of advanced automation may start to become eroded by frequent automation failures. It would be 
more prudent to conclude that if multiple automation options all meet a reasonable threshold in 
terms of reliability, then more advanced automation would be expected to produce a higher level 
of performance.     

4.3 Implications re: Scenario Complexity 

Hypothesis (6): When scenario complexity is high (and heavy casualties are involved), full 
automation and the baseline perform better than medium automation. 

Regardless of scenario complexity, full automation performed better than medium automation in 
all aspects of DC (see Figures 5, 6, 7, 9, 10, 13, 14, 16). The baseline did perform better than 
medium automation for flood response (see Figures 9, 16). But medium automation performed 
better than the baseline for fire response. 15 

Hypothesis (7): When scenario complexity is medium (and no casualties are involved), full 
automation and medium automation perform better than the baseline. 
                                                                                                                                                              
differences between automation levels at each reliability level. At high automation reliability, each t-test 
indicated a significant difference between the medium automation level and the full automation level, 
where performance was better for the full automation level. 
14 As mentioned in the previous footnote, for each DV, a t-test was also conducted on the difference 
between automation levels at low reliability.  Each of these four t-tests indicated a significant difference 
between the medium automation level and the full automation level, where performance was better for the 
full automation level. 
15 In terms of fire response time (DV1), the difference between medium automation and the baseline can be 
seen in Figure 6 as there was no significant interaction between automation level * scenario complexity. In 
terms of number of compartments affected by fire (DV2), there was a significant interaction between 
automation level and scenario complexity. Therefore, an independent sample t-test was conducted at the 
high scenario complexity, to compare medium automation with the baseline. The t-test found a significant 
difference between the two automation levels (t (35.294) = -2.191, p = 0.035), where medium automation 
(mean = 54.4 compartments) performed better than the baseline (mean = 54.8 compartments). 
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Regardless of scenario complexity, full automation performed better than the baseline for fire 
response (see Figures 6, 11), but not for flood response where the two automation levels had 
similar performance (see Figures 9, 16). Contrary to the hypothesis, the baseline performed better 
than medium automation for flood response (see Figures 9, 16). But the results were mixed for 
fire response, where medium automation performed better than baseline in terms of fire response 
time (see Figure 6), but not in terms of affected compartments where performance was similar 
between the two automation levels (see Figure 13). 16 

Looking across the evidence related to Hypotheses (6) and (7), scenario complexity seemed to 
have little or no impact on the relative merits of the different automation levels. In fact, the 
complexity of a scenario (i.e., fire size, number of casualties, severity of hull breach) seemed to 
be less important than the breadth of the scenario – i.e., the inclusion of both fire and flood. 
Looking across the evidence related to all hypotheses, the two fire-related measures appeared 
correlated: In most cases, a higher performing automation level based on one measure was also 
higher performing based on the other measure; in the few remaining cases, a performance 
difference was noted in terms of fire response time but not in terms of affected compartments. 
The two flood-related measures appeared highly correlated, in that a higher performing 
automation level based on one measure was always higher performing based on the other 
measure. However, the performance results related to fire often followed a different pattern than 
the performance results related to flood. Therefore, it would be critical for future simulation 
experiments to use scenarios that involve both fire and flood, and to apply measures of 
performance related to both types of damage events. However, it may be sufficient to use only 
one measure related to fire (probably response time since that appeared more discriminatory) and 
only one measure related to flood. 

4.4 Limitations 

There were several noteworthy limitations to the current study: First, automation level and crew 
size were confounded – i.e., full automation was coupled with a small crew, medium automation 
with a medium crew, and base automation with a large crew. Although the assumption that as 
automation level increases, crew size will decrease is valid from a practical perspective (in 
reality, future naval platforms will be designed to operate with more advanced automation and 
smaller crews; and DC automation is often advocated as an enabler for crew size reduction), it 
was not possible to determine from the study whether the performance benefit observed at any 
one automation level was (primarily) due to the available automation or to the available crew. 
This limitation should not be of great concern at the full automation level, since performance was 
consistently high despite the small crew size. However, at the medium automation level, it may 
be informative to investigate if different crew sizes coupled with the same automation level 
would produce different performance. 

Second, automation level was only one of several possible distinctions that can be drawn between 
the design options that were tested and compared. The specific implementations of the full 
automation, medium automation, and the baseline were based on an in-depth study reported in 
[4], and the ordering of these options based on automation level should not be controversial. 
                                                      
16 An independent sample t-test was conducted at medium scenario complexity, to compare medium 
automation with the baseline. The t-test did not find a significant difference between the two automation 
levels (t (47.847 = 1.981, p = 0.053). 
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However, one might wonder if the different options were optimized for different purposes. For 
example, was one option optimized for fire response while another optimized for flood response? 
Or was one option designed for both fire and flood management while another option was 
designed for one type of event but not the other? Or did one option include automation that both 
provided information and acted on the environment, while another option provided information 
only (but relied on the human operators to take action), or vice versa? Before acting on the 
finding that full automation performed best, it would be important to probe deeper into where the 
medium automation fell short especially in terms of flood response. Perhaps a different variation 
of “medium” automation that included different mechanisms for flood management would 
produce a very different level of performance. Also, depending on what decision makers deem to 
be of higher or ultimate importance (i.e., fire response, flood response, or both), the relative 
merits of the tested options could be different. 

Third, as with all simulation experiments, the outputs were only as valid as the inputs that had 
been entered into the simulation. The current simulation was based on four years of extensive 
research into optimized crewing and damage control, including consultations with subject matter 
experts in various relevant disciplines (cf., [2]-[5]), as well as integration with a validated, 
physics based simulation of fire and smoke propagation (cf., [6]). However, where possible, it 
would be important to validate the simulation outputs using data from human-in-the-loop 
experiments, and to adjust and re-run the simulation where necessary. Given the size, complexity, 
and cost of naval platforms including their equipment and personnel, the conduct of live 
experiments at the scope of the current simulation study is highly unlikely. However, data 
gathered from experiments focusing on one or more specific aspects of damage control and 
optimized crewing can still be of tremendous value. For example, an experiment may be 
conducted to study the impact of automation failure on crew activities including the actual time 
required for the crew to perform specific actions that the failed automation would have 
performed, and the actual variance in the time required.  

Besides validation against empirical data, sensitivity analysis on key simulation parameters may 
be conducted to identify the ranges of input values over which the simulation study findings 
would remain unchanged. Then, even if a decision maker was not totally in agreement with or 
totally confident about the choices of input values used in the original simulation model, he/she 
could consider instead if what he/she believed or knew to be the true input values still fell within 
larger range of values over which the same conclusions could be drawn. In any case, steps had 
been taken to ensure that the input values used in the original simulation model were as realistic 
as possible; for example, all task timings in the current model had been validated by an 
experienced Marine Engineering Officer and an experienced Marine Engineering Operator (Petty 
Officer) who were employed in the Directorate of Maritime Ship Support. The development of 
the simulation model was also led by a retired naval officer (Lieutenant Commander) with 11 
years of experience, who was command-qualified and trained in damage control.  

Rather than thinking of the simulation model as a completely faithful representation of how an 
actual crew or an actual suite of DC automation would perform, it would be more appropriate to 
think of the simulation model as a decision aid intended to 1) make explicit knowledge or 
assumptions that were held implicitly by decision makers, 2) aid the integration and interpretation 
of these knowledge or assumptions, and 3) reveal gaps in knowledge or assumptions that would 
be needed to enhance future iterations of the model. The reality is that the reduced-size crews 
being considered have not yet been assembled, the DC automation being considered has not yet 
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been acquired, and the ships that these crews and automation are intended to operate do not yet 
exist, so no empirical data on the performance of these overall systems could be available. Yet 
decisions on crew sizes and automation still need to be made in the absence of such empirical 
data. With the help of a simulation model, it would at least be possible to distinguish between 
more or less promising options given what the decision makers believe to be the capabilities held 
by the human operators and/or automated systems, to track what and how specific options have 
been considered, and to identify constraints associated with each option. 

4.5 Future Research 

Based on the findings and limitations of the current simulation study, there are several interesting 
directions that can be pursued in future research, including: 

 Comparison of different automation types – this may take the form of automation for fire 
versus flood management, or “information” automation versus “action” automation (see [4] 
for detailed definitions); 

 Comparison of different crew sizes for the same automation configuration; 

 Sensitivity analysis on automation reliability as a key simulation parameter – instead of 
comparing only 100% automation reliability with 75% automation reliability, it may be 
valuable to explore a larger range of values and finer-grained comparisons between maximal 
and minimal values (e.g., 100%, 95%, 90% …. 50%) as this may help to determine a minimal 
acceptable value for automation reliability, or to determine a threshold value where the 
relative importance of automation level versus automation reliability begins to change; and 

 Sensitivity analysis on other simulation parameters – e.g., completion time for tasks 
performed by crew members, completion time for tasks performed by automation, error rates 
for tasks performed by crew members, time penalties for completion of previously failed 
tasks, as well as the variances associated with these parameters. 

Perhaps most importantly, it would be prudent to apply the simulation approach developed in the 
current study to investigate the impact of crew size and automation design on other (non-DC) 
naval functions. For example, simulation experiments can be performed to investigate optimized 
crewing for combat operations or combat systems engineering. In fact, it would be most 
important to simulate and compare the effectiveness of different crew and automation options on 
the operation of the entire ship, even if some or all of the functions may not be modelled in as 
much detail as was done for DC in the current study. 
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5 Conclusion 

The current simulation experiment demonstrated that amongst the factors of automation level, 
automation reliability and scenario complexity, automation level appeared to have the highest 
impact on DC effectiveness. Full automation (with small crew size) consistently produced a high 
level of performance. In contrast, medium automation (with medium crew size) performed well in 
fire response but poorly in flood response.  

It was important to consider both fire and flood both in the design of the DC scenarios and the 
selection of performance measures. Relative merits of the automation (and crew) configurations 
changed depending on whether a fire or flood-related measure was used. Instead of measuring 
and analyzing the large number of variables described in the original contract report [5] (i.e., 12 
fire-related variables and 3 flood-related variables for a total of 15 variables), it was feasible and 
informative to analyze only four aggregate variables (i.e., 2 fire-related variables and 2 flood-
related variables). In fact, it appeared that using only the two variables of total time to complete 
fire response and total time to complete flood response would be sufficient to identify all the 
significant effects found in this simulation experiment. This finding has the potential to simplify 
greatly the data collection and analysis for similar simulation experiments in the future.  

In addition, although one of the original motives for the development of this simulation was to 
explore the feasibility of integrating IPME (which modelled crew and automation activities) with 
FFSIM (which modelled the propagation of fire and smoke), both of the dependent variables that 
were deemed most informative (i.e., total time to complete fire response and total time to 
complete flood response) were produced by IPME rather than FSSIM. This finding has the 
potential to simplify the development of similar simulations in the future, by de-emphasizing the 
criticality of real-time integration between the IPME and FSSIM modelling tools if the primary 
purpose of a study is to evaluate crew performance (e.g., in terms of task completion times) or 
workload. Of course, integration with FSSIM can still be tremendously useful to explore other 
(especially design-related) factors. 

To inform decision making on the design or acquisition of future naval platforms, it would be 
most important to simulate different automation (and crew) options for other (non-DC) naval 
functions, and to develop integrated simulations that would enable comparison of automation 
(and crew) options for the whole ship. To support such a research effort, it would also be 
important to examine in greater detail different ways to define and compare different automation 
(and crew) options (e.g., by going beyond full, medium, or baseline automation, or by decoupling 
automation and crew size in future experiments).    
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Annex A Data Tables for Dependent Variables 

This annex contains the raw data for each of the four dependent variables that were 
analyzed. 

Automation Full Full Full Full Med Med Med Med Base Base 

Reliability 100% 100% 75% 75% 100% 100% 75% 75% 100% 100% 

Scenario Med High Med High Med High Med High Med High 

Run #           

1 732 1057 1236 1816 1688 1816 2261 1789 1868 1852 
2 758 847 1000 1136 1462 1815 2315 1984 2226 2267 
3 606 779 1180 801 1893 1828 1471 1757 2483 2273 
4 793 999 1687 733 1813 1941 2760 2197 2010 2028 
5 852 623 1289 2596 1557 1714 2111 2036 1964 2314 
6 896 873 797 1190 1941 1482 1937 2117 2067 1804 
7 624 856 1360 1867 1903 1588 1624 1430 2109 1490 
8 577 962 1568 1736 1882 1823 1641 2575 2266 1834 
9 718 490 1175 1503 1570 2133 2356 2151 1966 1864 

10 842 719 1347 872 1605 2084 2794 2118 2362 1657 
11 690 792 1486 1004 1766 2178 1694 1657 1838 2368 
12 823 762 1290 1472 1750 1928 1941 2072 2058 2053 
13 839 713 1766 1486 1474 1933 2465 1607 1905 2171 
14 988 703 1125 1580 2067 1539 1756 1759 1545 1922 
15 858 895 1813 1786 1909 2274 1838 2497 2090 1736 
16 646 585 830 1095 1599 1514 2565 2439 1719 2286 
17 825 1000 1604 1744 1986 1851 1727 2445 1896 2285 
18 575 868 1069 1395 1795 1663 1720 2093 2271 1989 
19 600 884 934 1626 2058 2066 2201 1840 1868 1772 
20 1008 613 1875 1518 1765 1544 1766 1740 2368 1972 
21 939 580 1404 1527 1799 1684 2482 1540 1957 2204 
22 847 718 1351 1523 1783 1895 1571 2791 1665 1999 
23 704 708 1040 793 2252 1982 1994 2858 1788 2321 
24 937 706 1001 1667 2234 1518 1969 1777 2017 2460 
25 665 819 812 1069 1872 1637 1863 2029 1594 1991 
           

Mean 774 782 1282 1421 1817 1817 2033 2052 1996 2037 
Std Dev 130 145 315 425 209 226 379 381 243 251 

Table A-1: Fire response completion time (in seconds) 
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Automation Full Full Full Full Med Med Med Med Base Base 

Reliability 100% 100% 75% 75% 100% 100% 75% 75% 100% 100% 

Scenario Med High Med High Med High Med High Med High 

Run #           

1 0 33 13 40 49 53 49 56 49 55 
2 0 33 0 14 48 54 54 55 48 55 
3 0 1 25 39 49 54 48 54 49 55 
4 0 33 11 29 49 53 49 54 49 55 
5 26 2 46 31 48 54 50 54 47 54 
6 0 0 23 43 49 54 49 54 47 55 
7 0 0 6 50 44 56 48 55 47 55 
8 0 0 40 48 49 53 50 54 49 54 
9 0 33 7 49 49 55 49 56 48 55 

10 0 1 30 38 51 54 48 55 49 55 
11 0 33 10 50 49 54 54 54 48 55 
12 25 33 38 52 49 55 53 54 50 55 
13 0 1 25 50 49 54 49 54 46 55 
14 0 0 5 44 49 56 46 56 49 55 
15 0 1 23 39 49 54 49 56 46 54 
16 0 0 23 37 49 55 46 55 48 54 
17 0 0 6 23 49 54 49 55 49 55 
18 0 0 21 52 50 55 48 55 50 55 
19 0 1 20 36 49 55 50 54 48 55 
20 0 33 32 40 48 55 49 55 49 55 
21 0 33 36 46 49 55 48 55 48 55 
22 0 3 42 32 49 54 50 54 49 54 
23 26 33 19 46 50 55 49 56 48 55 
24 0 33 10 50 49 54 53 54 49 55 
25 26 0 7 44 49 55 46 56 45 55 
           

Mean 4.1 13.6 20.7 40.9 48.8 54.4 49.3 54.8 48.2 54.8 
Std Dev 9.6 16.2 13.1 9.5 1.2 0.8 2.2 0.8 1.2 0.4 

Table A-2: Number of compartments affected by fire  
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Automation Full Full Full Full Med Med Med Med Base Base 

Reliability 100% 100% 75% 75% 100% 100% 75% 75% 100% 100% 

Scenario Med High Med High Med High Med High Med High 

Run #           

1 1963 1746 2182 1674 2101 2024 2302 1959 1287 1212 
2 1829 2221 984 1875 2019 2029 2145 2133 1828 1963 
3 2076 2193 1444 1878 2130 2148 1650 2082 1735 1709 
4 2117 1582 899 1798 2153 2131 2182 2162 1557 1952 
5 1876 1888 1333 1762 2134 1807 2407 2362 2139 1334 
6 1939 1817 904 2395 1850 1950 2041 2098 1415 1756 
7 1954 1807 1757 1689 2372 1818 1765 1700 1433 2007 
8 1725 2148 1308 943 1957 2043 1997 2130 1789 1790 
9 1997 2105 1714 1777 1903 2162 2069 2540 1616 1935 

10 2145 1950 1554 1942 1719 2326 1965 1802 1690 2080 
11 2347 1654 1554 1696 2266 2099 1718 1778 1538 2109 
12 1912 1688 1865 1805 1830 2294 2021 2306 1774 1467 
13 1711 1922 1840 930 2096 1892 2348 2033 2011 1844 
14 1799 1748 2144 1201 2011 1999 2018 2261 1793 1633 
15 1802 1527 1599 1437 2059 2176 2073 2456 1770 1753 
16 1473 1624 1773 1648 1812 1585 2096 1991 2011 1781 
17 1464 2168 1920 2200 1788 2263 2022 1725 1515 1999 
18 1842 1797 1743 2200 1860 2237 2167 1739 1784 1717 
19 1824 1820 914 1542 1885 1959 2080 1733 1737 1692 
20 1728 2167 1141 2373 2158 2028 2049 1834 1660 1310 
21 1355 1286 1898 1665 1864 1947 1543 1999 1628 1922 
22 1863 1951 1683 956 1640 1985 2083 2068 1579 1880 
23 1834 1924 1251 1143 1790 1920 2456 2077 1973 1875 
24 1805 1621 1564 1677 2033 1861 2562 2096 1723 1991 
25 1686 1345 1089 1879 1996 2140 2498 2378 1604 1626 
           

Mean 1843 1828 1522 1683 1977 2033 2090 2058 1704 1774 
Std Dev 217 256 382 408 177 172 253 239 200 239 

Table A-3: Flood response completion time (in seconds) 
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Automation Full Full Full Full Med Med Med Med Base Base 

Reliability 100% 100% 75% 75% 100% 100% 75% 75% 100% 100% 

Scenario Med High Med High Med High Med High Med High 

Run #           

1 2.51 2.23 2.79 2.14 2.69 2.59 2.95 2.77 1.64 1.54 
2 2.34 2.84 1.25 2.4 2.58 2.6 2.75 2.73 2.34 2.51 
3 2.66 2.81 1.84 2.4 2.73 2.75 2.11 2.66 2.22 2.18 
4 2.71 2.02 1.14 2.3 2.76 2.73 2.79 2.77 1.99 2.5 
5 2.4 2.42 1.7 2.25 2.73 2.31 3.08 3.03 2.74 1.7 
6 2.48 2.32 1.15 3.07 2.37 2.5 2.61 2.69 1.81 2.25 
7 2.5 2.31 2.25 2.16 3.04 2.32 2.26 2.17 1.83 2.57 
8 2.21 2.75 1.67 1.2 2.5 2.61 2.56 2.73 2.29 2.29 
9 2.56 2.69 2.19 2.27 2.44 2.77 2.65 3.26 2.07 2.48 

10 2.75 2.5 1.98 2.48 2.2 2.98 2.52 2.3 2.16 2.66 
11 3.01 2.11 1.98 2.17 2.9 2.69 2.2 2.27 1.96 2.7 
12 2.45 2.16 2.39 2.31 2.34 2.94 2.59 2.95 2.27 1.87 
13 2.19 2.46 2.35 1.18 2.68 2.42 3.01 2.6 2.57 2.36 
14 2.3 2.23 2.74 1.53 2.57 2.56 2.58 2.9 2.29 2.09 
15 2.3 1.95 2.04 1.83 2.63 2.79 2.65 3.15 2.26 2.24 
16 1.88 2.07 2.27 2.11 2.32 2.02 2.68 2.55 2.57 2.28 
17 1.87 2.78 2.46 2.82 2.29 2.9 2.59 2.2 1.93 2.56 
18 2.36 2.3 2.23 2.82 2.38 2.86 2.78 2.22 2.28 2.2 
19 2.33 2.33 1.16 1.97 2.41 2.51 2.66 2.21 2.22 2.16 
20 2.21 2.78 1.45 3.04 2.76 2.6 2.62 2.35 2.12 1.67 
21 1.73 1.64 2.43 2.13 2.38 2.49 1.97 2.56 2.08 2.46 
22 2.38 2.5 2.15 1.21 2.1 2.54 2.67 2.65 2.02 2.41 
23 2.35 2.46 1.59 1.45 2.29 2.46 3.15 2.66 2.53 2.4 
24 2.31 2.07 2 2.14 2.6 2.38 3.28 2.68 2.2 2.55 
25 2.16 1.72 1.39 2.4 2.56 2.74 3.2 3.05 2.05 2.08 
           

Mean 2.36 2.34 1.94 2.15 2.53 2.60 2.68 2.64 2.18 2.27 
Std Dev 0.28 0.33 0.49 0.53 0.23 0.22 0.32 0.31 0.26 0.31 

Table A-4: Maximum height of flood water (in m) 
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List of symbols/abbreviations/acronyms/initialisms  

ANOVA Analysis of Variance 

ARP Applied Research Project 

BH Base Automation with High Reliability 

CI Confidence Interval 

DC Damage Control 

DRDC Defence Research & Development Canada 

DV Dependent Variable 

DV1 Dependent Variable 1: Fire Response Time 

DV2 Dependent Variable 2: Number of Compartments Affected by Fire 

DV3 Dependent Variable 3: Flood Response Time 

DV4 Dependent Variable 4: Maximal Floodwater Height 

FL Full Automation with Low Reliability 

FH Full Automation with High Reliability 

FSSIM Fire and Smoke Simulator 

IPME Integrated Performance Modelling Environment 

MANOVA Multivariate Analysis of Variance 

ML Medium Automation with Low Reliability 

MH Medium Automation with High Reliability 

US United States 
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