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Abstract

The goal of the Cosmic Ray Inspection and Passive Tomography (CRIPT) for Special Nu-
clear Material (SNM) Detection project is to design, build and test a large-scale muon
scattering tomography (MST) system for detecting SNM and dense radiation-shielding ma-
terials like lead. Measuring the momenta of muons on an event-by-event basis is a critical
part of MST as it reduces the required detection times significantly compared to making no
momentum measurements. This paper describes improved algorithms for the estimation
of muon momenta. Improved algorithms were required due to modifications of the CRIPT
design: the spectrometer height had to be reduced from 2.0 m to 1.0 m. After investigating
several momentum estimation algorithms, a Bayesian estimator, using either flat or cosmic
ray muon priors, was found to be the best. These studies also resulted in a re-design of
CRIPT’s muon spectrometer: the number of scattering and detector layers was reduced
from four to two, and the thickness of each iron scattering layer was increased from 5 cm
to 10 cm.

Résumé

L’objectif du projet Inspection et tomographie passive par rayonnements cosmiques (CRIPT,
de l’anglais Cosmic Ray Inspection and Passive Tomography) pour les matières nucléaires
spéciales (MNS) est de concevoir, de construire et de mettre à l’essai un système de tomo-
graphie par diffusion de muons (TDM) à grande échelle destiné à la détection des matières
nucléaires spéciales (MNS) et des matériaux denses, comme le plomb, utilisés comme blin-
dage contre le rayonnement. La mesure de la quantité de mouvement des muons événement
par événement est un élément essentiel de la TDM, car elle permet de réduire de façon im-
portante le temps de détection en comparaison d’une méthode ne faisant pas appel à une
telle mesure. Le présent article décrit les algorithmes améliorés destinés à l’estimation de
la quantité de mouvement des muons. De tels algorithmes améliorés étaient nécessaires
en raison des modifications apportées à la conception du système CRIPT : la hauteur du
spectromètre a dû être réduite de 2,0 m à 1,0 m. Après avoir évalué plusieurs algorithmes
d’estimation de la quantité de mouvement, nous avons déterminé que le meilleur choix était
un estimateur bayésien appliquant une loi de probabilité a priori uniforme ou correspon-
dant aux muons engendrés par le rayonnement cosmique. Ces études ont également mené
à une re-conception du spectromètre à muons du système CRIPT : nous avons fait passer
de quatre à deux le nombre de couches de diffusion et de couches de détecteurs, et nous
avons fait passer de 5 cm à 10 cm l’épaisseur de chaque couche de diffusion en fer.
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Executive summary

Muon momentum reconstruction algorithms for the
CRIPT spectrometer

Pierre-Luc Drouin, David Waller; DRDC Ottawa TM 2011-210; Defence R&D
Canada – Ottawa; December 2011.

Introduction: The Cosmic Ray Inspection and Passive Tomography (CRIPT) for Special
Nuclear Material (SNM) Detection project is a Chemical, Biological, Radiological, Nu-
clear, Explosives (CBRNE) Research & Technology Initiative (CRTI) project that is inves-
tigating the effectiveness of muon scattering tomography for detecting SNM and the dense
shielding that would likely surround smuggled radiological material (RAM). The goal of
the CRIPT project is to design, build and test a large-scale prototype system that will be
able to image air-cargo containers, and nuclear waste containers using naturally occurring
cosmic-ray-induced muons. Measuring the momenta of muons on an event-by-event ba-
sis should reduce the required imaging times significantly. This paper describes improved
algorithms for the estimation of muon momenta.

Previous momentum estimation algorithm: The CRIPT spectrometer measures the mul-
tiple scattering of muons through two 10 cm layers of iron. Four independent scattering
angles are used to estimate the width of the scattering angle distribution and hence the mo-
mentum of the muon. The maximum likelihood (ML) algorithm that was previously devel-
oped for CRIPT worked well for a 2.0 m high spectrometer, but revised design constraints
required the spectrometer height to be reduced to 1.0 m. The old algorithm produced re-
sults that had very large biases and poor resolution for muons with momentum greater than
2.0 GeV/c. This necessitated the development of an improved algorithm.

New momentum estimation algorithms: Three new types of momentum estimation al-
gorithms were investigated: (1) Kalman filter methods, (2) an improved ML technique, and
(3) a Bayesian estimator. Both extended and unscented Kalman filters were investigated
but neither provided useful momentum estimators as muon scattering does not behave lin-
early. An improved ML technique that included an integration over the measured muon
positions was superior to the old ML technique, but suffered from very long calculation
times and unacceptably large biases. The Bayesian estimator performed best as it has three
significant improvements over the old ML method: (a) it considers correlations between
the scattering angle measurements from each layer of the spectrometer; (b) it estimates
the true muon positions; and, (c) it can use a priori knowledge of the cosmic ray muon
momentum spectrum to constrain the estimated muon momentum.
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Results and conclusions: Simulation studies show that a Bayesian estimator provides the
best results for muon momentum estimates in CRIPT’s 1.0 m tall spectrometer. Using a
flat muon momentum prior, all but 22.4% of the muons are successfuly fit; both the bias
(-16%) and resolution (+74%

−16%) are acceptable for performing muon scattering tomography.
The fits that fail with the flat prior can be re-analyzed with a cosmic ray muon prior; none
of these fits fail though the overall resolution is slightly degraded to +92%

−18%.

Recommendations: The Bayesian estimator is the preferred algorithm for muon estima-
tion in the CRIPT spectrometer. These simulation studies have led to the recommendation
(that has already been implemented) that the new (shorter) 1.0 m high spectrometer be
modified to have only two layers of 10 cm thick steel.
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Sommaire

Muon momentum reconstruction algorithms for the
CRIPT spectrometer

Pierre-Luc Drouin, David Waller ; DRDC Ottawa TM 2011-210 ; R & D pour la
défense Canada – Ottawa ; décembre 2011.

Introduction : Le projet Inspection et tomographie passive par rayonnements cosmiques
(CRIPT, de l’anglais Cosmic Ray Inspection and Passive Tomography) pour les matières
nucléaires spéciales (MNS) est un projet de l’Initiative de recherche et de technologie chi-
mique, biologique, radiologique, nucléaire et explosive (CBRNE) [IRTC] destiné à évaluer
l’efficacité de la tomographie par diffusion de muons pour la détection des MNS et du blin-
dage dense qui risque d’entourer les matières radioactives de contrebande. L’objectif du
projet CRIPT est de concevoir, de construire et de mettre à l’essai un système prototype à
grande échelle qui sera en mesure de fournir une imagerie des conteneurs de fret aérien et
des contenants de déchets nucléaires par l’utilisation des muons générés de façon naturelle
par le rayonnement cosmique. La mesure de la quantité de mouvement des muons événe-
ment par événement devrait réduire de façon importante le temps requis pour l’obtention
d’images. Le présent exposé offre une description des algorithmes améliorés destinés à
l’estimation de la quantité de mouvement des muons.

Ancien algorithme d’estimation de la quantité de mouvement : Le spectromètre du
système CRIPT mesure la diffusion des muons à travers deux couches de fer de 10 cm
d’épaisseur. Quatre angles de diffusion indépendants servent à l’estimation de la largeur
de la distribution des angles de diffusion et donc à la quantité de mouvement des muons.
L’algorithme de maximum de vraisemblance (MV) mis au point antérieurement pour le
projet CRIPT donnait de bons résultats pour un spectromètre de 2,0 m de hauteur, mais
les contraintes imposées par la nouvelle conception ont fait en sorte que la hauteur du
spectromètre a dû être réduite à 1,0 m. L’ancien algorithme donnait des résultats très biaisés
et présentait une faible résolution pour les muons ayant une quantité de mouvement de plus
de 2,0 GeV/c, ce qui a nécessité la mise au point d’un algorithme amélioré.

Nouveaux algorithmes d’estimation de la quantité de mouvement : Nous avons éva-
lué trois nouveaux types d’algorithme d’estimation de la quantité de mouvement : (1) des
méthodes fondées sur le filtre de Kalman, (2) une technique améliorée du MV et (3) un
estimateur bayésien. Nous avons évalué le filtre de Kalman étendu et le filtre de Kalman
non parfumé, mais aucun des deux n’a permis d’obtenir un estimateur utile de la quantité
de mouvement, car la diffusion des muons n’est pas un phénomène linéaire. Une technique
améliorée du MV comprenant une intégration dans la plage des positions des muons s’est
révélée supérieure à l’ancienne technique du MV, mais elle nécessitait de très longs temps
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de calcul et présentait des biais d’une amplitude inacceptable. L’estimateur bayésien a été
le plus efficace, car il comprenait trois améliorations importantes par rapport à l’ancienne
méthode du MV : (a) il tient compte des corrélations entre les mesures de l’angle de diffu-
sion pour chaque couche du spectromètre, (b) il permet l’estimation de la position véritable
des muons et (c) il permet l’utilisation de connaissances a priori de la gamme des quanti-
tés de mouvement des muons engendrés par le rayonnement cosmique pour appliquer des
contraintes aux valeurs estimées.

Résultats et conclusions : Les études de simulation montrent qu’un estimateur bayésien
offre les meilleurs résultats pour l’estimation de la quantité de mouvement des muons dans
le spectromètre de 1,0 m de hauteur du projet CRIPT. Avec une loi de probabilité a priori
uniforme pour la quantité de mouvement des muons, seulement 22,4% de ces derniers ne
sont pas ajustés correctement ; tant le biais (-16%) que la résolution (+74%

−16%) sont acceptables
pour la tomographie par diffusion de muons. Les ajustements qui ne sont pas conformes
pour la loi de probabilité a priori uniforme peuvent être réanalysés pour une loi de pro-
babilité correspondant aux muons engendrés par le rayonnement cosmique ; aucun de ces
ajustements n’échoue bien que la résolution d’ensemble soit légèrement dégradée de +92%

−18%.

Recommandations : L’estimateur bayésien est l’algorithme favori pour l’estimation de la
quantité de mouvement des muons dans le spectromètre du système CRIPT. Les études de
simulation ont abouti à la recommandation (déjà mise en œuvre) de modifier le nouveau
spectromètre (plus court) de 1,0 m de hauteur pour qu’il ne comprenne que deux couches
d’acier de 10 cm d’épaisseur.
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1 Introduction

The Cosmic Ray Inspection and Passive Tomography (CRIPT) for Special Nuclear Mate-
rial (SNM) Detection project is a Chemical, Biological, Radiological, Nuclear, Explosives
(CBRNE) Research & Technology Initiative (CRTI) project that is investigating the ef-
fectiveness of muon scattering tomography for detecting SNM and the dense shielding
that would likely surround smuggled radiological material (RAM). The goal of the CRIPT
project is to design, build and test a large-scale prototype system that will be able to image
air-cargo containers, and nuclear waste containers. For more details on muon scattering
tomography and the CRIPT project, please see References [1, 2].

An earlier simulation study of CRIPT’s muon spectrometer performance was performed
in order to determine the design specifications for the spectrometer [1]. For this study, it
was assumed that the spectrometer would be 2.0 m tall. Unfortunately, the height of the
spectrometer will have to be no more than 1.0 m due to height constraints in the build-
ing at Carleton University 1 where CRIPT is being constructed. The reduction in height
makes reliable momentum estimation more challenging, especially for higher momentum
(� 2.0 GeV/c) muons as their scattering angles tend to be smaller than those of lower
momentum muons.

The momentum estimation algorithm that was developed in [1] worked well when the
separation between the scattering layers was 0.5 m or more, but subsequent studies (to be
detailed in the following section) showed that the algorithm performance degraded severely
once the layers were less than 0.25 m apart. For this reason, alternate algorithms were de-
veloped to determine if improvements could be made, and if so, what design modifications
would be required for the CRIPT spectrometer to optimize performance.

After the shortcomings of the old, maximum likelihood algorithm are described in Section
2, three alternate algorithms are described in Section 3. The results of these studies are
presented in Sections 2.2 and 3.5, respectively. Based on these results, the conclusions and
recommendations are presented in Sections 4 and 5.

2 Previous maximum likelihood muon
momentum estimation algorithm

The maximum likelihood (ML) algorithm that was developed previously for muon mo-
mentum estimation is described here briefly. For more details see Reference [1]. Figure 1

1. Although the height constraint only applies for the construction of the detector prototype, the conclu-
sions drawn in this document regarding the relative performance of the different muon momentum recon-
struction algorithms hold for other detector configurations as well.

DRDC Ottawa TM 2011-210 1



detector

detector

lower
tracker

Fe slab

Fe slab

z

x

xz1

xz2

muon

Figure 1: A side-view of the CRIPT muon spectrometer in the x-z plane. The muon scatter-
ing angles in the x-z plane after each layer of Fe are shown by θxz1 and θxz2. Two additional
scattering angles can be measured in the y-z plane. The green circles in each tracker indi-
cate muon hits. The top two trackers are not part of the spectrometer; they comprise the
lower tracking module of CRIPT.

shows a two-layer spectrometer that uses multiple Coulomb scattering through a known
material in order to estimate the momentum of a muon.

2.1 Multiple Coulomb scattering of muons

The spectrometer uses layers of iron to deflect muons via multiple Coulomb scattering.
The multiple scattering angles follow a distribution that is approximately Gaussian with a
width, in milliradians, of

θMS =
13.6
βpc

√
L
X0

[1+0.038ln(L/X0)] , (1)
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where β is the velocity of the muon as a fraction of the speed of light, p is the momentum
of the muon in MeV/c, L is the path length of the muon through the material, and X0 is
the radiation length of the material [3]. For high-Z, high density materials, the radiation
length is relatively short which leads to larger angle scattering than for less dense, low-Z
materials. For L = 5 cm in Fe (X0 = 1.76 cm), θMS = 12 mrad for a 2 GeV/c muon.

The multiple scattering angle and horizontal displacement of the muon within the scattering
layer are strongly correlated. In the Monte Carlo simulation, the horizontal displacement,
yd , is given by

yd = g1LθMS/
√

12+g2LθMS/2, (2)

where g1 and g2 are independent, unit Gaussian random numbers, θMS is the width of
the scattering angle distribution (from Equation 1), and L is the path length of the muon
through the material. The correlation is achieved by setting the multiple scattering angle
equal to g2θMS.

2.2 Previous maximum likelihood algorithm

For a muon that passes through the spectrometer, two independent, orthogonal scattering
angles are measured after each scattering layer. For simplicity we define these angles in
the spectrometer’s x-z and y-z planes (z points down to the ground). Using the known value
of X0 for Fe and the estimated path length of the muon in the absorber, L, Equation 1 can
be re-arranged to estimate 1/p.

An estimate of 1/p was provided by a maximum likelihood fit to the scattering angle data.
The measured multiple scattering angles in the x-z and y-z planes, θxz[yz], are then compared
to a Gaussian distribution

P(θxz[yz]) =
1√
2πθ

e
−θ2

xz[yz]

2θ2 (3)

whose width, θ =
√

θ2
MS +σ2

θxz[yz]
, depends on θMS and the uncertainty in the scattering

angle measurement, σθxz[yz]
in the x-z[y-z] plane. The value of 1/p (and corresponding β)

that minimizes the negative log likelihood function

− log(L ) =−
[

N∑
i=1

log(P(θxz))+
N∑

i=1

log(P(θyz))

]
(4)

for the N scattering layers is taken as the estimate of 1/p: 1/pfit.

Results from the previous study with a 2.0 m high spectrometer showed that there was
a 12% bias to the fitted inverse momentum, 1/pfit. This bias was largely independent
of muon momentum (0.5 GeV/c ≤ pfit ≤ 10.0 GeV/c) so a correction could be applied
to 1/pfit to yield good agreement with the true inverse momentum, 1/ptrue. The ∼ 2%
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Table 1: The results of 1/pfit with the old algorithm for a two-layer, 1.0 m tall spectrometer
with 2 mm hit resolution and 5 cm thick Fe scattering layers. The difference between
1/ptrue and 1/pfit is not constant across this range of momenta so a correction can not be
applied without introducing significant extra uncertainty.

ptrue 1/ptrue < 1/pfit > RMS(1/pfit) Bias Resolution
GeV/c c/GeV c/GeV c/GeV % %

0.5 2.0 1.75 0.65 -13 37
1.0 1.0 0.91 0.38 -9 41
2.0 0.5 0.52 0.27 4 52
5.0 0.2 0.32 0.24 60 75

10.0 0.1 0.28 0.24 180 85

Table 2: The results of 1/pfit with the old algorithm for a four-layer, 1.0 m tall spectrometer
with 2 mm hit resolution and 5 cm thick Fe scattering layers. Above 1.0 GeV/c, it is
virtually impossible to estimate the muon momentum reliably.

ptrue 1/ptrue < 1/pfit > RMS(1/pfit) Bias Resolution
GeV/c c/GeV c/GeV c/GeV % %

0.5 2.0 2.54 0.84 27 33
1.0 1.0 1.87 0.87 87 47
2.0 0.5 1.64 0.91 228 56
5.0 0.2 1.56 0.94 680 60

10.0 0.1 1.55 0.94 1450 61

bias that remained after this correction was negligible compared to the ∼ 37% resolution
of the measurements. The 12% bias was shown to be due to the use of the estimated
scattering angles, instead of the true scattering angles; the bias was reduced to -2% if the
true scattering angles were used instead.

Unfortunately, reducing the height of the spectrometer to 1.0 m caused the size of the bias
to increase in a non-linear fashion, especially if a four-layer spectrometer was assumed.
The reason for the poor performance of the old algorithm is due to two factors:

1. the assumption that the Gaussian distribution on the position measurement uncer-
tainties translates into Gaussian uncertainties for the scattering angles,

2. the fact that the model only considers the position measurement from the previous
(above) layer to calculate the initial muon direction for a given scattering layer rather
than correlating muon direction between the layers.

Table 1 shows how the the bias becomes worse for a two-layer spectrometer as the muon
momentum increases. Table 2 shows that the performance is even worse when four layers
are employed.
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Figure 2: Angles and systems of coordinates used to describe muon trajectory through the
detector.

In light of the very poor performance of the old algorithm with a 1.0 m high spectrometer,
it was clear that an improved muon momentum estimation algorithm was required.

3 New muon momentum estimation
algorithms

3.1 Setting up the algebra for the new estimator

If one defines a Cartesian coordinate system (x,y,z) fixed with respect to the detector,
where the x-y plane is parallel with the detector plane and whose axes are aligned with the
axes of the detector strips. In this coordinate system, the z axis points downward. Figure 2
shows the complete set of coordinate systems and angles that are used in this section. Now
a Cartesian coordinate system (x′,y′,z′) is defined, whose y′ axis is in x-y plane and whose
z′ axis makes an angle α with respect to the z axis. The orientation of the coordinate system
is chosen such that 0 ≤ α ≤ π

2 and that the projection along z for both the x′ and z′ axes is
negative. If the y′ axis makes an angle β in the counter-clockwise direction with respect
to the y axis for the z axis pointing toward the observer, a set of coordinates (x,y,z), as a
function of coordinates (x′,y′,z′), is given by⎡

⎣ x
y
z

⎤
⎦=

⎡
⎣ cosαcosβ −sinβ sinαcosβ

cosαsinβ cosβ sinαsinβ
−sinα 0 cosα

⎤
⎦
⎡
⎣ x′

y′
z′

⎤
⎦ . (5)

Angles α and β are defined, such that the z′ axis points in the incident direction of the muon
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on the steel plate. If the scattered muon makes an angle θ with respect to the z′ axis and
if the projection of this scatter direction in the x′-y′ plane makes an angle φ in the counter-
clockwise direction with respect to the x′ axis for the z′ axis pointing toward the observer,
the scatter direction ŵ, in the (x′,y′,z′) coordinate system, is thus expressed as

ŵ =

⎡
⎣ cosφsinθ

sinφsinθ
cosθ

⎤
⎦
(x′,y′,z′)

(6)

From (5) and (6), the scatter direction ŵ in the (x,y,z) coordinate system is thus expressed
as

ŵ =

⎡
⎣ cosαcosβcosφsinθ− sinβsinφsinθ+ sinαcosβcosθ

cosαsinβcosφsinθ+ cosβsinφsinθ+ sinαsinβcosθ
−sinαcosφsinθ+ cosαcosθ

⎤
⎦
(x,y,z)

(7)

Now a detector layer is parameterised using a steel plate thickness t, a measurement in x at
a distance da above the plate (from the top surface), another x measurement at a distance db

below the plate (from the bottom surface) and y measurements at a distance Δm below the
x measurements. Figure 3 shows this parameterisation. The direction vectors for a muon
through the layer are given (using (5) and (6)) by

v̂ =

⎡
⎣ 0

0
1

⎤
⎦
(x′,y′,z′)

=

⎡
⎣ sinαcosβ

sinαsinβ
cosα

⎤
⎦
(x,y,z)

(8)

ŝ =

⎡
⎣ cosαcosβcosηsinψ− sinβsinηsinψ+ sinαcosβcosψ

cosαsinβcosηsinψ+ cosβsinηsinψ+ sinαsinβcosψ
−sinαcosηsinψ+ cosαcosψ

⎤
⎦
(x,y,z)

(9)

ŵ =

⎡
⎣ cosαcosβcosφsinθ− sinβsinφsinθ+ sinαcosβcosθ

cosαsinβcosφsinθ+ cosβsinφsinθ+ sinαsinβcosθ
−sinαcosφsinθ+ cosαcosθ

⎤
⎦
(x,y,z)

, (10)

where v̂ is the direction vector of the incident muon, ŝ is the direction vector of its deflected
displacement in the steel plate and where ŵ is its direction after exiting the steel plate.
Angles ψ and η give the direction of ŝ with respect to the (x′,y′,z′) coordinate system, sim-
ilarly to angles θ and φ for the direction of ŵ. Since the z components of the corresponding
displacement vectors�v,�s and �w are known to be

vxz = da, sxz = t, wxz = db

vyz = (da −Δm), syz = t, wyz = (db +Δm),
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xi

yi
Δm

Δm

da

t

db

�v

�s

ψx′
θx′

xi+1

yi+1

�w

x

z

y

x′

z′
y′

Figure 3: Parameterisation of the detector geometry.

for the x and y measurements respectively, the true x and y components of the muon dis-
placement between two detector layers are thus given by

Δx =
v̂x

v̂z
vxz +

ŝx

ŝz
sxz +

ŵx

ŵz
wxz

= da tanαcosβ+ t
cosαcosβcosηsinψ− sinβsinηsinψ+ sinαcosβcosψ

cosαcosψ− sinαcosηsinψ

+db
cosαcosβcosφsinθ− sinβsinφsinθ+ sinαcosβcosθ

cosαcosθ− sinαcosφsinθ
(11)

Δy =
v̂y

v̂z
vyz +

ŝy

ŝz
syz +

ŵy

ŵz
wyz

= (da −Δm) tanαsinβ+ t
cosαsinβcosηsinψ+ cosβsinηsinψ+ sinαsinβcosψ

cosαcosψ− sinαcosηsinψ

+(db +Δm)
cosαsinβcosφsinθ+ cosβsinφsinθ+ sinαsinβcosθ

cosαcosθ− sinαcosφsinθ
. (12)

(11) and (12) thus give the expectation values (that is to say, without effects due to posi-
tion measurement uncertainties) for the difference between the position measurements for
two consecutive layers, given the direction parameters (α,β,θ,φ,ψ,η), and the detector
geometry parameters (da,db,Δm, t).

If it is now assumed that both the scattering angle θ and the deviation angle ψ are small
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and that θx′ ≈ cosφsinθ, θy′ ≈ sinφsinθ, ψx′ ≈ cosηsinψ and ψy′ ≈ sinηsinψ are defined
as the projections onto the x′ and y′ axes of the θ and ψ angles respectively, (11) and (12)
can be rewritten as

Δx ≈ da tanαcosβ+ t
cosαcosβψx′ − sinβψy′ + sinαcosβ

cosα− sinαψx′

+db
cosαcosβθx′ − sinβθy′ + sinαcosβ

cosα− sinαθx′
(13)

Δy ≈ (da −Δm) tanαsinβ+ t
cosαsinβψx′ + cosβψy′ + sinαsinβ

cosα− sinαψx′

+(db +Δm)
cosαsinβθx′ + cosβθy′ + sinαsinβ

cosα− sinαθx′
. (14)

Under a Gaussian approximation for the scattering and deviation angles, the following
expressions to generate both angles can be obtained from [3]:

θx′ = z1x′θ0 (15)

ψx′ = γθx′ +ξz2x′θ0 (16)

θy′ = z1y′θ0 (17)

ψy′ = γθy′ +ξz2y′θ0 (18)

γ ≡ 1
2

(19)

ξ ≡ 1√
12

(20)

θ0 ≡ 13.6 MeV
p2

√
|�s|

X0Fe
(p2 +m2

μ)

[
1+0.038log

( |�s|
X0Fe

)]
, (21)

where z1x′ , z2x′ , z1y′ and z2y′ are independent N(0,1) Gaussian random variables, where p
is the muon momentum in MeV, where mμ is the muon mass in MeV, where X0Fe is the
radiation length of steel in cm and where |�s| is the effective displacement length of the
muon in the steel plate in cm. Neglecting the effect of the deviation in the plate on the
effective displacement length, |�s| can be approximated by

|�s|= t
cosα− sinαψx′

≈ t
cosα

. (22)

From (13) to (20), it can be seen that random variables z2x′ and z2y′ normally have small
effects on Δx and Δy, compared to z1x′ and z1y′ , because the former variables only affect the
propagation of the muons through the steel plate, while the latter also affect the propagation
between the steel plate and the detector plane below and that ξ = γ√

3
. So except for a very

particular detector geometry where db < 2t, the above equations can be simplified using
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the approximation

ψx′ ≈ γθx′ (23)

ψy′ ≈ γθy′ (24)

without creating significant fit biases. Using the same small scattering and deviation angle
approximation as previously, (13) and (14) can thus now be rewritten as

Δx ≈ da tanαcos β+{cosα [cosα− sinαθx′(γ+1)]}−1 ×{
t
[
γcos α(cos αcosβθx′ − sinβθy′)+ sinαcosβ(cos α− sinαθx′)

]
+

db
[
cosα(cos αcos βθx′ − sinβθy′)+ sinαcosβ(cos α− γsinαθx′)

]}
(25)

Δy ≈ (da −Δm) tanαsin β+{cosα [cosα− sinαθx′(γ+1)]}−1 ×{
t
[
γcos α(cos αsinβθx′ + cosβθy′)+ sinαsinβ(cos α− sinαθx′)

]
+

(db +Δm)
[
cosα(cos αsin βθx′ + cosβθy′)+ sinαsin β(cosα− γsinαθx′)

]}
. (26)

Equations (25) and (26) are linear in θx′ and θy′ , so analytical expressions for the scattering
angles can be extracted easily (although they are not very elegant).

Regarding the relation between the direction vectors for consecutive layers, expressions
can be obtained using (8), (10) and the relation�v′ = �w. This thus gives⎡

⎣ sinα′ cosβ′
sinα′ sinβ′

cosα′

⎤
⎦≈

⎡
⎣ cosαcosβθx′ − sinβθy′ + sinαcosβ

cosαsinβθx′ + cosβθy′ + sinαsinβ
−sinαθx′ + cosα

⎤
⎦ . (27)

Given that 0 ≤ α ≤ π
2 , the expressions for the new values of the angles (or their trigono-

metric functions) are thus

cosα′ = −sinαθx′ + cosα (28)

sinα′ =
√

1− cos2 α′ (29)

β′ = arctan(cosαsinβθx′ + cosβθy′ + sinαsinβ,

cosαcosβθx′ − sinβθy′ + sinαcosβ), (30)

where arctan(y,x) is the inverse trigonometric function that returns an angle in the range
[−π,π] depending on the sign of its arguments.

3.2 Bayesian estimator

The first method that is used to reconstruct the muon momentum uses a Bayesian estimator.
This method should allow one to extract the muon momentum while using all information
available, including correlations between the different detector layers. The Bayesian prob-
ability density function (PDF) is written as

f (model|sample) = f (p0,�p,x0t ,φ0t ,�xt |x0m,φ0m,�xm)

= f (p0,�p|x0t ,φ0t ,�xt ,x0m,φ0m,�xm) f (x0t ,φ0t ,�xt |x0m,φ0m,�xm)

= f (p0,�p|x0t ,φ0t ,�xt) f (x0t ,φ0t ,�xt |x0m,φ0m,�xm), (31)
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where
n : Number of detector planes
xit : True position on detector plane i (1 ≤ i ≤ n). �xt ≡ (x1t , . . . ,xnt)
xim: Measured position on detector plane i. �xm ≡ (x1m, . . . ,xnm)
φit : True angle with z axis after the muon exits the steel plate of detector plane i.
pi : Momentum for detector plane i. �p ≡ (p1, . . . , pn)
x0 : Initial position.
φ0 : Initial angle with z axis.
p0 : Initial momentum.

In the above expression, positions and angles should be each interpreted as 2D entities.
f (p0,�p|x0t ,φ0t ,�xt) is the PDF that gives the probability of the set of angular momenta
(p0,�p), given the true positions and directions (x0t ,φ0t ,�xt). It was simplified from the PDF
f (p0,�p|x0t ,φ0t ,�xt ,x0m,φ0m,�xm) using the fact that measured positions and directions do
not provide any additional information in determining momenta if the true positions and
directions are known. From Bayes’ theorem, f (p0,�p|x0t ,φ0t ,�xt) is then rewritten as

f (p0,�p|x0t ,φ0t ,�xt) = f (�xt |p0,�p,x0t ,φ0t)
f (p0,�p|x0t ,φ0t)

f (�xt |x0t ,φ0t)
, (32)

Now using Bayes’ theorem with f (x0t ,φ0t ,�xt |x0m,φ0m,�xm),

f (x0t ,φ0t ,�xt |x0m,φ0m,�xm) = f (x0m,φ0m,�xm|x0t ,φ0t ,�xt)
f (x0t ,φ0t ,�xt)

f (x0m,φ0m,�xm)

= f (x0m,φ0m|x0t ,φ0t) f (�xm|�xt)×
f (x0t ,φ0t) f (�xt |x0t ,φ0t)

f (x0m,φ0m,�xm)
. (33)

(31) to (33) can now be combined to give

f (model|sample) = f (x0m,φ0m|x0t ,φ0t)

[
n∏

i=1

f (xim|xit)

]
f (x0t ,φ0t) f (p0,�p|x0t ,φ0t)

f (x0m,φ0m,�xm)
×

f (�xt |p0,�p,x0t ,φ0t). (34)

f (�xt |p0,�p,x0t ,φ0t) is rewritten as

f (�xt |p0,�p,x0t ,φ0t) =

n∏
i=1

f (xit |p0,�p,x0t ,φ0t ,x1t , . . . ,xi−1t). (35)
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f (xit |p0,�p,x0t ,φ0t ,x1t , . . . ,xi−1t) is equivalent to

f (xit |p0,�p,x0t ,φ0t ,x1t , . . . ,xi−1t) =

∫
f (xit ,φi−1t |p0,�p,x0t ,φ0t ,x1t , . . . ,xi−1t)dφi−1t

=

∫ {
f (xit |p0,�p,x0t ,φ0t ,x1t , . . . ,xi−1t ,φi−1t)×

f (φi−1t |p0,�p,x0t ,φ0t ,x1t , . . . ,xi−1t)
}

dφi−1t

=

∫ {
f (xit |pi−1, pi,xi−1t ,φi−1t)×

f (φi−1t |p0,�p,x0t ,φ0t ,x1t , . . . ,xi−1t)
}

dφi−1t

=

∫ {
f (xit − xi−1t |pi−1, pi,φi−1t)×

i−1∏
j=1

f (φ jt |pj−1, pj,x jt − x j−1t ,φ j−1t)

}
dφ1t . . .dφ j−1t(36)

due to the properties of the xit PDF which can only depend on pi−1, pi, xi−1t and φi−1t ,
and to the ones of the φit PDF, which can only depend on the same variables, plus xit . The
final expression was obtained by “unmarginalising” the initial PDF recursively. From (34)
to (36), an exact expression for the Bayesian PDF is thus given by

f (model|sample) = f (x0m,φ0m|x0t ,φ0t)
f (x0t ,φ0t) f (p0,�p|x0t ,φ0t)

f (x0m,φ0m,�xm)
×

n∏
i=1

f (xim − xit)

∫ {
f (xit − xi−1t |pi−1, pi,φi−1t)×

i−1∏
j=1

f (φ jt |p j−1, p j,x jt − x j−1t ,φ j−1t)

}
dφ1t . . .dφ j−1t . (37)

Two changes are then made to the above function without introducing any approximation.
The first one is to drop the factor f (x0m,φ0m,�xm) from the denominator, since its expression
does not depend on any of the fit parameters and dropping it does not affect the position
of the maximum. The second change consists in performing the variable transformation
φ0t → φ0t(x−1t ,x0t), where x−1t represents the other pair of measured coordinates from
CRIPT’s lower tracker that is used to estimate the initial direction. This change allows
one to express the PDF f (x0m,φ0m|x0t ,φ0t) more easily, since as the initial direction is
estimated using a pair of measured positions, including the one used to estimate the initial
position, the variables of this PDF are thus correlated and the marginal PDFs along the
direction axes are non-Gaussian. f (x0m,φ0m|x0t ,φ0t) is thus rewritten as

f (x0m,φ0m|x0t ,φ0t) → f (x0m,φ0m((x−1m,x0m)|x0t ,φ0t((x−1t ,x0t))

→ f (x−1m − x−1t ,x0m − x0t)

→ f (x−1m − x−1t) f (x0m − x0t), (38)
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where f (x−1m − x−1t) and f (x0m − x0t) are the same position measurement uncertainty
PDFs as f (xim − xit), except that they are respectively evaluated for the extra layer used
to measure the initial muon direction and the layer used to measure both the initial muon
direction and position. Note that converting from the original PDF to the new one involves
the computation of a Jacobian, but the usage of this Jacobian is irrelevant in the context
of the maximisation of the Bayesian PDF, since the Jacobian only depends on measured
quantities and not on the fit parameters. The PDF thus simplifies to

f (model|sample) ∝ f (x−1m − x−1t) f (x0m − x0t) f (x0t ,φ0t) f (p0,�p|x0t ,φ0t)×
n∏

i=1

f (xim − xit)

∫ {
f (xit − xi−1t |pi−1, pi,φi−1t)×

i−1∏
j=1

f (φ jt |p j−1, p j,x jt − x j−1t ,φ j−1t)

}
dφ1t . . .dφ j−1t . (39)

The expression (39) is exact since it was obtained without using any approximation. How-
ever, it can be impractical to use, due to the non-analytical integrals to be performed. If
the last approximation that was introduced in the previous section, that is, a 100% corre-
lation between the deviation and scattering angles, is now used with the Bayesian PDF, an
important simplification occurs. Effectively, using such an approximation makes the direc-
tion φ jt to be defined exactly when φ j−1t , p j−1, p j, x j−1t and x jt are known. The PDFs
f (φ jt |p j−1, p j,x j−1t ,φ j−1t ,x jt) thus simply become

f (φ jt |p j−1, p j,x j−1t ,φ j−1t ,x jt) = δ(φ jt −φ jt(φ j−1t , p j−1, p j,x j−1t ,x jt))

= δ(φ jt −φ jt(φ0t ,x0t , . . . ,x jt , p0, . . . , p j)), (40)

where δ() is the Dirac delta function and where φ jt(φ0t ,x0t , . . . ,x jt , p0, . . . , p j) is the func-
tion that provides the unique value of φ jt corresponding to its arguments. Also, a sim-
plification can be introduced regarding the momentum p, which can be approximated to
decrease in a deterministic way, given the incident angle of the muon. Under these two
approximations,

f (model’|sample) ∝ f (x−1m − x−1t) f (x0m − x0t) f (x0t ,φ0t) f (p0|x0t ,φ0t)×
n∏

i=1

f (xim − xit) f (xit − xi−1t |pi−1,φi−1t), (41)

with pi−1 ≈ pi−1(φ0t ,x0t , . . . ,xi−1t , p0) and φit ≈ φit(φ0t ,x0t , . . . ,xit , p0). The above ex-
pression was obtained using

f (p0,�p|x0t ,φ0t) = f (p0|x0t ,φ0t) f (�p|x0t ,φ0t)

= f (p0|x0t ,φ0t)

n∏
i=1

δ [pi − pi(φ0t ,x0t , . . . ,xi−1t , p0)] (42)
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and then by defining a new model f (model’|sample) that does not have free parameters
for the pi momenta. This is achieved by integrating the PDF f (model|sample) over these
momenta.

An expression for the PDF f (xit − xi−1t |pi−1,φi−1t) can now be found by using the equa-
tions that have been developed in the previous section and a transformation of variable.
Using the notation from the Section 3.1, this PDF is given by

f (xit − xi−1t |pi−1,φi−1t) = f (Δxi,Δyi|pi−1,αi−1,βi−1), (43)

where indices have been added to the variable names to identify the detector layer to which
they are associated. From probability theory[4], the PDF f (Δxi,Δyi|pi−1,αi−1,βi−1) can
be obtained using

f (Δxi,Δyi|pi−1,αi−1,βi−1) =
f (θx′ i(Δxi,Δyi,αi−1,βi−1),θy′ i(Δxi,Δyi,αi−1,βi−1)|pi−1,αi−1)

Ji
,

(44)
where Ji is the Jacobian

Ji =

∣∣∣∣∣∣
∂Δxi
∂θx′ i

∂Δxi
∂θy′ i

∂Δyi
∂θx′ i

∂Δyi
∂θy′ i

∣∣∣∣∣∣ (45)

and where θx′ i(Δxi,Δyi,αi−1,βi−1) and θy′ i(Δxi,Δyi,αi−1,βi−1) are the scattering angles
for detector plane i, as computed after analytically solving the linear equations (25) and
(26) for θx′ and θy′ . f (θx′ ,θy′ |p,α) is the PDF for two independent variables, so it can be
written as

f (θx′,θy′ |p,α) = f (θx′ |θ0(p,α)) f (θy′|θ0(p,α)), (46)

where both marginal PDFs f (θx′ |θ0) and f (θy′ |θ0) are N(0,θ2
0), under the Gaussian ap-

proximation mentioned earlier. θ0 has been expressed by (21) and (22). From (25) and
(26), the Jacobian elements are given by

∂Δx
∂θx′

=
(γt +db)[cosβ− sinαsinβ(1+ γ)θy′]

[cosα− sinα(1+ γ)θx′]2
(47)

∂Δx
∂θy′

= − (γt +db)sinβ

cosα− sinα(1+ γ)θx′
(48)

∂Δy
∂θx′

=
(γt +db +Δm)[sinβ+ sinαcosβ(1+ γ)θy′]

[cosα− sinα(1+ γ)θx′]2
(49)

∂Δy
∂θy′

=
(γt +db +Δm)cosβ

cosα− sinα(1+ γ)θx′
. (50)

The expression for the Bayesian PDF has thus been completely developed, except for
f (x0t ,φ0t) and f (p0|x0t ,φ0t). These two PDFs are the priors for the initial muon position,
direction and momentum. For real data, f (p0|x0t ,φ0t) is simply the cosmic ray muon mo-
mentum spectrum as a function of the initial position and direction for the analysed events,

DRDC Ottawa TM 2011-210 13



which can be approximated simply by the cosmic ray muon momentum spectrum averaged
over all zenith angles and positions. f (x0t ,φ0t) is the position and direction distribution of
the analysed events. Since the position resolution of the detector is much narrower than
the widths of this distribution, using a flat prior in this case should not affect the estimator
significantly. Only the fit parameters for the events touching edges of the detector should
be sensitive to this prior, but these events are likely already affected by other edge effects.

In this section, a Bayesian estimator intended to reconstruct the momentum of muons going
through the spectrometer has thus been developed in detail. The procedure to compute the
Bayesian PDF is thus summarised by the following:

1. Use the current values for xit and yit , i ∈ {−1,0, . . . ,n} to evaluate f (xim − xit).

2. Use (x−1t ,y−1t) and (x0t ,y0t) to compute α0 and β0. They are given by

α0 = arctan

(√
(x0t − x−1t)

2 +(y0t − y−1t)
2

Δz0

)
(51)

β0 = arctan(y0t − y−1t ,x0t − x−1t), (52)

where Δz0 is the vertical distance between measurement planes -1 and 0.

3. “Move” to the first detector layer of the spectrometer i ← 1.

4. Compute the prior values f (p0|x0t ,φ0t) and f (x0t ,φ0t).

5. Compute θx′ i(Δxi,Δyi,αi−1,βi−1) and θy′ i(Δxi,Δyi,αi−1,βi−1) using the analytical
solution to (25) and (26) and the current values for fitted positions.

6. Compute θ0 for layer i using (21), (22), pi−1 and αi−1.

7. Compute f (θx′ |θ0) and f (θy′ |θ0).

8. Compute the Jacobian using (45) and (47) to (50), αi−1, βi−1, θx′ i, and θy′ i.

9. Compute f (xit − xi−1t |pi−1,φi−1t), as given by (43), (44) and (46).

10. Compute the expected pi value, given pi−1, αi−1 and βi−1.

11. Compute αi and βi using (28) to (30).

12. Move to the next detector layer (i ← i+1) if there is one and go back to step 5.

13. Compute (41) using all the PDF and Jacobian values that have been calculated.

14. Minus the logarithm of the Bayesian PDF (the value from the previous step) can be
computed if the estimator is computed using a minimisation algorithm.

3.3 New maximum likelihood method

Another method that can potentially be used to reconstruct the muon momentum is based
on the minimisation of a negative log-likelihood function. Such a method normally allows
the minimisation of the variance on the extracted estimators while having a minimal bias
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on the most likely values. The likelihood function for the muon momentum reconstruction
by the detector is written as

L = f (x0m,φ0m,�xm|p0,�p,x0t ,φ0t) =

∫
f (x0m,φ0m,�xm,�xt |p0,�p,x0t ,φ0t)dx1t . . .dxnt , (53)

using the same notation as in the previous section. Thus, f (x0m,φ0m,�xm|p0,�p,x0t ,φ0t) gives
the probability density of a sample defined by measurements (x0m,φ0m,�xm), conditional on
a model which is characterised by the parameters (p0,�p,x0t ,φ0t), and has been expressed
as a marginal PDF. The non-marginalised PDF can be written as

f (x0m,φ0m,�xm,�xt |p0,�p,x0t ,φ0t) = f (x0m,φ0m,�xm|x0t ,φ0t ,�xt) f (�xt |p0,�p,x0t ,φ0t), (54)

due to the decoupling between the measured observables (x0m,φ0m,�xm) and the muon mo-
menta when the true observable values are known. Since each position measurement is
considered to be independent, f (�xm,x0m,φ0m|x0t ,φ0t ,�xt) can be rewritten as

f (�xm,x0m,φ0m|x0t ,φ0t ,�xt) = f (x0m,φ0m|x0t ,φ0t)
n∏

i=1

f (xim|xit)

= f (x0m − x0t ,φ0m −φ0t)

n∏
i=1

f (xim − xit). (55)

All the PDFs involved in (54) and (55) have been expressed in the previous section. Using
the same approximations that were used to obtain (41), (53) simplifies to

L = f (x−1m − x−1t) f (x0m− x0t)

∫
∞

−∞

f (x1m − x1t) f (x1t − x0t |p0,φ0t)

⎧⎨
⎩
∫

∞

−∞

f (x2m − x2t) f (x2t − x1t |p1,φ1t)

{
. . .

{ ∫ ∞

−∞
f (xnm − xnt) f (xnt − xn−1t |pn−1,φn−1t)dxnt

}
. . .

}
dx2t

⎫⎬
⎭dx1t(56)

with pi−1 ≈ pi−1(φ0t ,x0t , . . . ,xi−1t , p0) and φit ≈ φit(φ0t ,x0t , . . . ,xit , p0).

From (43) to (50), it can be seen that the integrand of (56) remains quite complicated, par-
ticularly due to the recursive relations (28) to (30) and the expression for the Jacobian. As
there is no analytical expression for the integrals, (56) must thus be numerically integrated.
Since the number of dimensions to be integrated is 2n, a Monte Carlo integration method
is the preferred approach. Such a method also has the advantage of very easily incorporat-
ing the convolutions of the PDF f (xit − xi−1t |pi,φi−1t) with the measurement uncertainty
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PDFs, by using random values for xit and yit , which are distributed as N(xim,σ
2
x res) and

N(yim,σ
2
y res) respectively, to perform the integration.

There are however two problems with the likelihood method. The first problem is com-
putational, as a large number of integration points is often required to get stable estimator
values, such that it can easily take several seconds to several minutes to reconstruct the
momentum for a single event. The most important shortcoming of the likelihood method is
unfortunately more fundamental. Effectively, in contrast with a Bayesian estimator, a like-
lihood estimator for this particular application cannot fit for the “true” positions, except
for i ∈ {−1,0}. This is due to the fact that a likelihood function, by definition, measures
the likelihood of a sample, given a model, and that such a quantity would not depend on
the momentum at all if the “true” positions are part of the model parameterisation. This
is why the likelihood function had to be expressed as a marginal PDF in (53), but this in-
volves convolutions around the measured positions. Such a function evaluates the effects
due to the position uncertainties, but results in a biased estimator for the momentum. On
average, the likelihood function biases the momentum in the negative direction, because
the measured positions are more scattered than the true positions.

3.4 Kalman filter methods

Two different variants of Kalman filter methods have also been investigated to reconstruct
muon momentum. The first method that was tested is the widespread extended Kalman
fitter method (EKF)[5]. For this particular application, it has been found that this method
fails miserably, because in the CRIPT detector, muon momentum is measured only through
the scattering angles, which have expectation values of 0 for each detector layer of the
spectrometer. The extended Kalman filter provides a linear approximation for non-linear
problems, but such an approximation is not useful when there is no linear term between the
momentum and the scattering angles.

The second filtering method that was considered is an unscented Kalman filter[6][7]. This
method is known to have the potential of significantly improving results compared to the
EKF method when applied to a nonlinear system. However, the unscented Kalman filter
is not useful either to reconstruct muon momentum in the CRIPT spectrometer, because
in addition to the particularities of the system that were mentioned above, the fact that the
scattering angles do not depend on their values from the previous layers in a deterministic
way causes the elements of the covariance matrix related to the momentum to remain in-
significant in the filter, such that the method does not provide any sensible sensitivity to the
momentum.
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3.5 Bayesian estimator simulation results

To test the performance of the Bayesian estimator method, simulated events with different
energies have been reconstructed using the algorithm. The parameters used for the tests are
the following:

Detector plane dimensions : 200 cm × 200 cm
Number of spectrometer layers (n): 2
Steel plate thickness (t) : 10 cm
Position resolution (σxres, σyres) : 2 mm
da : 10 cm
db : 35 cm
Δm : 0 cm
Δz0 : 100 cm
Muon mass (mμ) : 105.658367 MeV
Radiation length of steel (X0Fe) : 13.84/7.874 cm

A configuration that includes 10 cm plates has been found to be optimal, due to the limited
height and position resolution of the spectrometer.

Events were generated using a Monte Carlo algorithm that uses the same small angle ap-
proximations as the reconstruction algorithm, except that it does not approximate the cor-
relation between the deviation and the scattering angles. A uniform distribution in β was
used along with a PDF

f (α) =
4
π

cos2 α,
(

0 ≤ α ≤ π

2

)
(57)

for the angular distribution of the incoming muons. Muon momentum has been approxi-
mated to be constant across the detector layers for both algorithms. Analyzed events are
those whose true and the measured positions for the two tracking layers and for all spec-
trometer layers are located within the boundaries of the detector planes. For the results
shown in this section, muons were either generated using a fixed momentum, or using a
continuous PDF based on the measured flux distribution[8]. For the reconstruction algo-
rithm, the following priors were used:

f (x0t ,φ0t) ∝ 1 (58)

f (p0|x0t ,φ0t) ∝

{
αeβ1[

p0
MeV ]

r1
+ eβ2[

p0
MeV ]

r2
p0 > 576 MeV

0 otherwise
, (59)
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Figure 4: Analytical function used as the momentum prior for reconstruction compared to
a PDF obtained from results shown in [8].

where

α = 4.16748657924594035 (60)

β1 = −5.91500606777898147×10−2 (61)

r1 = 5.68388489308096045×10−1 (62)

β2 = −1.12723862539844066×10−1 (63)

r2 = 4.43543354172820592×10−1. (64)

Figure 4 shows a plot of this function, along with a PDF extracted from the published
results cited above.

To evaluate the performance of the reconstruction algorithm, the following metrics are
considered:

Relative error distribution peak bias: The relative error is computed for each recons-
tructed event. The distribution of the resulting values is plotted, then the location of
the peak of this distribution is found. Ideally, we would like the peak to be at 0.

“1σ” confidence interval: This interval is computed by finding the relative error values
that allow to include 68.269% of the successfully reconstructed events on each side
of the relative error distribution peak.
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Figure 5: Distribution of relative reconstruction error for 106 events generated according
to the cosmic ray muon spectrum and reconstructed using a cosmic ray muon spectrum
prior. The red band shows the “1σ” confidence interval.

Correlation with true momentum: The correlation between the successfully reconstruc-
ted and the generated momentum is computed, to ensure that the reconstructed values
are driven by the true values rather than being randomly distributed.

Reconstruction success rate: This is the number of successfully reconstructed events (ha-
ving a reconstructed momentum value under 100 GeV) divided by the total number
of generated events.

The first test that was performed consists in evaluating the overall performance of the re-
construction algorithm for events generated according to the cosmic ray muon spectrum,
when using the cosmic ray muon spectrum prior. Figure 5 presents the results that were
obtained with this test. It shows a perfect reconstruction success rate (thanks to the prior), a
good correlation of 57.9% between the generated and reconstructed momenta, a moderate
peak bias of -13.7% and a satisfying “1σ” confidence interval.

The second test is identical to the previous simulation, except that a flat prior was used for
the reconstruction algorithm. Figure 6 shows the results for this test. Although the peak
bias for this plot is not significantly different from the previous one, there are noticeable
differences regarding the average success rate and correlation. When using the cosmic
ray muon prior, the success rate is perfect, because the prior constrains the reconstructed
momenta when the detector measurements do not provide any useful information. For
such events, the reconstructed momentum is thus very weakly correlated to the generated
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Figure 6: Distribution of relative reconstruction error for 106 events generated according
to the cosmic ray muon spectrum and reconstructed using a flat prior. The red band shows
the “1σ” confidence interval.

momentum, which reduces the average correlation. On the other hand, when reconstruction
is performed using a flat momentum prior, events whose measured amount of scattering is
negligible compared to the position resolution will see their momentum fitted to a very
large, often infinite value. If one discards these events from the data, the reconstructed
momentum for the remaining events is better correlated to the generated value, but this
is at the cost of a lower average reconstruction success rate. This success rate depends
obviously on the generated momentum. Figure 7 shows the momentum distribution for the
events that fail to reconstruct.

In light of the two sets of results that have been presented so far, another possibility for the
reconstruction algorithm would be to reconstruct the events using a flat prior by default, but
then to fall back to a cosmic ray muon spectrum prior if the default algorithm fails. Figure 8
presents the corresponding results. It shows that the position of the relative reconstruction
error distribution peak is driven by the flat prior, but the tail and the correlation are driven
by the cosmic ray spectrum prior. The combined effects also tend to widen the confidence
interval.

Now that the average response of the reconstruction algorithm has been assessed, it is inter-
esting to see how this response depends on the generated muon momentum. As mentioned
above, the usage of either type of momentum prior results in a similar average relative er-
ror peak bias, but we expect momentum-dependent variations. To analyse this aspect, six
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Figure 7: Distribution of the true muon momentum for the events that fail to reconstruct
in the test of Figure 6.
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Figure 8: Distribution of relative reconstruction error for 106 events generated according
to the cosmic ray muon spectrum and reconstructed using a flat prior if successful and a
cosmic ray muon spectrum prior if not. The red band shows the “1σ” confidence interval.
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Figure 9: Distribution of relative reconstruction error for 105 1000 MeV muons recon-
structed using a cosmic ray muon spectrum prior. The red band shows the “1σ” confidence
interval.

different mono-energetic simulations have been generated and reconstructed using the two
different priors. Figures 9 to 14 show the results obtained using the cosmic ray muon prior
and Figures 15 to 20 show the corresponding results for the flat prior. As anticipated, these
two sets of results are very different. The usage of the cosmic ray muon prior, although
allowing to maintain a perfect success rate and narrower confidence intervals at low mo-
mentum, creates a larger peak bias for a given momentum and also a multi-peak structure
for higher momenta, due to the limiting detector resolution for these events and to the fact
that they are mainly constrained by the prior. This multi-peak structure is the cause of
the much wider confidence intervals at higher momentum. On the other hand, a flat prior
allows smaller peak biases and narrower high momentum confidence intervals, but the re-
construction success rate becomes very small for higher momenta. Table 3 summarises the
results.

The last series of results that are presented in Table 4 were obtained from the same simula-
tions as for Figures 5 and 6, but using a set of six different ranges of generated momentum.
For each range, the correlation between the generated and the reconstructed momenta was
computed for both the algorithm that uses the cosmic ray muon spectrum prior and the one
using the flat prior. As expected, the correlation goes down significantly for both algorithms
as a function of the generated momentum, but this correlation is on average significantly
better when using a flat prior.
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Figure 10: Distribution of relative reconstruction error for 105 2000 MeV muons recon-
structed using a cosmic ray muon spectrum prior. The red band shows the “1σ” confidence
interval.
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Figure 11: Distribution of relative reconstruction error for 105 3000 MeV muons recon-
structed using a cosmic ray muon spectrum prior. The red band shows the “1σ” confidence
interval.
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Figure 12: Distribution of relative reconstruction error for 105 4000 MeV muons recon-
structed using a cosmic ray muon spectrum prior. The red band shows the “1σ” confidence
interval.
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Figure 13: Distribution of relative reconstruction error for 105 5000 MeV muons recon-
structed using a cosmic ray muon spectrum prior. The red band shows the “1σ” confidence
interval.
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Figure 14: Distribution of relative reconstruction error for 105 6000 MeV muons recon-
structed using a cosmic ray muon spectrum prior. The red band shows the “1σ” confidence
interval.
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Figure 15: Distribution of relative reconstruction error for 105 1000 MeV muons recon-
structed using a flat prior. The red band shows the “1σ” confidence interval.
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Figure 16: Distribution of relative reconstruction error for 105 2000 MeV muons recon-
structed using a flat prior. The red band shows the “1σ” confidence interval.
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Figure 17: Distribution of relative reconstruction error for 105 3000 MeV muons recon-
structed using a flat prior. The red band shows the “1σ” confidence interval.
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Figure 18: Distribution of relative reconstruction error for 105 4000 MeV muons recon-
structed using a flat prior. The red band shows the “1σ” confidence interval.
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Figure 19: Distribution of relative reconstruction error for 105 5000 MeV muons recon-
structed using a flat prior. The red band shows the “1σ” confidence interval.
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Figure 20: Distribution of relative reconstruction error for 106 6000 MeV muons recon-
structed using a flat prior. The red band shows the “1σ” confidence interval.

Table 3: Summary of the results obtained when reconstructing events generated using
different momenta with the Bayesian estimator method using cosmic ray muon spectrum
and flat priors.

Cosmic Spectrum Prior Flat Prior
Momentum “1σ” Interval Success Rate “1σ” Interval Success Rate

MeV % % % %

1000 −25.0+51.2
−15.1 100.0 −20.0+76.1

−14.6 93.0
2000 −40.0+63.9

−11.1 100.0 −20.0+86.3
−17.0 68.7

3000 −40.0+94.8
−14.2 100.0 −20.0+70.1

−19.2 44.0
4000 −40.0+200.1

−17.4 100.0 −10.0+48.3
−25.0 26.0

5000 −40.0+232.0
−20.2 100.0 −20.0+40.5

−20.7 14.9
6000 −50.0+206.1

−16.3 100.0 −20.0+30.0
−21.8 8.6
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Table 4: Correlation between generated and reconstructed momenta, obtained when recon-
structing events generated according to the cosmic ray muon spectrum with the Bayesian
estimator method using cosmic ray muon spectrum and flat priors. Results are shown as a
function of the generated muon momentum range.

cor(p0t , p0 f )
Momentum Range Cosmic Spectrum Prior Flat Prior

MeV % %

< 1500 22.3 41.2
[1500,2500[ 14.8 23.5
[2500,3500[ 10.2 14.1
[3500,4500[ 7.7 10.8
[4500,5500[ 5.8 8.8

≥ 5500 21.5 13.3
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4 Conclusions

In this note, several muon momentum reconstruction algorithms have been presented and
then evaluated. Although they are all based on the Gaussian approximation of the multiple
Coulomb scattering deflection angle as a function of the incoming particle momentum, the
models used by these algorithms differ through their parameterisation and the simplifica-
tions in the derivation of the minimisation function expressions.

In Section 2, a previously developed algorithm was presented. This algorithm used a like-
lihood function that involved a single minimisation parameter, the muon momentum, and
which had a relatively simple expression, allowing very quick reconstruction time. How-
ever, since this method did not consider all correlations between the different detector
layers and since it used a Gaussian approximation for the distribution of the scattering an-
gle uncertainties due to position measurement uncertainties, the algorithm did not perform
very well with large-momentum muons or the distance between layers was reduced: large
biases were observed.

In order to improve muon momentum reconstruction performance, multiple other strategies
were investigated. Extended and unscented Kalman filter algorithms were developed, but
they both failed at providing any sensible estimator because the modelled system does not
have any linear term and also due to the non-causality between the different scattering angle
measurements.

An algorithm based on a more exact likelihood function was also designed. Although this
solution provides some sensitivity to muon momentum, it is too computationally demand-
ing to be practical and, more importantly, it is also susceptible to reconstruction biases.
This is due to the fact that for the system to be modelled, a likelihood function does not
allow, by its nature, to estimate the true muon positions, except for the two layers of the
lower tracker.

Finally, a Bayesian estimator was derived, using the same minimal approximations as the
new likelihood function. This estimator avoids the flaws of the new likelihood method,
by having the capability of estimating the true muon positions. This improves the recon-
struction time drastically, in addition to greatly reducing biases. This Bayesian estimator
can behave differently, depending on the momentum and spatial distribution priors which
are used for the incoming muons. Although the spatial distribution prior should not have
significant effects on the results for most events, the choice of momentum prior is more
important.
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5 Recommendations

After analysing different muon momentum reconstruction algorithms, it is clear that the
Bayesian estimator is able to reconstruct muon momentum with less bias than the other
evaluated methods. It has been shown that using a cosmic ray muon momentum spectrum
minimises the reconstruction success rate when events are generated using the same mo-
mentum distribution. However, the correlation between the generated and reconstructed
momenta is smaller when using this type of prior because of the inclusion of events whose
measured positions alone do not provide any information regarding muon momentum. For
the chosen detector configuration, the fraction of events that fall within this category is
about 22.4%, on average. The usage of a cosmic ray muon momentum spectrum prior thus
translates into important reconstruction bias and errors, when analysed using specific muon
momenta.

An alternate option for a momentum prior is the usage of a flat distribution, which does
not assume any initial knowledge about the momentum distribution. This results in a lower
reconstruction success rate because it excludes events whose measured positions do not
provide information about their momentum. Selecting only events having a measurable
momentum improves the reconstruction bias, uncertainties and correlation. The Bayesian
estimator with a flat momentum prior constitutes the recommended muon momentum esti-
mator.
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