

Practical Framework for Software Architectural Risk Analysis

Frédéric Painchaud, Robert Charpentier and Philippe Charland

Defence R&D Canada – Valcartier

2459 Pie-XI Blvd North

Québec, QC, G3J 1X5 CANADA

Frederic.Painchaud@Forces.gc.ca

Robert.Charpentier@Forces.gc.ca

Philippe.Charland@Forces.gc.ca

Abstract

This article proposes a rigorous and practical framework for Software Architectural Risk Analysis (SARA)
along with an overview of the most relevant sources of information needed to carry out such an analysis.
By following the nine steps proposed for the SARA process, it is possible to describe the architecture from
the perspective of protecting software systems against cyber attacks. This includes threat and risk
identification as well as recommendations to improve the defensive posture of a vulnerable system.

Introduction

Our reliance on computing systems is ever-increasing. The need for better quality software is therefore very
strong and will continue to grow in the near future, both for the military and civilian communities.
However, reliability and security requirements are more and more difficult to analyse because of the
intrinsic complexity of combining independently designed software components. Also, the quality of the
latter varies considerably, often leaving critical systems vulnerable to reliability problems, security risks,
and maintenance difficulties.

Software Architectural Risk Analysis (SARA) is a rigorous process aiming at implementing more modern
analysis practices focusing on the protection of systems from cyber attacks. In this process, the “attacker
perspective” is adopted to identify ways to infiltrate or disable a system under study, “just as an attacker
would do”. This critical architectural review enables the prioritization of the risks and of their associated
mitigation measures, by assessing the system design. This document proposes a generic, rigorous and
practical framework for SARA composed of nine well-defined sub-processes that are described in detail,
along with the associated technical references supporting each of them. It is intended for system architects
and security specialists.

The proposed SARA framework is generic and comprehensive but could be customized to each analysis
environment depending on the local requirements, the financial realities, and the perceived risks to be
managed. In many instances, it may also be required to seek assistance from specialists to ensure
consistency and soundness in the SARA process. This is especially true when trade-offs have to be made.
The references and multiple links included in this overview article are an excellent starting point for the
identification of professionals in this field of expertise.

Generic Framework for Software Architectural Risk Analysis (SARA)

The generic framework for SARA derives from existing standard risk analysis processes, customized for
software architecture analysis [1-6]. It is depicted in Figure 1, which lays out the nine sub-processes
recommended in this rigorous framework. Note that steps 2, 3, 4, and 6 can be done in parallel. Each of the
nine steps is detailed in the following subsections. For each step, a table provides practical information on
its inputs and outputs, as well as on how it is performed. Again, these guidelines may be overwhelming for
many case studies but it is easy to simplify them whenever it is appropriate.

Figure 1 – Generic SARA framework

Inputs • All the architectural documentation that can be found on the software system.

SARA –
Software
Architectural Risk
Analysis

• Nine sub-processes recommended for rigorous SARA.

• The goal is to describe the architecture, the identified threats, the risks and
their associated levels, any typical exploitable vulnerabilities and their
impacts, and to provide final recommendations on corrective measures and/or
modifications to be implemented.

Outputs • A comprehensive software architectural risk analysis report.

Step 1 – System characterization

Inputs • All the architectural documentation that can be found on the software system.

Step 1: System
characterization

• The first and most important step of the process, as everything else is based on
it.

• The goal is to review, understand, and merge the architectural views provided
by the documentation to develop a one-page overview of the software system.

• All the documentation can still be used during the next steps. The one-page
overview is used as a common reference.

• Validate the available documentation against the actual software
implementation.

• Meet the architects for further validation and discussion concerning any
discrepancies.

Outputs
• A one-page overview – a rich graphical representation of the system that is

recognized as valid and complete by all stakeholders.

• A very good and up-to-date understanding of the software architecture.

Step 2 – Threat identification

Inputs

• The one-page overview.

• The history of system attacks on software components. This history can be
collected from operations (OPS) and intelligence centres (ASIC: All Source
Intelligence Centre).

• To identify potential threats, many sources of information are available.
Generic attack patterns can be found on the CAPEC website [7] (i.e.
Common Attack Pattern Enumeration and Classification) which can be used
to challenge the software architecture. Also, the Microsoft’s STRIDE
process [8] proposes a useful classification to examine risks in a more
structured fashion using six categories of weaknesses to prioritize the most
relevant ones. Finally, the SANS Top Cyber Security Risks website [9]
offers more current information about the active threats as observed in the
cyberspace.

Step 2: Threat
identification

• Use misuse and abuse cases to determine which threats are applicable to the
software system.

Output
• The threat statement, which identifies threats that are applicable to the

software system, their level of motivation (since threats are usually people),
their capacities and likelihood of occurrence.

Step 3 – Vulnerability identification

Inputs

• The one-page overview.

• The history of system attacks on software components. This history can be
collected from operations (OPS) and intelligence centres (ASIC: All Source
Intelligence Centre).

• To identify potential vulnerabilities, many sources of information are
available. The most exhaustive lists are available on the Common
Weaknesses Enumeration (CWE) [10] and the Common Vulnerability
Enumeration (CVE) websites [11] which are very well structured to ease
navigation. The Open Source Vulnerability Database [12] lists known
vulnerabilities found in specific versions of software applications enabling
more focused investigations. For web applications, the OWASP Top 10 [13]
(Open Web Application Security Project) offers a rather short list of well-
prioritized vulnerabilities. Also, Chess and McGraw’s Seven pernicious
kingdoms [14] and Howard’s 19 deadly sins [15] are two good references to
learn more about the key concepts of software vulnerabilities and they may
be very useful to less experienced analysts.

• Questionnaires and interviews can be conducted with system administrators.

• Vulnerability scanning tools can also be used.

• Security testing results are helpful, especially the security tests that failed.

Step 3:
Vulnerability
identification

• The underlying framework weakness analysis and the ambiguity analysis are
used to determine which vulnerabilities are applicable to the software system
[6].

Output • A vulnerability statement which identifies vulnerabilities and their
exploitability.

Step 4 – Control analysis

Inputs

• The one-page overview.

• The controls that are not already implemented but that are planned for
implementation. This is mostly useful for the next iteration of the
architectural risk analysis, since the whole process must be repeated
frequently to reassess risks.

• Security testing results are helpful to make sure that the controls in place are
effective.

Step 4: Control
analysis

• Ambiguity analysis is used to find where controls should be implemented
[6].

• The one-page overview, security testing results, and planned controls can
then be used to determine if all needed controls are in place and are
effective.

Output • A list of controls which identifies current and future controls and their
effectiveness.

Step 5 – Attack likelihood determination

Inputs

• The threat statement.

• The vulnerability statement.

• The list of controls.

Step 5: Attack
likelihood
determination

• Ambiguity analysis is used to determine the likelihood of potential at-tack
scenarios, defined from identified threats and vulnerabilities [6].

• A table similar to Table 1 can be used to determine attack likelihood.

Output • Attack likelihood ratings, which identify the likelihood of threats exercising
vulnerabilities, i.e. the likelihood of attack scenarios.

Table 1: Example of an attack likelihood determination metric

Threat likelihood

High Medium Low

Vulnerability
likelihood

High High High Medium

Medium High Medium Low

Low Medium Low Low

Step 6 – Impact analysis

Input • The one-page overview.

Step 6: Impact
analysis

• Interviews with senior managers, business operations managers, and IT
security program managers are used to determine the impact of failures on
the software system. Advices from lawyers may sometimes be required.

Output • Impact ratings, which identify the magnitude of impacts.

Step 7 – Risk determination

Input • Attack likelihood and impact ratings.

Step 7: Risk
determination

• A table similar to Table 2 can be used to determine risks (i.e. associate
attacks with impacts).

Output • Rated risks, which identify the risks and their associated severity levels.

Table 2: Example of a risk determination metric

Attack likelihood

High Medium Low

Impact

High High High Medium

Medium High Medium Low

Low Medium Low Low

Step 8 – Control recommendations

Input • Rated risks.

Step 8: Control
recommendations

• Rated risks are prioritized by using a cost-benefit analysis.

• One or more new controls or system modifications are recommended to
eliminate or mitigate each risk.

• The controls or modifications that will be implemented depend on the risk
prioritization and the availability of resources.

Output • Recommended controls and modifications.

Step 9 – Results documentation

Inputs

• The one-page overview.

• The threat statement.

• Rated risks.

• Recommended controls and modifications.

Step 9: Results
documentation

• A report is written to describe the architecture, the identified threats, the
risks and their associated levels, exploitable vulnerabilities and their
impacts, and the final recommendations on controls and modifications to
implement.

Output • The final software architectural risk analysis report.

Tools Supporting the SARA Process

As previously explained, SARA relies heavily on a valid characterization (i.e., documentation) of the
software architecture under study. However, this documentation is rarely complete or up-to-date for
operational software systems. In the case where the specification and design artifacts are unavailable, of
poor quality, or no longer synchronized with the source code after a series of changes, architecture recovery
has to be performed. This is done through a detailed analysis of the system using tool support, in which the
“as-built” architecture is obtained from the implemented system to generate various architectural views.

Several tools are available to assist in recovering software architecture from source code. At this time, all
these tools provide only fragments of the overall architecture. The tools can predominantly assist in
recovering the design view. Unfortunately, for the moment, they provide no support to recover the “use
case” view. This view is particularly important for architecture analysis.

Architecture recovery tools evolve rapidly however. A survey conducted in 2003 revealed that most tools
were prototypes developed in universities and government laboratories [16]. Since then, commercial
products have grown both in terms of performance and of capabilities. However, our assessment of the
state-of-the-art in architecture analysis tools indicates that there is still a significant gap in terms of analysis
capabilities to properly perform software risk analysis [17]. More information about tool capabilities can be
obtained from the authors.

Concluding Remarks

The methodology for SARA is not very different from other Threat and Risk Assessment (TRA)
methodologies. The main difference resides in the intrinsic complexity of software and in its huge
variability in terms of implementation paradigms and languages, coding standards, etc. It also requires that
the analyst adopt “an attacker perspective” to look at the system under study in order to discover ways to
exploit its vulnerabilities. This can only be achieved by proper training and by maintaining the developed
expertise over time in such a way that it can evolve with both the offensive and defensive technologies.

In many instances, it may be necessary to seek assistance from specialists to ensure consistency and
soundness in the SARA process. Such analyses require specialized knowledge that can only be acquired
through regular practice and professional networking to keep up with the ever-increasing security
challenges.

References

[1] U.S. Department of Homeland Security, “Architectural Risk Analysis”, October 2005;
https://buildsecurityin.us-cert.gov/bsi/articles/best-practices/architecture.html , (October 06, 2010)

[2] U.S. Department of Homeland Security, “Assembly, Integration, and Evolution”, June 2010;
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/assembly.html, (October 06,
2010)

[3] U.S. Department of Homeland Security, “Risk Management,” November 2008;
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/risk.html, (October 06, 2010)

[4] U.S. Department of Homeland Security, “Books,” 2010; https://buildsecurityin.us-
cert.gov/bsi/resources/published.html, (October 06, 2010)

[5] G. Stoneburner, A. Goguen and A. Feringa, Risk Management Guide for Information Technology
Systems: Recommendations of the National Institute of Standards and Technology, NIST Special
Publication 800-30, National Institute of Standards and Technology, Gaithersburg, MD, 2002;
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf, (October 06, 2010)

[6] Cigital, “Cigital -- Application Security, Software Security and Software Quality services and
training,” 2010; http://www.cigital.com/, (October 06, 2010)

[7] The Mitre Corporation, “CAPEC - Common Attack Pattern Enumeration and Classification ,”
September 2010; http://capec.mitre.org/, (October 06, 2010)

[8] Microsoft, “The STRIDE Threat Model,” 2005; http://msdn.microsoft.com/en-
us/library/ee823878%28CS.20%29.aspx, (October 06, 2010)

[9] The SANS Institute, “SANS: The Top Cyber Security Risks,” September 2009;
http://www.sans.org/top-cyber-security-risks/, (October 06, 2010)

[10] The Mitre Corporation, “CWE - Common Weakness Enumeration,” September 2010;
http://cwe.mitre.org/, (October 06, 2010)

[11] The Mitre Corporation, “CVE - Common Vulnerabilities and Exposures (CVE),” September 2010;
http://cve.mitre.org/, (October 06, 2010)

[12] Open Source Vulnerability Database, “OSVDB: The Open Source Vulnerability Database,” 2010;
http://osvdb.org/, (October 06, 2010)

[13] OWASP, “Category: OWASP Top Ten Project,” October 2010;
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project, (October 06, 2010)

[14] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven Pernicious Kingdoms: A Taxonomy of Software
Security Errors,” IEEE Security and Privacy, vol. 3, no. 6, Nov./Dec. 2005, pp. 81-84;
http://www.cigital.com/papers/download/bsi11-taxonomy.pdf, (October 06, 2010)

[15] M. Howard, “The 19 Deadly Sins of Software Security - Michael Howard’s Web Log - Site Home -
MSDN Blogs,” July 2005; http://blogs.msdn.com/michael_howard/archive/2005/07/11/437875.aspx,
(October 06, 2010)

[16] J. Rilling, “State of the Art Report: System Architecture Recovery and Comprehension,” Contract
Report, DRDC Valcartier, Canada 2003.

[17] F. Painchaud, P. Charland, R. Charpentier, “Framework for Software Architectural Risk Analysis”,
DRDC Valcartier Technical Memorandum 2010-160, October 2010, Canada

