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Abstract

Detection is an uncertain operation subject to many random factors. The performance
of a detection system is therefore speci¿ed probabilistically, by way of its probabilities
of detection and false alarm, and the evaluation of a system’s performance falls,
unavoidably, within the scope of probability and statistics. In military applications, the
central role of probability and statistics has too often been upstaged by the novelty of
new detection technology, which, to demonstrate in all of its features, typically leaves
little time or inclination for a detailed treatment of performance probabilities. But a
detailed statistical analysis performance is crucial for drawing objective conclusions
from a performance test, such as whether the system passes or fails minimum
operational requirements. The statistics of performance testing are reviewed here, as a
means to manage the measurement uncertainties in pass-fail system testing. Two
different decision methods are presented, hypothesis testing and Bayesian inference,
each with their particular approach to manage uncertainties, yet both working toward
the same end. Pass-fail judgements drawn from “perfect” test results (no missed targets,
and no false alarms) are given special consideration because they are often encountered
in practice owing to small sample sizes. The minimum number of dummy targets
required for a performance test is derived and serves as a rough guide when planning
and evaluating performance demonstrations.

Résumé

La détection est une opération incertaine qui est soumise à de nombreux facteurs
aléatoires. Les performances d’un système de détection doivent donc être établies de
façon probabiliste, c’est-à-dire en tenant compte des probabilités de détection et des
fausses alarmes� l’évaluation de la performance d’un système relève inévitablement du
domaine des probabilités et des statistiques. Dans les applications militaires, le rôle
central que jouent les probabilités et les statistiques a trop souvent été relégué au
second plan par l’aspect novateur des nouvelles technologies de détection, qui,
généralement, ne laissent guère de temps pour effectuer un calcul détaillé des
probabilités de performance, lequel permettrait d’en démontrer toutes les
caractéristiques, et ne suscitent guère d’intérêt à cet égard. Il est cependant crucial de
procéder à une analyse statistique a¿n de tirer des conclusions objectives d’un essai de
performance permettant, entre autres, de déterminer si un système répond ou non à des
exigences opérationnelles minimales. Dans l’article, on analyse les statistiques des
essais de performance, a¿n de gérer l’incertitude des mesures faites lors d’essais du
système. On présente deux méthodes de décision différentes, soit la véri¿cation des
hypothèses et l’inférence bayésienne. Chaque méthode offre une approche particulière
pour gérer les incertitudes tout en cherchant à atteindre le même objectif. On examine
les jugements sur la réussite ou l’échec fondés sur des résultats ń parfaits Úz (aucune
cible manquée et aucune fausse alarme), car de tels jugements sont fréquents en
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pratique, en raison de la petite taille des échantillons. On calcule le nombre minimal de
cibles factices nécessaires pour effectuer un essai de performance, a¿n de fournir un
chiffre approximatif lors de la plani¿cation et de l’évaluation des démonstrations de la
performance.
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Executive summary
Background

Proven performance is crucial for military detection systems. A performance test
usually entails the deployment and subsequent search for dummy targets under realistic
operating conditions. Such tests should be a central part of the design, evaluation, and
procurement of any detection system. But detection is an uncertain operation. If the
conclusions drawn about performance from the test are to be objective and justi¿ed,
then the inherent uncertainties of the performance test must be managed in an objective,
unbiased way.

Principal results

The uncertainties of pass-fail testing are reviewed here, and two important questions are
addressed: 1) when planning a test, how many dummy targets should be deployed to
prove that a detection system exceeds a given performance level?� and 2) when
assessing a test, with what con¿dence can an objective observer claim that the detection
system passes or fails its performance requirements? Special attention is given
furthermore to “perfect” test results (no missed targets, and no false alarms), which are
often encountered in practice and in the literature owing to small sample sizes—the
objective being again to decide whether the system passes on the basis of that perfect
result, or whether further testing is required.

Signi¿cance of results

A clear understanding of the statistics behind performance testing is necessary both
when writing system performance speci¿cations, and when evaluating a system against
those speci¿cations. The central role of probability and statistics has nevertheless been
overlooked, no doubt because the novelty of new system technology, and the effort
required to demonstrate its new features, leaves little time or inclination for a
comparatively mundane, but nonetheless important, discussion of performance
probabilities and statistics. The need for proven system performance comes now to the
forefront as automated detection systems evolve towards greater operational use.

The present analysis lays the groundwork for performance testing in the development
of automated detection aids in the Remote Minehunting System (RMS) Technology
Demonstrator (TD) project now underway at DREA, but it can also be applied much
more widely, for the evaluation of other detection systems, whether military, industrial,
or medical.

Future Work

The usual single-point speci¿cation of performance, by way of a minimum probability
of detection and maximum probability of false alarm, will be extended to a more
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general, minimal receiver-operator characteristic (ROC) curve, with a view to
developing new pass-fail speci¿cations that allow for a Àexible range of detection and
false alarm performance levels, any of which may be operationally preferred,
depending on variable operational factors, such as changing background clutter levels,
known risk, and so forth.

Ronald T. Kessel. 2002. Pass-fail performance testing for detection systems.
DREA TM 2001-205. Defence Research Establishment Atlantic.
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Sommaire
Contexte

La performance éprouvée est un aspect crucial des systèmes de détection militaires. Un
essai de performance comprend en général le déploiement et la recherche ultérieure de
cibles factices dans des conditions opérationnelles réalistes. Ces essais devraient
constituer un élément essentiel de la conception, de l’évaluation et de l’acquisition d’un
système de détection. Cependant, la détection est une opération incertaine. Il faut gérer
de façon objective et impartiale l’incertitude inhérente aux essais de performance si
l’on veut tirer des conclusions objectives et justi¿ées sur la performance d’un système.

Principaux résultats

On analyse dans cet article les incertitudes liées aux essais visant à déterminer si un
système répond ou non à des exigences opérationnelles minimales, c.-à-d.
réussite/échec, et on pose deux questions d’importance : 1) Lors de la plani¿cation,
combien de cibles factices doit-on déployer pour prouver qu’un système de détection
dépasse un niveau de performance donné? et 2) Lors de l’évaluation d’un essai, avec
quelle certitude un observateur objectif peut-il af¿rmer qu’un système de détection
répond ou non aux spéci¿cations de performance minimales? On accorde en outre une
attention particulière aux résultats ń parfaits Úz (aucune cible manquée et aucune fausse
alarme), que l’on observe fréquemment en pratique et dans la littérature en raison de la
petite taille des échantillons l’objectif étant, encore ici, de déterminer, à partir de ce
résultat parfait, si le système répond ou non aux spéci¿cations minimales ou s’il est
nécessaire de procéder à d’autres essais.

Importance des résultats

Il faut bien comprendre les statistiques derrière les essais de performance lorsqu’on
établit les spéci¿cations relatives à la performance et lorsqu’on évalue un système en
fonction de ces spéci¿cations. Néanmoins, on néglige de tenir compte du rôle central
que jouent les probabilités et les statistiques, sans doute parce que l’aspect novateur des
nouvelles technologies et l’effort qu’exigerait la démonstration de leurs nouvelles
caractéristiques ne laissent guère de temps et suscitent peu d’intérêt pour une
discussion, comparativement terre à terre mais néanmoins importante, sur le rôle des
probabilités et des statistiques dans la détermination de la performance. La
performance éprouvée des systèmes se retrouve maintenant au premier plan, avec
l’utilisation de plus en fréquente de systèmes de détection automatiques lors
d’opérations. La présente analyse établit la base à partir de laquelle seront élaborés les
essais de performance qui serviront lors de la mise au point d’aides à la détection
automatique dans le cadre du projet de démonstration de la technologie du système
télécommandé de chasse aux mines, présentement en cours au CRDA. Cette analyse
peut également servir à évaluer beaucoup d’autres systèmes de détection utilisés à des
¿ns militaires, industrielles ou médicales.
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Travaux prévus

Les spéci¿cations de performance à point unique, qui sont habituellement établies en
fonction de la probabilité minimale de détection et de la probabilité maximale de fausse
alarme, seront appliquées à une courbe minimale plus générale illustrant les
caractéristiques du récepteur/opérateur, en vue d’établir de nouvelles spéci¿cations
minimales (réussite/échec) qui permettront de choisir, selon l’opération, une portée de
détection et des niveaux de performance relatifs aux fausses alarmes qui soient plus
Àexibles, selon les facteurs opérationnels variables, comme le changement des niveaux
de fouillis d’échos, les risques connus, etc.

Ronald T. Kessel. 2002. Essais de performance échec/réussite pour les systèmes de detection.
DREA TM 2001-205. Centre pour la Recherche de la Défence Atlantique.
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1. Introduction

Proven performance ranks among the most important properties of automated detection
systems for military applications. For instance, a new computer-aided detection (CAD)
system must exceed minimal performance speci¿cations to be accepted for operational
use, prospective detection systems may be ranked according to their performance in
realistic trials carried out when purchasing a new detection system, or, in much the
same way, prospective automatic target recognition (ATR) algorithms might be ranked
according to their performance against a set of target and clutter images. In all such
cases, detection performance must be assessed quantitatively and objectively.

A performance test entails the deployment of a number of dummy targets under
realistic conditions, and then a search for those targets using the detection system under
test. The percentage of targets correctly detected is an estimate of the probability of
detection, and the number of false alarms is indicative of the probability of false alarm.
What must not be overlooked, however, are the uncertainties inherent in the
experimental method. For as with any experimental measurement, to merely report a
¿nal measured value, without explicit or implied uncertainty bounds, is to provide only
half of the information that a decision maker must have, because it says nothing about
the reliability of the measured result. Uncertainties determine the con¿dence that may
be placed in the conclusions drawn from a measurement. They distinguish careful
precision from a wild guess, for instance.

The routine reporting of uncertainties has often been forgotten, particularly in
demonstrations of automated detection systems such as for sea minehunting with
high-frequency sonar (the author’s ¿eld of research), where statistical rigor is likely to
be upstaged by the novelty of a new algorithm design and its many details. At best one
¿nds cautious conclusions regarding performance, with a warning that further testing is
required to be conclusive, but with no indication of how much more testing would be
required to be decisive. At worst, one ¿nds the claim of “perfect performance” (all
targets detected, with no false alarms) when the small number of dummy targets used in
the test provides little con¿dence. Indeed, perfect test results occur often enough in
practice owing to small sample sizes, and warrant special attention here. The same
tendencies are encountered with military detection systems more generally, whenever
the immediate questions of understanding and demonstrating new systems or
technology overshadow the larger questions of overall operational performance.

There are several well-established, traditional approaches to managing uncertainties, of
which two are considered here: hypothesis testing and Bayesian inference. The two
methods are complimentary, and their end results are much the same as we shall see.
Neither method is decidedly better (simpler or more immediately evident) than the
other, but together they show that there are no shortcuts to pass-fail performance
testing� that some degree of statistical complexity is unavoidable.

The motivation behind this work has been two practical questions that invariably arise
in performance testing:
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1. How many dummy targets must be deployed, and how many clutter events must be
encountered, in order to prove that a particular detection system meets a given
performance level?

2. With what con¿dence can an objective observer claim that the detection system
under test exceeds given performance levels?

Both are addressed here. Dummy targets and clutter events are mentioned in the ¿rst
because both target and clutter classes are required in a complete measure of
performance under the Neyman-Pearson criteria for detection systems, which includes
the probability of detection and false alarm [1] [2]. To omit one is to leave the
performance in doubt inasmuch as the detection thresholds of any detector can be
adjusted for perfect performance in one respect at the expense of the other—i.e., perfect
detection of all targets with intolerably many false alarms, or perfect rejection of all
clutter with poor detection of targets. The quality of a detector therefore lies in the
balance it strikes between the two classes, not in its excellence against one class alone.

Our approach will be to ¿rst give, in Section (2), an example of performance
uncertainties, and to clarify the scope and context of the present work by de¿ning terms
and reviewing the binomial probability distribution which governs performance testing.
A formal analysis of performance measurement uncertainties follows in Section (3).
Pass-fail decisions are taken up in Section (4) using hypothesis tests, and then again in
Section (5) using Bayesian inference. A treatment of the perfect test result and an
estimate of the minimum number of dummy targets is included in each of those
sections.

2. Preliminary remarks about detection performance
testing

2.1 Demonstration of uncertainties

Fig.(1) illustrates the uncertainties associated with pass-fail performance tests. It shows
¿rst of all the minimum allowable receiver-operator characteristics (ROC) [1],
separating the “pass” region (above and left of the curve, signifying higher probability
of detection for a given probability of false alarm) from the “fail” region (below and
right of the curve). The dashed line represents the ROC for the hypothetical system
under test, which would not be known in advance of a test, of course, but is assumed
here for the demonstration of uncertainties only. Finally, the individual points represent
300 independent performance tests, each computed here by statistical simulation, using
the binomial distribution given in Section (2.6), for randomly chosen operating points
on the ROC curve of the system under test. It was assumed that 10 dummy targets and
100 clutter events were used in the computation of each point. The scatter of the points
illustrates the random variability between repeated tests, due solely to the fact that we
are estimating the performance probabilities on the basis of a ¿nite target and clutter
sample sizes. In practice, we would of course have just one performance test, and no
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Figure 1: A demonstration of pass-fail test uncertainties: The points represent 300 independent pass-fail

performance tests of a given detection system (dashed curve), relative to minimum performance speci
�
cations (solid

curve), using 10 dummy mines and 100 clutter events in each test.

experimental indication of the variance through repeated trials as shown in the ¿gure. It
is clear that a pass-fail conclusion would be inconsistent on repeated trials, and that the
conclusions drawn from a single test remain in question. Increasing the sample sizes
reduces the variance, as we will see, and therefore increases the con¿dence in a
pass-fail conclusion, but when is the sample size adequate to rule decisively, for either
pass or fail?

2.2 Single-scenario test

A performance test is only useful insofar as we can draw objective inferences regarding
performance in the wider ¿eld of real-world operations. The test must therefore be
representative of operations in two respects:

1. the performance-affecting factors during the test must be the same as those in the
¿eld� and

2. the targets and clutter encountered during the test must be representative of those
encountered in the ¿eld.

Failure in either case undermines the con¿dence placed in the conclusions drawn from
the test.
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The correspondence between the test and the intended operation will be easy or dif¿cult
to ensure, depending on the scope of the conclusions to be drawn. If the conclusions are
to apply to one narrowly de¿ned but realistic scenario (a single operational area or
seaÀoor type, for instance), then the test could be carried out in just that scenario, by
¿rst deploying dummy targets, and then using the detection system under test to search
for them, much as during actual operations. On the other hand, if the conclusions drawn
from the test are to apply to all operational scenarios that could conceivably be
encountered over the life of the detection system, then the tests must be carried out for
all likely scenarios (assuming that all can in fact be identi¿ed in advance), and the
results of those test must be combined in proportion to the prior probabilities of
encountering each of those scenarios. The generalization of performance from a single
to multiple scenarios has been considered in Section 3.1 of reference [3], though
without an analysis of uncertainties. This would require a very ambitious performance
testing program. Typically one would of necessity focus on a few most likely, or
immediately applicable scenarios for testing. The single-scenario test is the essential
component in any case, and is assumed throughout this paper.

2.3 Clutter events

The term “clutter events” in connection with false alarms (question 1, page 2, and
throughout this paper) can be dif¿cult to de¿ne precisely. They are the set of
independent non-target signatures to which we assign a probability of triggering a false
alarm. Membership in this set may depend in part on the detector itself. A detector
based on energy detection, for instance, in which a detection is registered when the
signal intensity exceeds a given threshold [4] [5], may require that every pixel in the
signal constitutes a clutter event, in which case the total number of clutter events is
likely to be extremely large, and the required probability of false alarm proportionally
small. For a matched ¿lter or correlation detector [6], the number of clutter events
might be estimated by the ratio of the total signal length (or area) divided by the ¿lter’s
sliding window size . Then again, for a detector designed to discriminate very
particularly between similar objects, such as mines and mine-sized rocks in sidescan
sonar imagery [7] for instance , the number of clutter events would be the number of
rocks encountered during the test. In any case, it is important to clearly de¿ne clutter
events for a performance test in order to evaluate a detector’s false alarm performance.

2.4 Performance speci¿cations

Pass-fail testing begins with a speci¿cation of the minimum allowable performance. To
be clear about these speci¿cations, we begin as in elementary detection theory, by
assuming that the world, as seen by the detector, can be divided into two classes:
non-targets, or clutter (class 0), and targets (class 1). Let s � be the conditional
probability of registering a false alarm when given a member of class 0 , and s � be the
conditional probability of registering a correct detection given a member of class 1=
These constitute the performance probabilities under the Neyman-Pearson design
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criterion for detectors. The overhead bars signify that these parameters represent the
“true” performance that one would like to measure with certainty, but for which the
performance test only provides estimates.

A pass-fail performance test undertakes to determine whether the true performance
exceeds minimum requirements,

s � ? v � and
s � A v � >

(1)

v � being the maximum allowable probability of false alarm, and v � the minimum
allowable probability of detection. These inequalities must be accepted for the system
to pass.

Let s � be the ratio of the number of false alarms to the total number of clutter events in
the test, and s � be the ratio of the number of targets correctly detected to the total
number of targets deployed. The true performance probabilities are the expected values
each

s � @ H is � j > (2)

where l @ 3 or 1 to treat both classes at once. A performance test is too often viewed as
a test of the inequalities, with the estimates s � substituted for the true performance s � >

s � A v � and
s � ? v � =

(3)

Being random variables, the estimates s � are subject to random variations, making the
conclusions unrepresentative of the true performance. A pass might be the result of
“good luck” on a single trial, or a failure might be the result of “bad luck”. This
uncertainty is widely recognized, and accounts for the cautious quali¿cations that
researchers typically append to performance tests, that more testing is needed to be
decisive, but a statistical treatment of uncertainty is required to be objectively and
¿nally decisive.

2.5 The marginal detection system

The shortcomings of (3) become most apparent if we imagine that we happen to be
evaluating a marginal detection system—i.e., one whose true performance s � lies close
to the speci¿cations, s � � v � . Because the true performance lies near the pass-fail
decision boundaries, we might expect that, owing to uncertainties in the test, the system
would pass the detection +l @ 4, part of the test (3) with a probability of about 0.50,
and therefore fail with roughly the same probability1. Likewise for the clutter rejection
+l @ 3, part of the test. Hence the marginal detection system would be expected to fail,

1This assumes probability densities that are symmetric about the mean� hence a 0.5 pass-fail probability for the
detection and false alarm tests independently. The symmetric assumption does not strictly apply here, but serves for
illustration only.
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in at least one respect (false alarms or detections), in roughly 75 % of the performance
tests to which the system is subjected. The marginal detection system is in fact the most
dif¿cult to conclusively evaluate for this reason.

2.6 Measured performance: a binomial random variable

Let the number of targets and clutter events in a trial be q � and q � > respectively, and the
measured number of detections and false alarms be n � and n � . The number of
detections n � registered in q � independent samples follows a binomial random
distribution [9], such that the probability of registering n � detections in a test given the
true system performance s � , is

S +n � m s � , @

�

q �

n �

�

s
���

� +4� s � ,
� ��� � �

> (4)

In practice, the number of dummy mine targets q � for detection is not large, much less
than 200 typically, and S +n � , can be computed straightforwardly using (4). But if the
number of clutter events q � is very large, and s � is small, then the binomial distribution
is best approximated by Poisson’s distribution [8]

S � +n � m s � , @
+q � s � ,

���
h
� � � �	�

�+n � . 4,
> (5)

in which � is the Gamma function

�+n . 4, @ n$= (6)

The expected detection count in either case is

H in � j @ q � s � > (7)

and the standard deviation is [9]

� ��� @
s

q � s � +4� s � ,= (8)

The measured performance is the proportion

s � @
n �

q �
> (9)

whose standard deviation, by (8), is

� � � @

v

s � +4� s � ,

q �
= (10)

The uncertainty � � � of the measured performance s � clearly decreases as the number of
samples q � increases. The true performance s � is not known in advance, of course, so
another approach to uncertainties is required.
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3. Uncertainty analysis

The common practice of expressing uncertainties in terms of the standard deviation [8],
[9] is based on the assumption that the measurement is a Gaussian random variable,
distributed symmetrically about its mean. But the binomial distribution is not
symmetric, especially for high performance detectors +s � $ 3> s � $ 4, > and its
standard deviation is furthermore dependent on the mean, all of which makes the
standard deviation of little use for directly assessing uncertainties in performance
measurements. The essential approach to uncertainties is nevertheless the same as it is
with the Gaussian� that is, by ¿rst of all de¿ning a con¿dence interval, or error bounds,
for the measurement—i.e., the bounds within which the true value of a parameter lies
with a given con¿dence probability close to unity. In this section we review the
con¿dence intervals for performance tests following the method of Kendall and Stuart
[10, Section 20.9].

3.1 Con¿dence intervals

Let the lower and upper con¿dence bounds constraining the true system performance
be called w

�

� and w
�
� >respectively. The probability that the true system performance s �

lies within the con¿dence interval, given the measured performance s � can be written as

S
�

w
�

� ? s � ? w
�

� m s �

�

@ f � > (11)

in which f � is the con¿dence probability. To determine the interval w
�

� to w
�

� > we begin
by ¿rst computing a similar interval for the more straightforward inverse of (11),

S
�

w
�

� ? s � ? w
�

� m s �
�

� f � > (12)

that is, the probability S that the measured performance s � will lie within the interval
w

�

� to w
�

� , given the true performance s � = The inequality is necessary because the
measured performance s � > w

�

� > and w
�
� belong to the set of rational numbers as in (9),

which permits equality almost nowhere in the range w
�

� ? s � ? w
�
� . We rewrite (12) as

S
�

n
�

� ? n � ? n
�

� m s �
�

� f � > (13)

where n � is de¿ned as in (9), and n
�

�

�

� are the discrete counterparts of w
�

�

�

� >

n
�

� @ �rru
�

q � w
�

�
�

>
n

�
� @ fhlo

�

q � w
�
�
�

>
(14)

the �rru +{, operation returning the largest integer less than {> and fhlo +{, returning
the smallest integer bigger than {.

Equation (13) constrains width of the interval n
�

� � n
�

� given one of its end points, but
not the value of each bound independently. To determine n

�

� and n
�

� > it is therefore
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customary (as with Gaussian con¿dence intervals) to choose central intervals� that is,

� � @5 � S
�

n � ? n
�

� m s �
�

>
� � @5 � S

�

n � A n
�

� m s �
�

>
(15)

in which the signi¿cance

� � @ 4� f � > (16)

has been introduced for use in hypothesis testing in the next section. For the moment,
however, inserting the binomial distribution into (4), we have

� � @5 �

� ��
S

��� �
S +n m s � , >

� � @5 �

� �
S

��� ����
S +n m s � , >

(17)

the ¿rst of which determines the lower bound n
�

� , and hence w
�

� @ n
�

� @q � > the second
determines the upper bound n

�
� > and hence w

�
� @ n

�
� @q � = In practice, n

�

� and n
�

� must
be determined numerically.

This has been done for detection performance in Fig.(??), for example, for three
different con¿dence probabilities= Note that the ¿gure has been constructed
horizontally, with the independent variable, the true system performance s � > on the
vertical axis, and with the dependent variable, the measure performance s � and its
corresponding con¿dence interval w

�

� and w
�
� > along the horizontal axis2. But what we

would like to do is to read the graph vertically—i.e., given a measured value of s � , read

points
�

s � > w
�

�

�

and
�

s � > w
�

�

�

along a vertical line through s � , to get the con¿dence

interval w
�

� and w
�
� bounding the true performance s � , as intended from the outset (11).

The justi¿cation for reading the graph vertically follows by noting ¿rst of all that each
test of an actual system is characterized by a point +s � > s � , somewhere on the
graph—the ¿rst coordinate s � being known with certainty because it is the measured
result, and the second s � remaining unknown because it is the true system performance.
And, secondly, noting that if the point +s � > s � , falls in the interval, then it does so with a
probability equal to or greater than f � , for that was the condition on which the interval
was originally designed. Thus, having measured the proportion s � detected out of a total
sample population q � for the test, we can read its corresponding con¿dence interval by
looking vertically along the line s � , from the lower bound w

�

� to the upper w
�
� .

Note that the interval in Fig.(??) widens, and hence, the uncertainty regarding to true
system performance increases, as the con¿dence probability is increased, signifying

2Note that the con¿dence intervals are central intervals provided that |
��

�' f and |
��

�' �� This is not strictly
true at the extreme left or right sides of the graph where |

�� ' f or |
�� ' �, and where strong asymmetry in the

binomial distribution makes the central interval impossible. The con¿dence probability therefore varies slightly in
the horizontal, near the extreme ends of the graph where |

�� ' f or |
�� ' �(varies, that is, between S

�
at points

|
��
�' f and |

��
�' �, and S

�
n k

�
*2 at the extreme ends ER

�
c R

�
� ' Efc f� and ER

�
c R

�
� ' E�c ��.
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