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Abstract

The first three phases (design, acquisition and use) of the life cycle of military

equipment often span multiple years. Because of the lengths of these phases, the

economic and operational environments assumed during the design and acquisition

decision process may not be present when the system is delivered or during its use.

Variations in economic parameters can lead to cost overruns, and variations in oper-

ational environments can lead to system specifications, deemed appropriate during

the earlier phases, being inadequate for actual operational requirements. These un-

certainties should therefore be accounted for during the design and/or acquisition

process.

This report discusses how Chance-Constrained Goal Programming can be employed

to determine the optimal procurement decision to satisfy operational demands while

minimizing the risk of a budget overrun. A model is developed for the selection of

an optimal vehicle fleet mix for an operational scenario where the commodity de-

mands and vehicle costs are assumed to be normally distributed. The aim was to

determine the optimal fleet capable of satisfying the demands with a given prob-

ability while minimizing the potential budget overrun at a given probability level,

that is, the Value at Risk (VaR). Three different probability levels (90%, 95% and

99%) for the satisfaction of demand are considered for a VaR at a 95% level.

Résumé

Les trois premières phases (conception, acquisition et utilisation) du cycle de vie de

l’équipement militaire s’étendent souvent sur de nombreuses années. En raison de

la longueur de ces phases, les contextes économique et opérationnel prévus pendant

le processus de conception et de décision relative à l’acquisition pourraient être

différents à la livraison du système ou changer pendant son utilisation. La variation

des paramètres économiques peut entraîner des dépassements de coûts, tandis que

la variation des contextes opérationnels peut faire en sorte que les spécifications

du système, qui avaient été jugées appropriées pendant les phases antérieures, ne

conviennent plus aux besoins opérationnels réels. Il faudrait par conséquent tenir

compte de ces incertitudes pendant le processus de conception ou d’acquisition.

Le présent rapport explique comment on peut avoir recours à la programmation à

contraintes aléatoires pour prendre la meilleure décision en matière d’acquisition de

manière à répondre aux exigences opérationnelles tout en réduisant au minimum les

risques de dépassements budgétaires. Un modèle a été élaboré pour la sélection de la

combinaison optimale de véhicules pour un scénario opérationnel où l’on présume

que la demande de produits et le coût des véhicules seront distribués normalement.
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L’objectif consiste à déterminer quel serait le parc de véhicules optimal capable de

satisfaire à la demande selon une probabilité donnée tout en réduisant au minimum

les possibilités de dépassement budgétaire à un niveau de probabilité donné, c’est-à-

dire, la valeur à risque (VAR). On a examiné trois différents niveaux de probabilité

(90 %, 95 % et 99 %) à l’égard de la satisfaction de la demande, pour une VAR de

95 %.

Décisions relatives à l’acquisition en climat d’incertitude opérationnelle et écono-

mique - Recours à une approche de programmation stochastique pour établir la

bonne combinaison de véhicules
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Executive summary

Acquisition Decisions under Operational and
Economic Uncertainty

Yaw Asiedu; DRDC CORA TM 2011-201; Defence R&D Canada – CORA;
November 2011.

Introduction: Most military systems are used for extended periods and are expen-

sive to acquire and operate. The procurement of such systems is therefore a very

important process since the wrong system would saddle the military organisation

with a non-performing asset for an extended period. This can adversely impact

operations and defence budgets. However, procuring the most cost effective sys-

tem for military applications is often complicated by the fact that procurements are

made well in advance of the (unknown) operations to which the system will be

deployed, and also by the fact that military operations are extremely diverse.

Planning scenarios (or simply, scenarios) are often employed to describe a repre-

sentative spectrum of operations in which military forces may be called upon to act.

They provide the context to assess tasks which must be done and the capabilities

that may be required to undertake each task. Later in the Force Development Pro-

cess, appropriate platforms or systems are assessed to identify those that best fulfil

the capability mix of requirements.

Given that a scenario provides the contest and setting for possible future operations,

data on parameters such as the level of demand and system cost, cannot be known

with certainty. Also, the economic and operational environments assumed during

the design and acquisition decision processes may not be the same as when the

system is acquired or fielded. Furthermore, suppliers may come from different

countries thus exposing the process to currency risks. The risk of exceeding an

allocated budget or cost target, or of not being able to satisfy actual operational

demands in full should therefore be accounted for in the decision making process

by incorporating the uncertainties in the cost and operational parameters.

Methodology: This report proposed the use of Chance-Constrained Goal Program-

ming (CCGP) to determine the optimal procurement decision to satisfy operational

demands while minimizing the risk of budgetary overruns. To illustrate the ap-

proach, a model was developed and applied to the optimal selection of a logistics

vehicle fleet mix for a replenishment scenario with uncertain demands and vehicle

costs. The intent was to determine a fleet capable of satisfying demands with a

given probability while minimizing the Value at Risk at a given probability level.

DRDC CORA TM 2011-201 iii



Principal Results: Using the proposed CCGP model allowed the specification of

different demand satisfaction and cost risk levels to permit cost-performance trade-

off analysis to be conducted to determine the most appropriate risk level. With

specific reference to the sample logistic vehicle fleet mix problem, three different

probability levels (90%, 95% and 99%) for the satisfaction of demand were con-

sidered for a VaR at a 95% level. Using the 90% case as reference, it was observed

that a change in demand probability level from 90% to 99% requires disproportion-

ately more money to be risked while a change from 90% to 95% requires relatively

less money to be risked. Results from the model also provided insights needed to

specify budgetary requirements. It was shown that for the case where no budget is

pre-specified, VaR may be used as the budgetary requirement and in the case where

the budget is given, VaR less the budget, may be used as the contingency required.

Future Work: Although the modelling approach presented was illustrated with a

logistics vehicle fleet mix problem, the approach (and not necessarily the model)

is applicable to other procurement problems where there are uncertainties and an

appropriate balance between the cost risk and performance or operational risk is

sought. An avenue for future research is the development of a generic model that

may be used for different procurement problems. Secondly, the model used in this

report assumed that all the random variables were normally distributed. Future

work should look at more general distributions including discrete distributions.
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Sommaire

Acquisition Decisions under Operational and
Economic Uncertainty

Yaw Asiedu ; DRDC CORA TM 2011-201 ; R & D pour la défense Canada –
CARO ; novembre 2011.

Introduction : La plupart des systèmes militaires sont utilisés pendant de longues

périodes, coûtent cher et leur fonctionnement est onéreux. L’acquisition de tels sys-

tèmes est par conséquent un processus très important étant donné qu’en cas de mau-

vais choix, l’organisation militaire risque de devoir composer pendant une longue

période avec une pièce d’équipement qui n’est pas à la hauteur de ses exigences.

Cette situation peut avoir des effets néfastes sur les opérations et sur les budgets de

défense. Cependant, comme les achats sont faits bien avant le déroulement des opé-

rations (inconnues) dans le cadre desquelles un système sera utilisé et comme les

opérations militaires sont extrêmement diversifiées, il devient souvent compliqué

d’acheter le système qui sera le plus économique pour les forces armées.

On a souvent recours à des scénarios de planification (ou à de simples scénarios)

pour représenter un spectre d’opérations représentatif auxquelles les forces armées

pourraient être appelées à participer. Ces scénarios présentent le contexte permet-

tant d’évaluer les tâches à exécuter et les capacités dont on pourrait avoir besoin

pour accomplir chacune de ces tâches. Plus tard au cours du processus de dévelop-

pement des forces, on étudie les plateformes ou les systèmes appropriés en vue de

déterminer lesquels seront les plus susceptibles de répondre à l’éventail des besoins.

Étant donné qu’un scénario fournit le contexte et le cadre dans lequel se déroule-

ront possiblement les futures opérations, on ne peut établir avec certitude certains

paramètres comme le niveau de la demande et le coût du système. En outre, les

contextes économique et opérationnel prévus au cours des processus de conception

et de décision relative à l’acquisition seront peut-être différents de ceux qui pré-

vaudront au moment de l’achat ou de la mise en service. De plus, les fournisseurs

peuvent venir de pays étrangers, ce qui présente alors un risque lié aux devises. Il

faudrait donc, pendant le processus de décision, tenir compte du risque de dépas-

sement du budget alloué ou du coût cible, ou de la possibilité que l’équipement

ne puisse répondre parfaitement aux exigences opérationnelles réelles et prendre

en considération les facteurs d’incertitude lors de l’établissement des paramètres

opérationnels et du coût.

Méthodologie : Ce rapport propose le recours à la programmation à contraintes

aléatoires pour prendre la meilleure décision en matière d’acquisition de manière à
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répondre aux exigences opérationnelles tout en réduisant au minimum les risques

de dépassements budgétaires. Dans le but d’illustrer cette approche, un modèle a

été élaboré et appliqué pour la sélection optimale d’une combinaison de véhicules

logistiques dans le cadre d’un scénario de ravitaillement comportant des exigences

et des coûts incertains. On visait à créer un parc de véhicules capable de satisfaire

aux exigences selon une probabilité donnée tout en réduisant au minimum la valeur

à risque à un niveau de probabilité donné.

Principaux résultats : L’utilisation du modèle de programmation à contraintes

aléatoires proposé a permis la spécification de différents niveaux de satisfaction de

la demande et de risque en matière de coût afin d’effectuer une analyse comparative

du coût par rapport à la performance visant à déterminer le niveau de risque le plus

approprié. S’intéressant particulièrement au problème de la combinaison optimale

de véhicules logistiques, on a examiné trois différents niveaux de probabilité (90

%, 95 % et 99 %) pour la satisfaction de la demande avec une valeur à risque de 95

%. En se basant sur le niveau de 90 %, on a observé que pour passer à un niveau

de probabilité de la demande de 90% à 99 %, il faudrait risquer une trop grosse

somme d’argent supplémentaire alors que pour le changement de 90% à 95 %, on

devrait risquer une somme relativement moins élevée. Les résultats découlant du

modèle ont également fourni les données nécessaires à l’établissement des besoins

en matière de budget. Il a été démontré que dans le cas où aucun budget n’a été

préalablement fixé, la VAR pourrait représenter le besoin budgétaire et, dans le cas

où un budget est établi, la VAR moins le budget serait le montant nécessaire en cas

d’imprévu.

Recherches futures : Bien que l’approche de modélisation porte sur le problème

de la combinaison des véhicules logistiques, elle pourrait s’appliquer à d’autres pro-

blèmes d’acquisition comportant des incertitudes et exigeant l’établissement d’un

équilibre approprié entre le risque lié au coût et le risque opérationnel ou lié à la

performance (mais ce n’est pas nécessairement le cas du modèle). Des recherches

futures pourraient porter sur l’élaboration d’un modèle générique qui pourrait être

utilisé pour solutionner divers problèmes liés à l’acquisition. Aussi, le modèle uti-

lisé dans l’étude visée par le présent rapport présumait que toutes les variables

aléatoires étaient distribuées normalement. Au cours des prochaines recherches, on

devrait examiner les distributions plus générales, notamment les distributions dis-

crètes.
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1 Introduction

Logistic support vehicles like most military systems are used for extended periods

and are expensive to acquire and operate. The procurement of such systems is a very

important process since the wrong system would saddle the military organisation

with a non-performing asset for an extended period. This can adversely impact

operations and defence budgets. However, procuring the most cost effective system

is complicated by the fact that procurement decisions are made well in advance of

the (unknown) operations to which the system will be deployed, and also by the

fact that military operations are extremely diverse.

Planning scenarios (or simply, scenarios) are often employed to describe a repre-

sentative spectrum of operations in which military forces may be called upon to act.

They provide the context to assess tasks which must be done and the capabilities

that may be required to undertake each task. Later in the Force Development Pro-

cess, appropriate platforms or systems are assessed to identify those that best fulfil

the capability mix of requirements.

Given that a scenario provides the contest and setting for possible future operations,

data on parameters such as the level of demand and system cost, cannot be known

with certainty. Also, the economic and operational environments assumed during

the design and acquisition decision processes may not be the same as when the

system is acquired or fielded. Furthermore, suppliers may come from different

countries thus exposing the process to currency risks. The risk of exceeding an

allocated budget or cost target, or of not being able to satisfy actual operational

demands in full should therefore be accounted for in the decision making process

by incorporating the uncertainties in the cost and operational parameters.

Scenarios employed in the context of logistics vehicle fleet mix analysis invariably

involve the task of delivering a set of supplies to a single base or multiple bases that

are geographically dispersed. The problem is often modelled as a loading problem

(single base) or a vehicle routing problem (multiple bases) and the minimum cost

fleet mix that can deliver the supplies determined.

Variants of the vehicle fleet mix problem have been well studied both in the broader

scientific community and within Defence Research and Development Canada Cen-

tre for Operational Research and Analysis (DRDC CORA). In the open literature,

recent research have focused on applying various metaheuristics (such as genetic

algorithms, simulated annealing, tabu search, etc.) to determine optimal fleet mixes

[1, 2, 3] 1. However, the issue of uncertainty in demand and cost have not be ad-

dressed adequately either internally or in the open scientific literature.

1. Interested readers may consult [4] for a more extensive literature survey on fleet composition

and routing.
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Within DRDC, the Directorate Materiel Group Operational Research - Acquisition

Support Team (DMGOR AST) has conducted a number of studies in support of

the Medium Support Vehicle System (MSVS) project [5, 6] and Logistics Vehicle

Modernisation Project (LVMP) [7]. In these studies, requirements were assumed to

be equivalent to the amount of supplies that were consumed daily. Mixed integer

programming models were then used to determine the fleet mix that minimized

the logistics footprint required to replenish base supplies daily. The fleet mix was

therefore optimized for the delivery of that deterministic specification of demand

of supplies. Asiedu and Hill [7] incorporated the dynamic aspects of the problem

by considering daily changes in demand due to backorders (previous demand that

were not completely fulfilled) but did not treat uncertainties in the demand.

There are a number of ways to account for uncertainties in a fleet mix optimization

model. A common approach is to determine the fleet mix using the mean values of

the uncertain parameters. The solution may then be adjusted upwards by a prede-

termined factor to account for the possibility of having to satisfy demands in excess

of the mean values. Such solutions have high associated risks. Another approach

is to consider the worst case scenario and determine the optimal fleet for that case.

While this ensures that the demand would always be satisfied, the cost of the fleet

may be exorbitant and may exceed the allocated budget.

A better approach to handling uncertainties is the use of stochastic programming

techniques such as Chance-Constrained Goal Programming (CCGP). The advan-

tage of using stochastic programming over conventional deterministic program-

ming is that the uncertainty is explicitly incorporated into the solution.

1.1 Aim
This report proposes a CCGP model to determine the optimal vehicle fleet mix for

replenishment scenarios where the commodity demands and vehicle costs are un-

certain. The intent is to determine a fleet capable of totally satisfying demands with

a given probability while minimizing the Value at Risk 2(VaR) at a given probabil-

ity level. To illustrate how different probability levels impact the fleet selection and

associated VaR, the approach is applied to a sample scenario where the demand and

vehicle unit costs are assumed to be independent and normally distributed.

2. Given 0 < α < 0.5 and β = 1−α , VaR is defined as a value such that the probability that the

loss/cost over a specified time exceeds the value is equal to α . That is, VaR is the 100β -th percentile

of the loss/cost probability distribution function. Consequently, a VaR value may be denoted as

either VaRα or VaRβ . Since by convention α < 0.5 < β , it should be obvious which notation is

being used in a given context.

2 DRDC CORA TM 2011-201



1.2 Scope
The deterministic equivalent of a CCGP model is a mixed integer non-linear pro-

gramming model that may be non-convex. These types of problems are very dif-

ficult to solve. This paper does not attempt to develop a solution methodology for

the model but rather, solves it using AlphaECP. This is a software package based on

the Extended Cutting Plane (ECP) algorithm [8] for solving both convex and non-

convex, mixed integer non-linear programming models. The solver is freely avail-

able through the Network-Enabled Optimization System (NEOS) Server [9, 10].

Furthermore, the cost and demand distributions used in this paper are subjective

and not based on statistical analysis of historical data.

1.3 Report Organization
The remainder of this report is organized as follows. The next section provides a

brief discussion on how uncertainties in model parameters may be handled. A more

detailed discussion of stochastic programming, Chance-Constraint Programming

(CCP) and Goal Programming (GP) is contained in Annex A. Section 3 contains

the description of the operational scenario employed in the sample problem and

the mathematical representation of the problem. The results from the optimization

model are discussed in Section 4 and concluding remarks presented in Section 5.

DRDC CORA TM 2011-201 3



2 Handling Parameter Uncertainty

The majority of optimization applications in practice employ deterministic models

where (design, operational, cost, etc.) parameters are assumed to be known with

certainty. However, this may not be the case in reality. As indicated earlier, in the

case of identifying the optimal fleet mix of a logistics support system, the actual de-

mands and system costs may not be known with certainty. Assuming otherwise may

result in a fleet that is inappropriate for the intended application. The parameters

may therefore be more accurately represented as random variables. For example,

as illustrated in Figure 1, the cost of a truck could be assumed to be uniformly dis-

tributed between $185,000 and $215,000 (Graph 1) or triangularly distributed with

the same range and a mean of $200,000 (Graph 2).

Graph 2

Graph 1

180000 185000 190000 195000 200000 205000 210000 215000 220000

Figure 1: Sample representations of the uncertain cost of a truck.

2.1 Stochastic Programming Methods
Incorporating parameter uncertainties in a model presents computational and ana-

lytical challenges since all possible outcomes of the uncertain parameters must be

taken into account in making the optimal decision. The two main methods that

have been proposed to address uncertainty in optimization problems are stochastic

programming [11, 12] and robust optimization [13, 14].

Robust optimization attempts to generate a solution that would be feasible for the

worst case realization of the uncertain parameters as defined by the decision maker.

This is more suitable for situations where the ranges for the uncertain parameters

are known but the distributions may not be known.

On the other hand, stochastic programming is based on the notion that it may be

impossible to find a set of system specifications that would meet all future oper-

ational needs. In some instances, the unexpected operational need can be met by
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some recourse actions taken once the need is known. For example, contracting for

private strategic lift capability is an option for a military faced with a higher than

expected lift capability requirement.

The use of recourse action may not be an option in some applications or a cost can-

not be assigned to the recourse action in a reasonable manner. For example, unlike

strategic lift requirements, tactical lift requirements may not be contracted out for

security and operational reasons. In such circumstances, one would rather insist on

decisions guaranteed to meet operational requirements ‘as much as possible’. This

approach is known as probabilistic programming or CCP [12].

Chance-Constrained Programming allows a decision maker to specify the level of

acceptable risk for operational and design requirements (constraints) when model

parameters are uncertain. Such constraints differ from conventional constraints in

the sense that they only have to be satisfied a certain percentage of the time. This

percentage is in essence, the confidence the decision maker has that an acceptable

solution would satisfy the constraint when the uncertain parameters become known.

2.2 Uncertainty in Objective Function
A mathematical programming technique known as Goal Programming may be used

to convert the objective (function) of a problem into a constraint by specifying a

target value for the objective and the deviation from this value specified as the new

objective to be minimized.

Using CCGP (the combination of CCP and GP) permits the minimum deviation to

be determined at a given probability level. When the objective function represents

a loss function and its parameters are uncertain, the deviation is equivalent to the

risk metric, VaR (see footnote on page 2 for definition). In the case of system

acquisition, the loss function may be viewed as the total cost of the acquisition or

the expenditure beyond an approved budget and the ideal value set to zero or the

allocated budget, respectively.

The VaR is the value that may be exceeded with a given probability. However, it

does not provide any information on the loss once this value is exceeded. A second

and better risk metric, with respect to system optimization, is the Conditional Value

at Risk (CVaR) [15]. CVaR is the expectation of the loss function values that ex-

ceed the VaR. Figure 2 illustrates the difference between the two metrics using the

standard normal distribution and a level of 0.8 or 80% (note that the VaRβ notation

is used throughout this report).
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CVaR=1.34
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Figure 2: Illustration of the concepts of VaR and CVaR at the 0.8 level.

All the uncertain parameters in this report are assumed to be normally distributed.

Consequently, using either VaR or CVaR as the objective will produce the same

optimal decision (see [15]). VaR is used for the model discussed in this report be-

cause of the relationship between VaR constraints, CCP and GP. Interested readers

may review the material in Annex A for a more detailed discussion of stochastic

programming, CCP, GP, VaR and CVaR.
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3 Scenario Description and
Mathematical Model

In order to determine the most appropriate logistics vehicle fleet, various scenarios

have to be analyzed and the final fleet determined by the judicious combination of

the results from each scenario. Scenarios used for this purpose may have several

bases geographically dispersed [5, 6], or a single base [5]. When support to mul-

tiple bases is considered, the determination of the optimal fleet of vehicles can be

formulated as a variant of the Vehicle Routing Problem (VRP). In the case of a

single base, the problem is simply a container loading and assignment problem.

The VRP has been treated extensively in the open literature (the review of Laporte

and Osman [16] contains over 500 papers) and also in previous DRDC studies [5, 6,

7]. This study therefore focuses on the issue of making optimal fleet mix decisions

in the presence of data uncertainty and thus employs a scenario with a single base

supported by a depot. The problem is first presented in the form of a scenario before

the mathematical formulation is discussed.

3.1 The Sample Scenario
The force in the scenario is a task group of approximately 2800 3 personnel de-

ployed at a single base and supported from a single depot. On each day, a single

trip is organized from the depot to deliver commodities based on the supply requests

received. The amount of each commodity demanded is uncertain but assumed to

follow a known distribution. The objective is to determine the number and types of

vehicles, trailers and containers in the fleet required to supply the troops. In order

to reduce cost, the intention is not to specify a fleet that is capable of supplying the

demand in all cases, but rather one that can ensure that the demand can be fully met

a certain percentage of the time, and partially the rest of the time. That is, demand

can be completely satisfied with a given probability.

The commodity types and amounts that have to be delivered to the base are shown

in Table 1 together with the maximum quantity that may be loaded onto standard

North Atlantic Treaty Organization (NATO) pallets. The weight of a pallet of am-

munition can vary significantly from 100 kg to over 1800 kg [17]. For example, the

weight for 155 mm artillery is about 1,200 kg and 1,620 kg for .50 calibre machine

guns. A NATO standard unit load has a mass of up to 1130 kg (2500 lb) [17]. This

amount was used in this study.

3. This number was chosen to be approximately double the size of the force used in [6] to ensure

that changes in the probability level for the demand constraint would result in some changes in the

optimal fleet.
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The mean values for the demand in Table 1 are based on standard planning con-

sumption rates and the number of personnel−2800. With the exception of ammu-

nition, the daily consumption rates are based on forecasted standard usage rates

indicated in the Staff Data Handbook [18]. The ammunition rate is based on data

from [5]. As stated above, the actual demand is uncertain. It was assumed that the

demand is distributed normally with a standard deviation equal to 15% of the mean.

These are also shown in Table 1. This is just an assumption and is not based on any

statistical analysis of historical data.

Table 1: Standard parameters for the commodities.

Group Identifier Class Name
Weight per Usage Rates Demand (kg)

Pallet (kg) (kg/man/day) Mean Std. Dev.

Rations

CT1 Individual Meal Package 698 4.98 13944 2091.6

CT2 Meals Ready to Eat 1006 2.4 6720 1008

CT3 Fresh Rations 350 3.1 8680 1302

CT4 Water (Personal Consumption) 900 13.97 39116 5867.4

POL CT5 Packaged POL 425 1.4 2800 420

General Stores

CT6 Engineering Stores (Construction) 544 6.3 17640 2646

CT7 Defence Stores (Barrier) 288 4.3 12040 1806

CT8 General and Technical 300 2.9 8120 1218

Ammo CT9 Ammunition 1130 7 19600 2940

The use of personnel-based consumption rates is a simplification of how resources

are actually used. The consumption rate for some commodities may not be di-

rectly proportional to the personnel strength; packaged petroleum, oil and lubri-

cants (POL) is more likely to be correlated with the number of vehicles at the base.

Commodities are grouped into four compatibility groups defined by NATO. These

are: rations (individual meal packs (IMP) and water), packaged POL, ammunition

and general stores (note that not all classes of mixed stores identified by NATO are

considered in this report). Items in different compatibility groups may be combined

on a carrier provided they are packed in different containers.

3.2 Logistics Fleet Options
To transport supplies, they are first loaded onto pallets which are in turn loaded

directly onto cargo trucks or into containers (20 ft containers, quadcons or bi-

cons) which are then transported on palletized load system/load handling system

(PLS/LHS) vehicles. The types of trucks, trailers and containers considered in the

study are discussed below. The mean cost values provided in this section are from

[19] and similar to the demand, all the cost parameters are assumed to be normally

distributed but with a standard deviation equal to 10% of the mean.
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3.2.1 Truck Options

The characteristics of the trucks under consideration to lift the daily supplies are

shown in Table 2. These are the PLS/LHS (TK1-TK3) and cargo (TK4-TK7) vari-

ants of trucks ranging in payload from 4 to 20 tonnes. A truck with a PLS/LHS

has the capability to load, transport and unload standardized containers. With the

exception of TK7 which has a 10 ft bed, all trucks have a 20 ft bed.

Table 2: Characteristics of the available trucks.

Identifier Truck Name Payload Bed Bulk Type Towing Cost ($000)

(kg) Length(ft) Capacity Capacity(kg) Mean Std. Dev.

TK1 8 tonne 8000 20 4 PLS/LHS 8000 400 40

TK2 16 tonne 16000 20 4 PLS/LHS 16000 600 60

TK3 20 tonne 20000 20 4 PLS/LHS 16000 700 70

TK4 8 tonne cargo 8000 20 4 Cargo 8000 300 30

TK5 16 tonne cargo 16000 20 4 Cargo 16000 500 50

TK6 20 tonne cargo 20000 20 4 Cargo 16000 600 60

TK7 4 tonne 10 ft cargo 4000 10 2 Cargo 8000 220 22

Each truck has a bulk capacity corresponding to the number of quadcons it can

carry. For cargo trucks which cannot transport containers, this number is the same

as a PLS/LHS truck with the same truck bed length. For example, since a 20 ft

cargo truck can carry four quadcons, it will have a bulk capacity of four.

The mean and standard deviations of the cost of the trucks are also shown in Table

2. The cost of the trucks increase with increasing capacity and for a given size, the

cargo variant is cheaper.

3.2.2 Trailer Options

Similar to the trucks, there are PLS/LHS (TR1-TR3) and cargo (TR4-TR6) variants

as shown in Table 3, and each trailer has a bulk capacity corresponding to the num-

ber of quadcons it can carry. In this study, it is assumed that PLS/LHS trucks can

tow trailers TR1-TR3, while cargo trucks can only tow trailers TR4-TR6. Trailers

TR2 and TR5 are phantom trailers used in the mathematical model to represent the

case where a 16 tonne trailer is used but cannot be loaded to its full capacity because

it is towed by a truck with a lower towing capacity. In this instance, the capacity is

restricted to 8 tonnes. The cost of the 8 tonne trailers are about $5,000 lower than

the 16 tonne trailer for both the cargo and PLS/LHS variants.

3.2.3 Container Options

The characteristics of the containers considered in this report are shown in Table 4.

Containers come in many sizes and types, but only certain sizes are standardized to
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Table 3: Characteristics of the available trailers.

Identifier
Trailer Payload Bed Bulk Type Cost ($000)

Name (kg) Length (ft) Capacity (kg) Mean Std. Dev.

TR1 8 tonne 8000 20 4 PLS/LHS 90 9.0

TR2 16 tonne RL 8000 20 4 PLS/LHS 95 9.5

TR3 16 tonne 16000 20 4 PLS/LHS 95 9.5

TR4 8 tonne cargo 8000 20 4 Cargo 90 9.0

TR5 16 tonne cargo RL 8000 20 4 Cargo 95 9.5

TR6 16 tonne cargo 16000 20 4 Cargo 95 9.5

facilitate intermodal transportation. Those considered in this report are the standard

20 ft containers, bicons and quadcons. Bicons are roughly half the size of a 20 ft

container and a quadcon is roughly a quarter of the size. Two bicons, four quadcons

or one bicon and two quadcons can be linked together to form one twenty-foot

equivalent unit (TEU), and handled exactly as a standard 20 ft container. The cost

of a container is effectively independent of the size or type.

Table 4: Characteristics of the available containers.

Identifier
Container Bulk Payload Tare Footprint Cost

Type Capacity (kg) Weight (kg) Mean Std. Dev.

CO1 Quadcon 4 4280 800 1 4000 400

CO2 Bicon 8 8560 1600 2 4000 400

CO3 20 ft 20 20000 2700 4 4000 400

CO4 20 ft cargo 10 - 0 4 - -

CO5 10 ft cargo 10 - 0 2 - -

To facilitate the application of the model to a wide variety of vehicles and container

combinations, it is assumed that all vehicles, including cargo vehicles, transport

goods in a container. It is further assumed that the truck bed of cargo vehicles is

a weightless phantom container with an infinite payload. This assumption has no

effect since the total weight of the contents of the phantom container is limited to

that of the vehicle. Note that these containers also have no cost assigned to them.

Containers are assumed to have a footprint corresponding to its quadcon equiva-

lence. That is, the footprint of a container is the number of quadcons that would

have to be linked together to create an equivalent container. For example, the foot-

print of a bicon is two and that for a 20 ft container is four. The 20 ft container

cannot be transported by vehicles with 10 ft beds, and only cargo vehicles can

transport the phantom cargo containers (CO4 and CO5).
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3.3 The Optimization Model
As stated previously, determining the optimal fleet mix to deliver goods to a single

base location is simply a container loading and assignment problem. This is a

difficult problem but is made easier by assuming that standard NATO pallets are

used with the number of pallets that each container can transport, predetermined.

This eliminates the need to explicitly solve the loading problem.

In the development of the model, it is assumed that vehicles are 100% reliable.

Furthermore, to simplify the model, it was assumed that there was a known number

of each vehicle and container type available.

The complete notation for the model is summarized below. When required, indices

of parameters (known model input values) are indicated in parenthesis, e.g. c(m),
and indices of variables (unknown model outputs) are indicated as subscripts. Note

that a number of variables used in Annex A are redefined here.

Inputs-Sets:

S Trucks (may contain more than one of each truck type)

R Trailers (may contain more than one of each trailer type)

J Vehicles, J = S∪R
M Containers (may contain more than one of each container type)

I Commodities

G Commodity compatibility groups

K Truck Types

T (k) Trucks of type k, T (k)⊂ S and T (k1)∩T (k2) = φ , if k1 /= k2

V (g) Commodities not in compatibility group g.

Inputs-Parameters:

B Allocated budget or zero

c(m) Bulk capacity of container m
C( j) Number of quadcons vehicle j can carry

CCost(m) Cost of container m
D(i) Demand for commodity i
pw(i) Weight per pallet of commodity i.
Qβ β -percentile of the standard normal density function

qe(m) Bulk footprint of container m (quadcon=1, bicon=2, 20′ container=4)

tw(m) Tare weight of container m
U Maximum number of different truck types permitted

VCost( j) Cost of vehicle j
w(m) Payload of container m
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W ( j) Payload of vehicle j
βo Probability of satisfying constraint associated with objective function

βc Probability of satisfying demand

γ( j,m) 1 if container m cannot be transported by vehicle j; 0 otherwise

θ(s,r) 1 if trailer r cannot be towed by truck s; 0 otherwise

Decision Variables:

ami,m Amount of commodity i in container m, real number

bi,m Number of pallets loaded with commodity i in container m, integer

d j,m 1 if container m is transported using vehicle j; 0 otherwise

gmm,g 1 if container m is carrying commodities in group g; 0 otherwise

hk 1 if vehicles of type k are used; 0 otherwise

Qs,r 1 if truck s tows trailer r, 0 otherwise

VaRβo Value at Risk at level βo
x j 1 if vehicle j is used; 0 otherwise

zm 1 if container m is used; 0 otherwise

3.3.1 The Objective Function

The intent in using a scenario approach in a fleet mix analysis is often to identify

the type of vehicles and containers that an organisation would need and/or the rel-

ative proportions of the vehicle and container types in the final fleet. The actual

fleet acquired may therefore be based on the judicious combination of the results

from all the scenarios considered. It is assumed in this study that only the scenario

discussed earlier is being used to make the decision and that the types of vehicles

and containers identified would be acquired in the proportion specified by the op-

timisation model. The objective function can thus be stated simply as the sum of

the cost of the vehicles and containers selected in the scenario. This is represented

algebraically as:

min : ∑
j∈J

VCost( j) · x j + ∑
m∈M

CCost(m) · zm . (1)

3.3.2 The Model Constraints

The constraints for the deterministic variant of the mathematical programming

model for the problem are summarized as follows:
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∑
m∈M

ami,m ≥ D(i) ∀ i ∈ I (2)

∑
s∈S

∑
r∈R

θ(s,r) ·Q(s,r) = 0 (3)

∑
j∈J

∑
m∈M

γ( j,m) ·d j,m = 0 (4)

ami,m − pw(i) ·bi,m ≤ 0 ∀ m ∈ M (5)

pw(i) ·bi,m −ami,m ≤ pw(i) ∀ m ∈ M (6)

∑
i∈I

bi,m − c(m) · zm ≤ 0 ∀ m ∈ M (7)

∑
m∈M

qe(m) ·d j,m =C( j) · x j ∀ j ∈ J (8)

∑
i∈I

ami,m ≤ w(m) · zm ∀ m ∈ M (9)

∑
i∈I

ami,m + tw(m) · zm − ∑
j∈J

qe(m) ·W ( j)
4

·d j,m ≤ 0 ∀ m ∈ M (10)

∑
s∈S

Qs,r − xr = 0 ∀ r ∈ R (11)

∑
r∈R

Qs,r − xs ≤ 0 ∀ s ∈ S (12)

∑
j∈J

d j,m − zm = 0 ∀ m ∈ M (13)

∑
i∈V ′(g)

bi,m + c(m) ·gmm,g ≤ c(m) ∀ m ∈ M (14)

∑
i∈V (g)

bi,m − c(m) ·gmm,g ≤ 0 ∀ m ∈ M (15)

gmm,g − ∑
i∈V (g)

bi,m ≤ 0 ∀ m ∈ M (16)

∑
k∈K

hk ≤U (17)

hk − ∑
j∈T (k)

x j ≤ 0 ∀ k ∈ K (18)

∑
j∈T (k)

x j −|T (k)| ·hk ≤ 0 ∀ k ∈ K (19)

ami,m ≥ 0 (20)

gmm,g, d j,m, x j, zm, hk ∈ {0,1} . (21)
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Equation 2 requires the amount of a commodity delivered to be more than or equal

to the demand. Equations 3 and 4 are compatibility constraints. They prevent

certain truck-trailer (equation 3) and vehicle-container (4) combinations.

There should be enough pallets to load the commodities to be transported (equa-

tion 5) but the number must be no more than the minimum required (equation 6).

The bulk capacities of the containers (equation 7) and vehicles (equation 8) may

not be exceeded. Also the total weight of commodities transported in each con-

tainer should not exceed its payload (equation 9). Equation 10 ensures that vehicle

payloads are not exceeded. This assumes that a vehicle’s payload is distributed

amongst the containers it transports in proportion to their bulk footprints. For ex-

ample, a vehicle with a payload of 10 tonnes, may transport two quadcons and a

bicon with the quadcons each weighing a maximum of two and a half tonnes and

the bicon weighing a maximum of five tonnes.

Equations 11 and 12 ensure that each trailer is towed by at most one truck and

equation 13 ensures that a container is loaded on only one vehicle if it is being used.

Equations 14-16 are commodity compatibility constraints. Only commodities in the

same compatibility group may be loaded in the same container.

Equation 17 restricts the number of different types of trucks in the fleet. Equations

18 and 19 ensure that at least one truck of a type selected is included in the fleet.

As a corollary, no truck of a type not selected is included in the fleet.

3.3.3 The Deterministic Equivalent of the Fleet Mix CCGP
Model

Since it is assumed that the cost function coefficients (VCost(j) and CCost(m)) and

demand (D(i)) are uncertain, equations 1 and 2 may be converted to chance con-

straints as described in Section A.1. Consequently, the deterministic equivalent

model of the CCGP variant of the mixed integer programming model presented

above is given as:

min VaRβo (22)

subject to:

E[ f (x j,zm)]−B+Qβo

√
V[ f (x j,zm)]≤VaRβo (23)

E[D(i)]− ∑
m∈M

ai,m +Qβc

√
V[D(i)]≤ 0 ∀i ∈ I (24)
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equation 3

equation 4

...

equation 21

VaRβo > 0 ,

with f (x j,zm) = ∑
j∈J

VCost( j) · x j + ∑
m∈M

CCost(m) · zm.

In the model above, equation 1 has been converted into a constraint (equation 23)

with the introduction of a new objective (equation 22), and equation 2 has be re-

placed with equation 24.

The B in equation 23 is the objective function goal or target. If this value is set to

zero then VaRβo represents the required budget which has a 100×βo% chance of

not being exceeded. On the other hand, if B is set to the allocated budget, then there

is a 100×βo% chance that the cost overrun would be less than VaRβo . In the next

section, results from the application of the model to the problem described in the

scenario are presented.
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4 Results and Discussions

To test the utility of the model, it was applied to the scenario presented in Section

3. To simplify the model, it was assumed that there was a fixed number of each

vehicle and container type available. The assumed maximum number available for

each truck, trailer and container type is shown in Tables 8, 9 and 10, respectively.

These numbers were identified through trial and error so that the size of the model

was as small as possible and no solutions required the maximum number available

in the optimal fleet. The value of B was set to zero and that of U , set to four. That

is, no budget was assumed and at most, only four different types of trucks may be

in the fleet.

To assess how different probability levels affect the fleet mix, the model was solved

with an objective function level of 95% (i.e., βo = 0.95 and VaR0.95 (equation 22

is what is minimized) for demand constraint levels of 90%, 95% and 99% (i.e., βc
= 0.9, 0.95 and 0.99, respectively). Multiple values of βo were not considered for

specific values of βc because, for objective function coefficients that are normally

distributed, the optimal fleets would be the same. In the discussion below, the 90%

case is used as the baseline or reference for comparison.

Table 8: Assumed maximum number of each truck type available.

Truck Maximum Available

8 tonne 4

16 tonne 4

20 tonne 1

8 tonne cargo 6

16 tonne cargo 1

20 tonne cargo 1

4 tonne 10 ft cargo 3

Table 9: Assumed maximum number of each trailer type available.

Trailer Maximum Available

8 tonne 4

16 tonne RL 2

16 tonne 4

8 tonne cargo 6

16 tonne cargo RL 2

16 tonne cargo 1
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Table 10: Assumed maximum number of each container type available.

Container Maximum Available

Quadcon 6

Bicon 5

20 ft 12

4.1 Fleet Mix
Tables 11, 12 and 13 show the trucks, trailers, and containers in the optimal fleet

mix, respectively. In the aforementioned tables, the 20 ft cargo and 10 ft cargo
phantom containers are excluded. These containers were abstract modelling con-

structs. Using the 90% case as an example, if the fleet mix specified is purchased,

then it would be enough to supply the demanded commodities 90% of the time. For

the remaining 10% of the time, the fleet would not be enough to meet all demands

but would still be enough to supply at least 90% of the needed amounts.

With respect to the trucks, the smaller trucks are favoured. The 16- and 20-tonne
cargo trucks and the 20 tonne trucks are never used. The trailer fleets are quite

similar for the three cases with the main difference between them being the use of

an additional 8 tonne trailer for the 99% case. Even though for the 95% case, a 16
tonne cargo RL trailer is used in lieu of an 8 tonne cargo trailer. Recall that the 16
tonne cargo RL is similar to the 8 tonne cargo trailer with respect to the payload.

Unlike the trucks, containers with higher bulk capacities and payloads are used.

This may be a reflection of the fact that the cost is not dependent on the size of the

container. This makes the use of say, a 20 ft container preferable to the use of either

four quadcons or two bicons in most cases.

Table 14 shows the total fleet payload and bulk capacity for the three cases. As

expected, the total payload increases with increasing demand probability level. It

is seen that a 5.6% relative change in level (90% to 95%) resulted in only a 2.2%

change in payload and no change in bulk capacity. The corresponding values for a

change from 90% to 99% are 16% and 14% for payload and bulk capacity, respec-

tively. These are higher than the change in level, 10%.
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Table 11: Number of each truck type in final fleet for various demand constraint probability
levels.

Truck Type
Demand Probability Level (%)

90 95 99

8 tonne 2 2 3

16 tonne 3 3 3

20 tonne 0 0 0

8 tonne cargo 3 5 5

16 tonne cargo 0 0 0

20 tonne cargo 0 0 0

4 tonne 10 ft cargo 2 0 0

Table 12: Number of each trailer type in final fleet for various demand constraint probabil-
ity levels.

Trailer Type
Demand Probability Level (%)

90 95 99

8 tonne 2 2 3

16 tonne RL 0 0 0

16 tonne 3 3 3

8 tonne cargo 5 4 5

16 tonne cargo RL 0 1 0

16 tonne cargo 0 0 0

Table 13: Number of each container type in final fleet for various demand constraint prob-
ability levels.

Container Type
Demand Probability Level (%)

90 95 99

Quadcon 2 4 0

Bicon 1 0 2

20 ft 9 9 11
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Table 14: Total effective payload and bulk capacity for the fleet for various demand con-
straint probability levels.

Demand Probability Payload Bulk Capacity

Level (%) (kg) (%) Change No. of Palletsa (%) Change

90 369,620 - 296 -

95 377,620 +2.2 296 0

99 428,220 +16 336 +14
a The sum of the bulk capacities of containers and cargo vehicles.

4.2 Cost Risk Measures
Figure 3 shows the acquisition cost distributions for the three cases. That is, for each

fleet mix specified in Tables 11, 12 and 13, the actual cost could be any value in the

range specified by the corresponding probability distribution. These distributions

were developed using equation 1 and the cost parameters from Tables 2, 3 and 4.

4400 4600 4800 5000 5200 5400

(a)

4600 4800 5000 5200 5400 5600

(b)

5000 5200 5400 5600 5800 6000

(c)

Figure 3: Total cost distributions and VaR0.95 for demand constraint probability levels of
90% (a), 95% (b) and 99% (c) with cost values in thousands of dollars.
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The VaR0.95 values are indicated by the vertical lines in Figure 3. The exact values

are shown in Table 15 together with the values for CVaR0.95. The VaR0.95 values

are from solving the model while the CVaR0.95 values were calculated using equa-

tion A.10 4. However, the CVaR0.95 values are not shown in Figure 3 since they

correspond to points at the extreme right tail of the distributions.

As expected, VaR0.95 and CVaR0.95 increase with increasing demand probability

level. The change in VaR0.95 and CVaR0.95 are 3.4% and 3.3% for the 95% demand

probability level and, 13.0% and 12.7% for the 99% demand probability level. Sim-

ilar to the payload and bulk capacity values, these values show that a change in de-

mand probability level from 90% to 99% requires disproportionately more money

to be risked while a change from 90% to 95% requires relatively less money to be

risked.

Table 15: Optimal risk measures for various demand constraint probability levels.

Demand Probability VaR0.95 CVaR0.95

Level (%) ($ 000) % Change ($ 000) % Change

90 5,126 - 5,407 -

95 5,300 +3.4 5,588 +3.3

99 5,795 +13 6,095 +12.7

VaR and CVaR can be used for planning in a multitude of ways. Two approaches

are discussed next using the results for the 95% case. Table 15 shows that VaR0.95 is

equal to $5.3 M. This implies that, if the organization decides to acquire the fleet as

specified in Tables 11, 12 and 13, then there is only a 5% chance of the actual price

exceeding $5.3 M. The organization can therefore specify a budget equal to this

amount and a contingency fund of $288,000 (CVaR0.95-VaR0.95). This translates

to a contingency of 5.4% and almost 100% (99.99%) confidence that there will be

enough funds to cover the cost. Effectively, the organization is assured that there

will be money for the acquisition assuming the uncertainties in the parameters have

been correctly identified.

In the case where a budget has already been allocated, that is B in equation 23 is

set, VaR represents the cost overrun at the specified level. For illustrative purposes,

if it is assumed that B = $5 M, then the VaR0.95 and CVaR0.95 will be $300,000

and $588,000 for the 95% case, respectively. In this case, the organization may

specify a contingency equal to VaR0.95. Consequently, there is a 95% chance that

the contingency amount would be enough to address a project cost that exceeds the

allocated budget. The organization could also buy insurance to cover the amount

4. Note that CVaR0.95 could have be optimized directly by using an objective which is the sum

of equations 22 and A.10 (or the equivalent equation for the specific distribution), in the model in

Section 3.3.3.
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of $288,000 (CVaR0.95-VaR0.95), the expectation (mean) for the 5% of cases where

the cost overrun would be in excess of the contingency fund.

As noted above, these are just two examples of how the outputs of the model can

provide insights into budgetary requirements.
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5 Concluding Remarks

Procurement decisions are often made with uncertain data. These data uncertain-

ties can impact the choices made and the operational utility of the procured sys-

tem. They should therefore be addressed adequately during the decision process. A

CCGP model was developed to illustrate how operational and economic uncertain-

ties can be included in optimal procurement decisions.

Using CCGP allows the decision maker to specify the cost and operational perfor-

mance risk levels that are acceptable to the organisation and determine the optimal

decisions accordingly. Where the levels are not known, different performance and

cost levels can be considered to permit cost-performance trade-off analysis to be

conducted to determine the most appropriate levels.

The utility of the CCGP model was illustrated by applying it to the selection of

an optimal logistics vehicle fleet mix. A sample scenario where the demand and

vehicle unit costs were assumed to be normally distributed was used in the appli-

cation. Three different probability levels (90%, 95% and 99%) for the satisfaction

of demand were considered for a 95% level for the cost. Using the 90% case as

reference, it was observed that a change in demand probability level from 90% to

99% requires disproportionately more money to be risked while a change from 90%

to 95% requires relatively less money to be risked.

Although the modelling approach presented was illustrated with a logistics vehi-

cle fleet mix problem, the approach (and not necessarily the model) is applicable

to other procurement problems where there are uncertainties and an appropriate

balance between the cost risk and performance or operational risk is sought.
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Annex A: Stochastic Programming
Techniques

A linear optimization problem can be stated as:

min
n

∑
j=1

c jx j , (A.1)

subject to:
n

∑
j=1

ai jx j ≥ bi, i = 1,2, . . . ,m , (A.2)

x j ≥ 0 ,

where c j are the n objective function coefficients, x j are the n decision variables,

ai j are the m ·n constraint coefficients and bi are the m constants.

The majority of optimization applications in practice employ deterministic models

where c j, ai j and bi are assumed to be known with certainty. However, this may

not be the case in reality. The parameters c j, ai j and bi, may therefore be more

accurately represented as random variables.

The two main methods that have been proposed to address uncertainty in optimiza-

tion problems are stochastic programming [11, 12] and robust optimization [13, 14].

Robust optimization attempts to generate a solution that would be feasible for the

worst case realization of the uncertain parameters as defined by the decision maker.

On the other hand, stochastic programming is based on the notion that it may be

impossible to find a set of values of the decision variables that would exclude later

constraint violations caused by unexpected random effects. Stochastic program-

ming models can be further grouped into recourse models [20] and, probabilistic

programming or CCP [12]. Recourse models correct constraint violations by tak-

ing some recourse actions, at additional cost, once the violation is observed. CCP

models try to identify decisions guaranteeing feasibility ‘as much as possible’ [21].

Only the CCP modelling approach is discussed in the remainder of this annex.

A.1 Chance-Constrained Programming
Chance-constrained programming was developed by Charnes and Cooper [12] as a

means of describing constraints in terms of attainment probabilities or acceptable

risks. If 0 < β < 1 is the degree of confidence desired by the decision maker, then

α = 1−β is the risk acceptable to the decision maker. Given β , the CCP equivalent
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of the constraints defined by equation A.2 may be specified as:

P

{
n

∑
j=1

ai jx j ≥ bi

}
≥ βi, i = 1,2, . . . ,m (A.3)

or

P

{
n

∑
j=1

ai jx j ≥ bi, i = 1,2, . . . ,m

}
≥ β , (A.4)

where P is a probability measure. Equation A.3 implies that each individual con-

straint may be violated but only at most (100×αi)% of the time. Similarly, the joint

constraint defined by equation A.4 may be violated but only at most (100×α)%
of the time. Such constraints differ from conventional constraints in the sense that

they only have to be satisfied a certain percentage of the time.

The constraints defined by equation A.3 are the unconditional or individual chance

constraints while equation A.4 defines a combined or joint chance constraint. Equa-

tion A.3 considers the probability to satisfy each one of the constraints indepen-

dently from the others while equation A.4 is the probability to simultaneously sat-

isfy all the constraints. The model in this report is based on individual chance

constraints. Consequently, only that is discussed further in this annex.

A.2 Deterministic Equivalent Model
In the general case, it is assumed that c j, ai j and bi are all random variables. Ap-

proaches for solving CCP models first converts them to deterministic equivalent

models which are then solved using well established deterministic solution tech-

niques. The following sections discuss how to derive the deterministic equivalent

of a CCP model.

A.2.1 The Deterministic Equivalent Constraint

With respect to the constraints, three cases can arise: random ai j and determinis-

tic bi, deterministic ai j and random bi, and random ai j and bi. The deterministic

equivalent for each case under the assumption that the random variables are nor-

mally distributed is as follows:

1. Random ai j

E[
n

∑
j=1

ai jx j]−Qβi

√
XT ΦiX ≥ bi (A.5)

where, X = (xi,x2, . . . ,xn), Φi is the ith covariance matrix and Qβi is the βi-

percentile of the standard normal density function;
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2. Random bi
n

∑
j=1

ai jx j ≥ E[bi]+Qβi

√
V[bi] ; (A.6)

3. Random ai j and bi

E[
n

∑
j=1

ai jx j −bi]−Qβi

√
XT ΦiX−V[bi]≥ 0 . (A.7)

When ai j are independent, equation A.5 reduces to

E[
n

∑
j=1

ai jx j]−Qβi

√
V[

n

∑
j=1

ai jx j]≥ bi (A.8)

and equation A.7 reduces to

E[
n

∑
j=1

ai jx j −bi]+Qβi

√
V[

n

∑
j=1

ai jx j −bi]≥ 0 . (A.9)

A.2.2 The Deterministic Equivalent Objective Function

There are a number of ways that objective function uncertainties can be handled in

optimization models. Charnes and Cooper [12] suggested three approaches (assum-

ing a maximisation problem): maximise the mean (M model), minimize variance (V

model) and maximise the probability (P Model). A similar approach known as the

mean-variance framework was proposed for portfolio optimization in the seminal

work of Markowitz [22]. However, this framework was found to have shortcomings

in credit portfolio optimizations [23]. VaR was thus suggested in its stead for some

financial applications.

The use of VaR as a risk metric was spurred by amendments to the Basel Accord in

1996 to require banks to use it and also to set aside capital for meeting market risk

[24]. In the financial industry, VaRβ is defined as the value such that the probability

that the loss/cost over a specified time exceeds is α = 1− β . The value of α is

often take as 0.01 or 0.05. The same VaR value may be denoted as VaRα . One

of the shortcomings of using VaR as a risk metric is that it does not measure the

extent of the losses beyond the VaR. Also, it is difficult to optimize VaR numerically

when the objective function is not normally distributed. Rockafellar and Uryasev

[15] introduced the Conditional Value at Risk (CVaR) to address these and other

concerns. CVaR, also known as expected shortfall, mean shortfall, mean excess
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loss or tail VaR, is the expectation of the loss function values that exceed VaR (see

Figure 2 for an illustration of the difference between VaR and CVaR).

For a normal distribution with mean μ and standard deviation σ , the CVaR at a

confidence of β (CVaRβ ) can be calculated using [25]

CVaRβ = μ +
exp(−0.5q2(β ))√

2πα
σ . (A.10)

Expressions for calculating CVaR for other distributions can be found in [26]. As

a metric in optimization, CVaR has superior properties in many respects compared

to VaR 5. However, for normal or elliptical distributions, VaR, CVaR, or minimum

variance will produce the same optimal solution [15]. An approach to optimize

CVaR and determine VaR simultaneously for general distributions is presented in

[15]. However, calculation of the CVaR is approximated using simulated data.

Goal programming is a multi-objective programming technique first developed by

Charnes, Cooper and Ferguson [29]. In GP, goals are set for each objective and

a solution that minimizes the deviations from the goals is determined. In stochas-

tic GP (goal programming with uncertainties in the objective function coefficients

or targets), an objective function can be converted to an equivalent constraint and

deterministic objective. For example, equation A.1 can be changed to:

min δ+ , (A.11)

subject to: P

{
n

∑
j=1

c jx j −δ+ ≤ g

}
≥ β , (A.12)

δ+ ≥ 0 , (A.13)

where g is the aspiration (the goal) and δ+ is the positive deviation from the goal.

When equation A.1 represents a loss function, δ+ is equivalent to the VaR. In the

case of system acquisition, the loss function may be viewed as the total cost of the

acquisition or the expenditure beyond an approved budget.

5. Further details on the properties of CVar and VaR may be found in Refs. [23] and [27] but in

brief, it is known that:

– VaR is a non-convex function of the decision variables and usually has many local minima.

Under general conditions, CVaR is a convex function of decision variables such that there

will exist a unique global optimal value if the search space is also convex.

– VaR is not a coherent risk measure in the sense of Artzner [28]. In particular, given two sets

of feasible solutions, κ and ς , it is possible to have V[κ]+V[ς ]> V[κ]+V[ς ]. CVar on the

other hand, is a coherent risk measure.
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A.2.3 Chance-Constrained Goal Programming (CCGP)

From the foregoing discussions, given a general linear multi-objective optimization

problem,

max
n

∑
j=1

cl jx j, l = 1,2, . . . , t̃ ,

min
n

∑
j=1

cl jx j, l = t̃ +1, t̃ +2, . . . , t ,

subject to: (A.14)

P{
n

∑
j=1

ai jx j ≤ bi} ≥ βi, i = 1,2, . . . , m̃ ,

P{
n

∑
j=1

ai jx j ≥ bi} ≥ βi, i = m̃+1, m̃+2, . . . ,m ,

x j ≥ 0

where cl j, ai j and bi are independent random variables, the deterministic nonlinear

programming equivalent of the model can be obtained as:

min
t̃

∑
l=1

δ−
l +

t

∑
l=t̃+1

δ+
l ,

subject to:

E

[
gl −

n

∑
j=1

ai jx j

]
+Qβl

√√√√V

[
gl −

n

∑
j=1

ai jx j

]
≤ δ−

l l = 1,2, . . . , t̃ ,

E

[
n

∑
j=1

ai jx j −gl

]
+Qβl

√√√√V

[
n

∑
j=1

ai jx j −gl

]
≤ δ+

l l = t̃ +1, t̃ +2, . . . , t ,

E

[
n

∑
j=1

ai jx j −bi

]
+Qβi

√√√√V

[
n

∑
j=1

ai jx j −bi

]
≤ 0 i = 1,2, . . . , m̃ ,

E

[
n

∑
j=1

ai jx j −bi

]
−Qβi

√√√√V

[
n

∑
j=1

ai jx j −bi

]
≥ 0 i = m̃+1, m̃+2, . . . ,m ,

x j, gl, δ+
l , δ−

l ≥ 0 .
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List of abbreviations and acronyms

AST Acquisition Support Team

CCGP Chance-Constrained Goal Programming

CCP Chance-Constrained Programming

CORA Centre for Operational Research and Analysis

CVaR Conditional Value at Risk

DMGOR Directorate Materiel Group Operational Research

DRDC Defence Research and Development Canada

ECP Extended Cutting Plane

ft Foot (or Feet)

GP Goal Programming

IMP Individual Meal Pack

kg kilograms

LHS Load Handling System

LVMP Logistic Vehicle Modernization Project

MSVS Medium Support Vehicle System

NATO North Atlantic Treaty Organization

NEOS Network-Enabled Optimization System

PLS Palletized Load System

POL Petroleum Oils and Lubricants

VaR Value at Risk

VRP Vehicle Routing Problem

List of mathematical notations

E[·] Expectation

∀ For all

∈ Is a member of

⊂ Is a subset of

| · | Set cardinality

∪ Set union

∩ Set intersection

V[·] Variance
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